Как работает солнечная электростанция: Как работает сетевая солнечная электростанция. Разбор на примере.

Как работают солнечные электростанции, на чем они основаны

В поисках альтернативных источников энергии человечество всё чаще обращается к солнцу, и это не удивительно. Именно солнце является неисчерпаемым источником света, тепла и жизни на планете. Попытки использовать его энергию для получения электричества предпринимались людьми давно. Но лишь в ХХ столетии эта идея обрела конкретную форму и вступила в фазу реального воплощения в жизнь. Поэтому сегодня вряд ли кого-то сможет удивить, например, солнечная электростанция для загородного дома или уличные фонари, работающие на солнечных батареях.

Солнце является бесплатным возобновляемым источником энергии, мощности которого могло бы хватить на обеспечение всего земного шара электричеством. Это позволило бы человечеству отказаться от таких дорогих и наносящих вред окружающей среде энергоносителей, как нефть, газ, уголь, радиоактивное топливо. К сожалению, из-за достаточно низкого КПД доступного в настоящий момент оборудования, мощности существующих ныне солнечных электростанций пока недостаточно для их полноценной замены. Сегодня мы стоим у самых истоков развития данной технологии, которой, безусловно, принадлежит будущее.

Все существующие в настоящее время солнечные электростанции можно разделить на две большие группы – промышленные и мобильные энергетические установки для обеспечения жилых домов. Разница между ними заключается не только в масштабах, но во многом и в принципах работы, которые будут рассмотрены ниже.

Принципы работы разных видов промышленных солнечных электростанций

Преобразование солнечной энергии в электрическую может происходить напрямую либо опосредованно – через предварительную выработку тепловой энергии, которая затем преобразуется в электрическую. Все существующие сегодня электростанции базируются на одном из этих принципов. Они бывают следующих видов:

  • Башенные солнечные электростанции, которые вырабатывают электричество вторым способом, то есть, путём предварительного преобразования солнечной энергии в тепловую. При достаточном уровне инсоляции в регионе их расположения они могут иметь достаточно большую мощность и КПД порядка 20%. Принцип работы основан здесь на использовании пара, получаемого в результате нагрева солнечными лучами резервуара с водой. При удачном месторасположении, ясной погоде и успешной работе оборудования температура нагрева воды может достигать 700? C. Поэтому в дальнейшем электроэнергия вырабатывается здесь при помощи стандартных паровых турбин, как на обычной ТЭЦ. Достигать таких высоких результатов помогает оригинальная конструкция башенных электростанций. Как видно из названия, в основе её располагается башня. Она может достигать 25 метров и более. В верхней её части устанавливается резервуар с водой чёрного цвета (для увеличения степени поглощения солнечных лучей). Однако простого нахождения на солнце резервуара с водой недостаточно для разогрева её до такой высокой температуры. Поэтому вокруг него по всему периметру устанавливают гелиостаты, улавливающие и перенаправляющие к нему большее количество солнечных лучей. Данные устройства представляют собой вогнутые зеркала площадью в несколько квадратных метров. Специальная регулируемая опора позволяет им менять положение по ходу движения солнца, чтобы максимально эффективно улавливать его лучи и направлять их на нагреваемую ёмкость с водой. На площадке вокруг башни могут быть установлены сотни таких зеркал. Для перекачки воды в башне предусмотрена система насосов. Управление процессом осуществляется при помощи специальной компьютерной программы. Подобная конструкция стационарной солнечной электростанции является на сегодняшний день одной из самых эффективных. Среди минусов – слишком большая площадь, занимаемая гелиостатами, а также невозможность работать круглосуточно.
  • Солнечно-вакуумные электростанции, в основании которых также располагается высокая башня. Но принцип её работы другой. Генератором вырабатывается электроэнергия от работы воздушной турбины, которую приводит в действие поток горячего воздуха. Разница температур у основания башни и на её вершине заставляет воздух двигаться. Кроме башни в конструкцию включается покрытый зеркалами участок земли у её основания, нагревающийся под лучами солнца. Воздух движется вверх, вращая турбину. Так как разница температур в такой конструкции сохраняется достаточно долго, данный вид электростанции может функционировать не только днём, но и ночью. Это является её большим преимуществом.
  • Используют энергию пара и в так называемых параболо-цилиндических концентраторах. В основе работы данного вида электростанции лежит нагрев масляного теплоносителя до температуры, необходимой для преобразования воды в теплообменнике в пар. А уже пар в свою очередь приводит в действие всё ту же стандартную паровую турбину. Отличие от башенных электростанций состоит в том, что здесь не требуется строительства высокой башни, а нагрев резервуара с водой происходит не непосредственно от направляемых на него лучей солнца, а от искусственного теплоносителя. Просто устанавливается трубка с нагреваемым масляным теплоносителем, на которой фокусируется тепловой луч, создаваемый специальным параболо-целиндрическим зеркалом, закреплённым на постаменте и отражающим солнечный свет в нужном направлении.
  • Одной из разновидностей установки, работающей на параболо-цилиндрических концентраторах, является солнечная электростанция, вырабатывающая энергию при помощи так называемого двигателя Стирлинга. В данном устройстве параболо-целиндрическое зеркало фокусирует отраженный солнечный свет на указанном двигателе. Эффективность таких установок может быть чрезвычайно высокой с КПД порядка 30%. Однако их работа требует применения водорода или гелия в качестве охлаждающего элемента.
  • Параболо-цилиндические концентраторы используются также в работе одной из самых необычных разновидностей солнечной электростанции – аэростатной СЭС. Здесь концентраторы параболической формы размещаются на аэростате, покрытом прозрачной армированной плёнкой. Безусловным достоинством такой конструкции является возможность стабильно работать на высоте, превышающей 20 км, где отсутствует ветер, облака и осадки. Термопреобразователь, на котором концентрируется луч, может при этом охлаждаться посредством гелия либо водорода. Ориентация параболического концентратора на солнце осуществляется при помощи гироскопа. Каждый аэростат может оснащаться несколькими параболо-цилиндическими концентраторами. Используется и другая разновидность аэростатных солнечных электростанций. В основе их работы лежит преобразование солнечного света при помощи специальных фотоэлементов, о которых будет рассказано ниже.
  • Тарельчатые электростанции также используют принцип преобразования тепловой солнечной энергии в электрическую. Они состоят из отдельных модулей. Основным элементом в модулях являются ферменные конструкции, включающие отражатель и приёмник. При этом отражателями являются зеркала диаметром до 2 метров, имеющие форму тарелок и крепящиеся к ферме. Отражаемый ими солнечный свет концентрируется на приёмнике. Промышленные электростанции могут состоять из десятков модулей, каждый из которых в свою очередь включает по нескольку десятков тарельчатых зеркал. Чем больше их количество, тем выше мощность модулей и электростанции в целом.

К сожалению, в настоящее время промышленные солнечные электростанции достаточно эффективны лишь в регионах с большим количеством солнечных дней в году. Многие из них не способны работать вообще либо крайне малопроизводительны в ночное время. Хотя энергия солнца является бесплатной, оборудование для таких электростанций всё ещё довольно дорогое, поэтому их строительство в промышленных масштабах не всегда рентабельно.

Мобильные электростанции для дома

Есть ещё одна сфера, где использование солнечной энергии в последнее время заметно набирает популярность. Это обустройство мобильных электростанций в частном секторе. В отличие от промышленных они предназначены для обеспечения электроэнергией отдельного дома или небольшой группы строений. Такая локальная солнечная электростанция или энергетическая установка, как правило, в своей основе имеет работу солнечных панелей, устанавливаемых на наиболее доступных для солнечной радиации местах – крышах домов, балконах, возвышенностях, открытых лужайках. В её состав входят:

  • солнечные панели с оптическими элементами для преобразования солнечных лучей;
  • аккумуляторы для обеспечения бесперебойной подачи электричества в тёмное время суток, пасмурную погоду и в случае аварии.
  • инверторы, преобразующие ток постоянного напряжения в переменный;
  • контроллеры, обеспечивающие контроль над уровнем зарядки батарей.

Частные домовладения могут обеспечиваться электроэнергией и от башенных солнечных электростанций, и от модульных, однако наиболее популярны в данной сфере мобильные панельные электростанции на фотоэлементах. Они позволяют использовать энергию солнечного света даже в пасмурную погоду. Солнечные панели могут приобретаться и устанавливаться в любом количестве в зависимости от нужд конкретного потребителя. Многочисленные фотоэлектрические полупроводниковые преобразователи устанавливаются на специальные монтажные платы. От их количества и мощности напрямую зависит мощность электростанции. Они довольно просты в монтаже и обслуживании.

Панельные электростанции бывают:

  • сетевые, работающие в стационарной электросети и не требующие применения аккумуляторных батарей, так как роль накопителя в данном случае играет сама сеть;
  • автономные с накопительными аккумуляторными батареями, преимуществом которых является независимость от внешних источников электроэнергии;
  • гибридные, совмещающие сетевой и автономный тип, благодаря чему снижается себестоимость установки и зависимость её от внешних источников.

Существуют также комбинированные варианты, когда солнечная электростанция для коттеджа оборудуется дополнительными теплообменниками, позволяющие использовать в хозяйстве получаемую в процессе выработки электроэнергии горячую техническую воду. На таком принципе часто построены системы отопления частных домов, оборудованных солнечными панелями.

Как работает солнечная электростанция | Solar Garden

  • Главная /
  • org/ListItem»>

    Блог

    /

  • КАК РАБОТАЕТ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ?

20

August

Солнечная электростанция (СЭС) — это инженерное сооружение, преобразующее солнечный свет в электрическую энергию. Каким образом это происходит и как работает солнечная электростанция — читайте в этой статье.

Для производства электричества из энергии Солнца существуют следующие технологии:

  1. Фотоэлектрическая технология — позволяет преобразовывать энергию Солнца непосредственно в электричество. Фотоэлектрические системы (они же солнечные электростанции) получили наибольшее распространение для электроснабжения частных домохозяйств, квартир, различных заведений, промышленных и сельскохозяйственных объектов. Такие системы быстро окупаются и требуют минимального технического обслуживания. 
  2. Концентрирующие технологии — тепло Солнца используется для нагрева воды до состояния пара высокого давления с дальнейшей подачей его в турбину (механическая энергия трансформируется в электрическую). Для увеличения интенсивности солнечного света используются системы фокусировки — зеркала и линзы. СЭС такого типа (параболические, башенные, тарельчатые) обеспечивают большие мощности и применяются для электроснабжения городов и крупных предприятий.

Применение экологически чистого, альтернативного источника энергии экономически выгодно как для обеспечения собственного энергопотребления, так и для продажи электричества в сеть по зеленому тарифу.

В этой статье детально рассматривается, как работает солнечная электростанция с фотоэлектрической технологией и что для этого нужно.

Содержание статьи:

  • Составляющие солнечной электростанции: основное и дополнительное оборудование
      • Солнечные батареи
      • Инвертор
      • Аккумуляторная батарея
      • Контроллеры заряда
      • Поддерживающая конструкция
  • Принцип работы солнечной электростанции: физика процесса
  • Делаем правильные выводы

Составляющие солнечной электростанции: основное и дополнительное оборудование

Для производства электричества солнечной электростанцией, необходимо качественное и надежное оборудование. В первую очередь — это солнечные батареи и инверторы. В зависимости от назначения и типа электростанции, ее составляющими могут быть аккумуляторные батареи и контроллеры заряда-разряда. Важной частью является поддерживающая конструкция, кабели, узел учета со специальным счетчиком, система мониторинга и др. Основной ассортимент составляющих солнечной электростанции включает в себя:

  1. Солнечные (фотоэлектрические) батареи состоят из элементов, которые изготовлены в основном из полупроводниковых материалов — обычно из кремния. От их типа зависит производительность, цена и долговечность системы:
    • монокристаллические элементы обеспечивают самый высокий (до 22%) КПД, хороший температурный коэффициент и длительный срок эксплуатации при незначительном снижении производительности. Они имеют самую высокую цену из-за дороговизны сырья — высокоочищенного кристаллического кремния;
    • поликристаллические элементы обеспечивают КПД в пределах 14-17%, имеют меньшую стоимость за Ватт при хороших характеристиках;
    • элементы на основе аморфного кремния (тонкопленочные) имеют самую низкую эффективность, которая к тому же сравнительно быстро снижается в процессе эксплуатации. К преимуществам относится наилучший температурный коэффициент, возможность их расположения на неровной поверхности и невысокая цена.
  1. Инвертор необходим для преобразования постоянного тока в переменный (AC) — для возможности его использования потребителями или передачи в электрическую сеть. Инверторы бывают различной мощности, функциональности и тип их выбирается в зависимости от назначения. Автономные инверторы для СЭС применяются для изолированных систем электроснабжения при отсутствии внешней электросети или если сеть ненадежна. Современные качественные инверторы обеспечивают измерения, безопасную работу системы, эффективное управление энергией и нагрузкой.
  2. Аккумуляторы для солнечных батарей применяются в СЭС автономного и гибридного типа для накопления энергии, выработанной в течение дня. Они обеспечивают питание потребителей электроэнергией ночью или при перебоях снабжения от централизованной сети. 
  3. Контроллеры заряда — подключаются между солнечной панелью и аккумулятором для регулирования процесса его зарядки и обеспечения правильного заряда или, что более важно, для защиты от чрезмерного перезаряда. Функционально они делятся на:  
    • простейшие контроллеры — просто отключают источник при достижении определенного уровня напряжения на АБ, при этом заряженность составляет 60-70%, что резко сокращает их срок службы; 
    • ШИМ контроллер — на окончательном этапе заряда использует широтно-импульсную модуляцию тока заряда и обеспечивает заряд аккумулятора до 100%;
    • MPPT-контроллер — повышает эффективность работы панели путем «вытягивания» максимального количества энергии за счет выбора определенного напряжения и тока.  
  1. Поддерживающая конструкция для панелей — обеспечивает необходимую жесткость системы и правильный угол наклона поверхностей к излучению.

Рациональным решение является установка системы мониторинга, которая отслеживает в режиме реального времени производство э/э и может указать на неисправность.

Принцип работы солнечной электростанции: физика процесса

Принцип работы СЭС основан на фотоэлектрическом эффекте. Фотоэлектрический элемент (он же солнечный элемент) использует технологию преобразования солнечной энергии непосредственно в электричество. Фотоэлектрический элемент обычно изготавливается из кремниевых сплавов. Когда фотоны солнечного света попадают на полупроводниковый материал, генерируются свободные электроны, которые могут течь через материал, создавая постоянный электрический ток. 

Кремний широко известный полупроводник, обладающий свойствами как проводников, так и диэлектриков. Полупроводники проявляют свойство, известное как фотоэлектрический эффект, которое заставляет их поглощать фотоны и высвобождать электроны. Чтобы сделать солнечную панель, кремниевые пластины легируют акцепторными и донорными примесями для его преобразования в кремний p-типа и n-типа.

Полупроводник p-типа (положительный заряд) имеет избыток основных носителей заряда — дырок. А n-тип (отрицательный заряд) имеет избыток электронов. Они соединяются друг с другом до атомарного уровня. Из-за их контакта и наличия противоположного заряда, электроны текут от n-типа к p-типу, а дырки перемещаются от p-типа к n-типу — в результате движения зарядов генерируется ток.

В результате фотоэффекта солнечная батарея вырабатывает постоянный электрический ток (DC). Инвертор преобразует постоянный ток в переменный (AC). Другими словами, трансформирует его в такой вид, который подходит для электропитания бытовых и промышленных потребителей, а также для передачи его в энергосистему. 

В зависимости от назначения, существуют следующие типы солнечных электростанций:

  1. Сетевые СЭС. В них вся выработанная электроэнергия передается в энергосистему для продажи по «зеленому» тарифу. Сетевые электростанции состоят из панелей, сетевого инвертора, кабелей и поддерживающей конструкции.
  2. Автономные СЭС. Обеспечивают питание потребителей, когда отсутствует централизованная сеть или она ненадежна. Автономная система кроме панелей и автономного инвертора, имеет контроллер заряда и аккумуляторную батарею.
  3. Гибридные (или резервные) СЭС. Применяются потребителями, которые сталкиваются с частыми перебоями энергоснабжения. Совмещает в себе возможности как сетевых, так и автономных систем. В гибридном (интеллектуальном) инверторе доступно программирование режимов потребления, накопления и передачи электроэнергии в энергосистему.

Двунаправленный счетчик устанавливается на гибридных и автономных СЭС для учета выработанной и потребленной домом электроэнергии. Этот счетчик также учитывает количество направленной в энергосистему э/э по «зеленому» тарифу.

Купить солнечную станцию в Украине любого типа — рациональная, экономически  выгодная инвестиция. СЭС работает более 25-30 лет и после ее окупаемости, вы будете иметь бесплатную электроэнергию долгие годы.

Делаем правильные выводы

Из этой статьи вы узнали о солнечных технологиях, принципе работы солнечной электростанции и о том, какое оборудование для этого необходимо. А также поняли, насколько важно предусмотреть множество нюансов для продуктивной и долговечной работы всей системы в целом. 

При выборе оборудования необходимо оценить его качество, эффективность и надежность. С другой стороны, комплект оборудования должен соответствовать назначению/типу СЭС — обеспечивать определенный набор функций и характеристик. Учет всех возможных факторов требует специфических, практических знаний.

Для выбора наиболее оптимального варианта комплектации СЭС целесообразно воспользоваться услугами специалистов профильных компаний. Вы можете обратиться за консультацией к профессионалам в области солнечной энергетики — компании Solar Garden. Большой опыт реализации различных проектов СЭС и штат собственных специалистов позволяет предложить Вам лучшие услуги и оборудование. 

В Solar Garden помогут рассчитать мощность всей системы, определиться с количеством и типом солнечных батарей, выбрать характеристики оборудования с учетом назначения и конкретных условий. Разработают проект, рассчитают срок окупаемости системы. Профессиональные установщики выполнят весь комплекс работ по монтажу электростанции с учетом особенностей расположения объекта. 

Последние новости

Solar 101: Как работает солнечная энергия (шаг за шагом)

Вы когда-нибудь смотрели на солнечные панели на крышах и задумывались, что они делают и как? Что ж, эти высокотехнологичные пространства из мерцающего стекла на самом деле являются лишь одним из компонентов сложной сети, которая использует возобновляемую энергию солнца для подачи электричества в дом.

Давайте пошагово рассмотрим, как работает солнечная энергия.

 

 

ШАГ 1. Солнечный свет активирует панели.

Стоечно-панельная солнечная система

Каждая отдельная панель состоит из слоя кремниевых ячеек, металлического каркаса, стеклянного корпуса, окруженного специальной пленкой, и проводки. Для максимального эффекта панели группируются в «массивы» (упорядоченная серия) и размещаются на крышах или на больших открытых площадках. Солнечные элементы, также называемые фотогальваническими элементами , поглощают солнечный свет в дневное время.

 

ШАГ 2. Клетки производят электрический ток.

Кремниевый слиток и пластина

Внутри каждого солнечного элемента находится тонкая полупроводниковая пластина, состоящая из двух слоев кремния. Один слой заряжен положительно, а другой отрицательно, образуя электрическое поле. Когда световая энергия солнца попадает на фотогальванический солнечный элемент, он заряжает элемент и заставляет электроны «освобождаться» от атомов внутри полупроводниковой пластины. Эти свободные электроны приводятся в движение электрическим полем, окружающим пластину, и это движение создает электрический ток.

 

ЭТАП 3: Преобразование электрической энергии.

Солнечный инвертор. Изображение предоставлено SMA Solar Technology AG. представляет собой электричество переменного тока (или переменного тока). К счастью, электричество постоянного тока можно легко превратить в электричество переменного тока с помощью устройства, называемого инвертором. В современных солнечных системах эти инверторы могут быть сконфигурированы как один инвертор для всей системы или как отдельные микроинверторы, прикрепленные за панелями.

 

ШАГ 4. Преобразованное электричество питает ваш дом.

Солнечный микроинвертор

После того, как солнечная энергия преобразована из постоянного тока в переменный ток, она проходит через ваш электрический щит и распределяется по дому для питания ваших приборов. Он работает точно так же, как электроэнергия, вырабатываемая через сеть вашей электроэнергетической компанией, поэтому в доме ничего не нужно менять. Поскольку вы по-прежнему подключены к своей традиционной энергетической компании, вы можете автоматически получать дополнительную электроэнергию, чтобы компенсировать нехватку солнечной энергии из сети.

 

ШАГ 5. Счетчик полезной нагрузки измеряет использование.

Интеллектуальный счетчик электроэнергии

В пасмурные дни и ночью ваши солнечные панели или черепица могут не улавливать достаточно солнечного света для использования в качестве энергии; и наоборот, в середине дня, когда никого нет дома, они могут собирать избыточную энергию — больше, чем вам нужно для работы вашего дома. Вот почему счетчик используется для измерения электричества, протекающего в обоих направлениях — в ваш дом и из вашего дома. Ваша коммунальная компания часто предоставляет кредиты на любую избыточную энергию, которую вы отправляете обратно в сеть. Это известно как чистый замер .

 

Заключение

Теперь, когда вы знаете основы солнечной энергии, вы можете удивиться тому, как современные фотоэлектрические технологии могут использовать огромную энергию солнца для обеспечения работы дома. Это может быть не ракетостроение, но это определенно человеческая изобретательность в лучшем виде.

 

Заинтересованы в солнечной кровле для вашего дома? Ознакомьтесь с нашими продуктами для солнечной энергетики или найдите сертифицированного специалиста по установке солнечных батарей в вашем регионе.

Отслеживается контентом:

ресурсы

Что такое солнечная электростанция и как она работает?

Опубликовано 20 марта 2020 г.

Солнечные электростанции используют солнечные лучи для производства электроэнергии, точно так же, как солнечные батареи, которые устанавливаются на крыше жилого дома, но вместо того, чтобы снабжать электроэнергией несколько сотен квадратных метров дома, энергия используется для питания некоторых случаи сотни тысяч домов.

Двумя наиболее часто используемыми солнечными технологиями для солнечных электростанций являются фотогальванические установки и солнечные тепловые системы. Они различаются в зависимости от того, как энергия, полученная от солнца, преобразуется в электричество.

Что такое фотоэлектрическая электростанция?

Фотогальванические электростанции используют фотогальванические элементы (PV) для преобразования солнечного света в полезную электроэнергию. Солнечные фотоэлектрические установки работают так же, как небольшие бытовые фотоэлектрические панели, за исключением гораздо большего масштаба. Фотоэлектрические панели изготавливаются из полупроводниковых материалов, обычно из какой-либо формы кремния.

Что такое солнечная тепловая электростанция?

Солнечные тепловые электростанции сильно отличаются от фотоэлектрических электростанций, поскольку они собирают солнечный свет, который помогает вырабатывать пар, который затем подается через турбину для выработки электроэнергии. Существует три основных типа солнечных тепловых электростанций. Во всех трех методах используется нагретая жидкость, которая затем прокачивается через турбину для выработки электроэнергии.

1 – Параболические желоба

Наиболее распространенный тип. Параболические желоба, также известные как «солнечное поле», содержат много рядов коллекторов. Этот метод используется для нагрева жидкости, которая затем собирается в центральном коллекторе для создания нагретого потока под высоким давлением, который подается через турбины для выработки электроэнергии.

2 – Башня солнечной энергии

Этот метод хорошо работает в неблагоприятных погодных условиях, таких как пустыня Мохаве, поскольку они могут выдерживать экстремальные температуры, град и песчаные бури. В этой системе используются тысячи плоских зеркал, отслеживающих солнце, которые отражают солнечную энергию на центральную приемную башню. Концентрированная солнечная энергия затем используется для нагрева воздуха внутри башни. Тепло улавливается в котле и используется для производства электроэнергии с помощью паровой турбины.

3 – Солнечный пруд

В этом методе искусственный бассейн с морской водой собирает и сохраняет тепловую энергию. Нижний слой пруда очень горячий и действует как изолятор, позволяя улавливать солнечный свет. Затем горячая соленая вода откачивается для использования в электричестве через турбину.

Каковы преимущества солнечной электростанции?

Наиболее распространенным преимуществом солнечной электростанции является уменьшение загрязнения воздуха. При производстве электроэнергии из ископаемого топлива могут образовываться вредные газы, ухудшающие качество воздуха, которым мы дышим. Использование солнца для производства большего количества энергии означает меньше вредных выбросов от сжигания ископаемого топлива. Солнечная энергия также может помочь производить электроэнергию в районах, практически не имеющих доступа к электросетям, а также дистиллировать воду в регионах с ограниченными запасами чистой воды. Еще одним преимуществом солнечных электростанций является чрезвычайно низкая стоимость обслуживания. Как правило, солнечные электростанции требуют меньше обслуживания, чем другие альтернативные источники энергии.

Как работает солнечная электростанция: Как работает сетевая солнечная электростанция. Разбор на примере.