Eng Ru
Отправить письмо

Геотермальные источники энергии (стр. 2 из 2). Источники энергии геотермальные


Геотермальные источники энергии

СОДЕРЖАНИЕ:

ВВЕДЕНИЕ………………………………………………………………………3

1. ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ …………………….………………..6

2. ИСТОЧНИКИ ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ……………………..7

3. ЗАПАСЫ РОССИИ……………………………………………………9

ВЫВОДЫ………………………………………………………………………...12

СПИСОК ЛИТЕРАТУРЫ……………………………………………………….14

ВВЕДЕНИЕ

В последнее десятилетие использование нетрадиционных возобновляемых источников энергии (НВИЭ) переживает в мире настоящий бум. Масштаб применения этих источников возрос в несколько раз. Данное направление развивается наиболее интенсивно по сравнению с другими направлениями энергетики. Причин этого явления несколько. Прежде всего, очевидно, что эпоха дешевых традиционных энергоносителей бесповоротно закончилась. В этой области имеется только одна тенденция - рост цен на все их виды. Не менее значимо стремление многих стран, лишенных своей топливной базы к энергетической независимости. Существенную роль играют экологические соображения, в том числе по выбросу вредных газов. Активную моральную поддержку применению НВИЭ оказывает население развитых стран.

По этим причинам развитие НВИЭ во многих государствах приоритетная задача технической политики в области энергетики. В ряде стран эта политика реализуется через принятую законодательную и нормативную базу, в которой установлены правовые, экономические и организационные основы использования НВИЭ. В частности, экономические основы состоят в различных мерах поддержки НВИЭ на стадии освоения ими энергетического рынка (налоговые и кредитные льготы, прямые дотации и др.)

В России практическое применение НВИЭ существенно отстает от ведущих стран. Отсутствует какая-либо законодательная и нормативная база, равно как и государственная экономическая поддержка. Всё это крайне затрудняет практическую деятельность в этой сфере. Основная причина тормозящих факторов затянувшееся экономическое неблагополучие в стране и, как следствие трудности с инвестициями, низкий платежеспособный спрос, отсутствие средств на необходимые разработки. Тем не менее, некоторые работы и практические меры по использованию НВИЭ в нашей стране проводятся (геотермальная энергетика). Парогидротермальные месторождения в России имеются только на Камчатке и Курильских островах. Поэтому геотермальная энергетика не может и в перспективе занять значимое место в энергетике страны в целом. Однако она способна радикально и на наиболее экономической основе решить проблему энергоснабжения указанных районов, которые пользуются дорогим привозным топливом(мазут, уголь, дизельное топливо) и находятся на грани энергетического кризиса. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить по разным источникам от 1000 до 2000 Мвт установленной электрической мощности, что значительно превышает потребности этого региона на обозримую перспективу. Таким образом, существуют реальные перспективы развития здесь геотермальной энергетики.

Повышение цен, которое произошло в последние годы, на органическое топливо (газ, мазут, дизельное топливо) и на его транспортировку в отдалённые районы России и соответственно объективный рост отпускных цен на электрическую и тепловую энергию принципиально изменяют отношение к использованию НВИЭ: геотермальной, ветровой, солнечной.

В отличие от ископаемых топлив нетрадиционные формы энергии не ограничены геологически накопленными запасами. Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.

Основной фактор при оценке целесообразности использования нетрадиционных возобновляемых источников энергии – стоимость производимой энергии в сравнении со стоимостью энергии, получаемой при использовании традиционных источников. Особое значение приобретают нетрадиционные источники для удовлетворения локальных потребителей энергии.

Основными направлениями развития генерирующих мощностей в энергетике страны на ближайшую перспективу является техническое перевооружение и реконструкция электростанций, а также ввод новых генерирующих мощностей. Прежде всегоэто строительство парогазовых установок с КПД 55-60% , что позволит повысить эффективность существующих ТЭС на 25-40%. Следующим этапом должно стать сооружение тепловых электростанций с использованием новых технологий сжигания твёрдого топлива и со сверхкритическими параметрами пара для достижения КПД ТЭС, равного 46-48%. Дальнейшее развитие получат и атомные электростанции с реакторами новых типов на тепловых и быстрых нейтронах.

Важное место в формировании энергетики России занимает сектор теплоснабжения страны, который является самым большим по объёму потребляемых энергоресурсов более 45% их общего потребления. В системах централизованного теплоснабжения (ЦТ) производится более 71%, а децентрализованными источниками около 29% всего тепла. Электростанциями отпускается более 34% всего тепла, котельными примерно 50%. В соответствии с энергетической стратегией России до 2020г. планируется рост теплопотребления в стране не менее чем в 1,3 раза, причём доля децентрализованного теплоснабжения будет возрастать с 28,6% (2000г.) до 33% в 2020г.

Так, развитие геотермальной энергетики в отдельных регионах страны позволяет уже сегодня решать проблему электро и теплоснабжения, в частности на Камчатке, Курильских островах, а также на Северном Кавказе, в отдельных районах Сибири и европейской части России.

В числе основных направлений совершенствования и развития систем теплоснабжения должно стать расширения использования местных нетрадиционных возобновляемых источников энергии и в первую очередь геотермального тепла земли. Уже в ближайшие 7-10 лет с помощью современных технологий локального теплоснабжения благодаря термальному теплу можно сэкономить значительные ресурсы органического топлива.

1. ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ

С незапамятных времен люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это - проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Энергетика земли (геотермальная энергетика) базируется на использовании природной теплоты Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8 * 1014 млрд. кВт * час. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре.

2. ИСТОЧНИКИ ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ

Могут быть двух типов. Первый тип – это подземные бассейны естественных теплоносителей – горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип – это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях.

Но в обоих вариантах использования главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 130 – 150° С) и высокотемпературные (свыше 150°). От температуры во многом зависит характер их использования.

Можно утверждать, что геотермальная энергия имеет четыре выгодных отличительных черты.

· Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.

· Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.

· В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.

· Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.

Человек издавна использует энергию внутреннего тепла Земли (вспомним хотя бы знаменитые Римские бани), но её коммерческое использование началось только в 20-х годах нашего века со строительством первых геоЭС в Италии, а затем и в других странах. К началу 80-х годов в мире действовало около 20 таких станций общей мощностью 1,5 млн. кВт. Самая крупная из них – станция Гейзерс в США (500 тыс. кВт).

mirznanii.com

Геотермальные источники энергии - часть 2

Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и т.п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т.п.). История развития геотермальной энергетики.

3. ЗАПАСЫ РОССИИ

Наряду с огромными ресурсами органического топлива Россия располагает значительными запасами тепла земли, которые могут быть преумножены за счет геотермальных источников, находящихся на глубине от 300 до 2500м в основном в зонах разломов земной коры.

Территория России хорошо исследована, и сегодня известны основные ресурсы тепла земли, которые имеют значительный промышленный потенциал, в том числе и энергетический. Более того, практически везде имеются запасы тепла с температурой от 30 до 200°С.

Ещё в 1983г. во ВСЕГИНГЕО был составлен атлас ресурсов термальных вод СССР. В нашей стране разведано 47 геотермальных месторождений с запасами термальных вод, которые позволяют получить более 240·10імі/сут. Сегодня в России проблемами использования тепла земли занимаются специалисты почти 50 научных организаций.

Для использования геотермальных ресурсов пробурено более 3000 скважин. Стоимость исследований геотермии и буровых работ, уже выполненных в этой области, в современных ценах составляет более 4млрд. долларов. Так на Камчатке на геотермальных полях уже пробурено 365 скважин глубиной от 225 до 2266 м и израсходовано (ещё в советское время) около 300млн. долларов (в современных ценах).

Эксплуатация первой геотермальной электростанции была начата в Италии в 1904г. Первая геотермальная электростанция на Камчатке, да и первая в СССР Паужетская ГеоТЭС была введена в работу в 1967г. и имела мощность 5мВт, увеличенную впоследствии до 11 мВт. Новый импульс развитию геотермальной энергетике на Камчатке был придан в 90-е годы с появлением организаций и фирм (АО «Геотерм», АО «Интергеотерм», АО «Наука»), которые в кооперации с промышленностью (прежде всего с Калужским турбинным заводом) разработали новые прогрессивные схемы, технологии и виды оборудования по преобразованию геотермальной энергии в электрическую и добились кредитования от Европейского банка реконструкции и развития. В результате в 1999г. на Камчатке была введена Верхне-Мутновская ГеоТЭС (три модуля по 4мВт.). Вводится первый блок 25мВт. первой очереди Мутновской ГеоТЭС суммарной мощностью 50мВт.

Таким образом, ближайшие и вполне реальные перспективы геотермальной энергетики на Камчатке определились, что является положительным несомненным примером использования НВИЭ в России, несмотря на имеющиеся в стране серьезные экономические трудности. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить 1000МВт установленной электрической мощности, что значительно перекрывает потребности этого региона на обозримую перспективу.

По данным Института вулканологии ДВО РАН, уже выявленные геотермальные ресурсы позволяют полностью обеспечить Камчатку электричеством и теплом более чем на 100 лет. Наряду с высокотемпературным Мутновским месторождением мощностью 300МВт (э) на юге Камчатки известны значительные запасы геотермальных ресурсов на Кошелевском, Больше Банном, а на севере на Киреунском месторождениях. Запасы тепла геотермальных вод на Камчатке оцениваются в 5000МВт (т).

На Чукотке также имеются значительные запасы геотермального тепла (на границе с Камчатской областью), часть из них уже от-крыта и может активно использоваться для близлежащих городов и посёлков.

Курильские острова также богаты запасами тепла земли, их вполне достаточно для тепло и электрообеспечения этой территории в течение 100200 лет. На острове Итуруп обнаружены запасы двухфазного геотермального теплоносителя, мощности которого (30МВт(э)) достаточно для удовлетворения энергопотребностей всего острова в ближайшие 100 лет. Здесь на Океанском геотермальном месторождении уже пробурены скважины и строится ГеоЭС. На южном острове Кунашир имеются запасы геотермального тепла, которые уже используются для получения электроэнергии и теплоснабжения г. Южно Курильска. Недра северного острова Парамушир менее изучены, однако известно, что и на этом острове есть значительные запасы геотермальной воды температурой от 70 до 95° С, здесь также строится ГеоТС мощностью 20 МВт (т).

Гораздо большее распространение имеют месторождения термальных вод с температурой 100-200°С. При такой температуре целесообразно использование низкокипящих рабочих тел в паротурбинном цикле. Применение двухконтурных ГеоТЭС на термальной воде возможно в ряде районов России, прежде всего на Северном Кавказе. Здесь хорошо изучены геотермальные месторождения с температурой в резервуаре от 70 до 180° С, которые находятся на глубине от 300 до 5000 м. Здесь уже в течение длительного времени используется геотермальная вода для теплоснабжения и горячего водоснабжения. В Дагестане в год добывается более 6 млн. м. геотермальной воды. На Северном Кавказе около 500 тыс. чел, используют геотермальное водоснабжение.

Приморье, Прибайкалье, Западно-Сибирский регион также располагают запасами геотермального тепла, пригодного для широкомасштабного применения в промышленности и сельском хозяйстве.

Роль энергии неоспорима в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы, прямо или косвенно, большей энергии, чем могут дать ресурсы человека.

Потребление энергии – важный показатель жизненного уровня. За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник бал исчерпан.

Сейчас, в 21-го веке, начинается новый значительный этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, заботился об охране уже сильно поврежденной биосферы.

На пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость : создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т.д, В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию.

Практически на всей территории России имеются уникальные запасы геотермального тепла с температурами теплоносителя (вода, двухфазный поток и пар) от 30 до 200 С.

В последние годы в России на основе крупных фундаментальных исследований были созданы геотермальные технологии, способные быстро обеспечить эффективное применение тепла земли на ГеоЭС и ГеоТС для получения электроэнергии и тепла.

Геотермальная энергетика должна занять важное место в общем балансе использования энергии. В частности, для реструктуризации и перевооружения энергетики Камчатской области и Курильских островов и частично Приморья, Сибири и Северного Кавказа следует использовать собственные геотермальные ресурсы.

Широкомасштабное внедрение новых схем теплоснабжения с тепловыми насосами с использованием низкопотенциальных источников тепла позволит снизить расход органического топлива на 20-25%.

Для привлечения инвестиций и кредитов в энергетику следует выполнять эффективные проекты и гарантировать своевременный возврат заемных средств, что возможно только при полной и своевременной оплате электричества и тепла, отпущенных потребителям.

СПИСОК ЛИТЕРАТУРЫ

1. Тепло Земли: Из доклада «Перспективы развития геотермальных технологий» Экология и жизнь-2001-№6-стр49-52.

2. Тарнижевский Б.В. «Состояние и перспективы использования НВИЭ в России» Промышленная энергетика-2002-№1-стр. 52-56.

3. Бутузов В.А. «Геотермальные системы теплоснабжения в Краснодарском крае» Энергоменеджер-2002-№1-стр.14-16.

4. Бутузов В.А. «Анализ геотермальных систем теплоснабжения России» Промышленная энергетика-2002-№6-стр.53-57.

5. Доброхотов В.И. «Использование геотермальных ресурсов в энергетике России» Теплоэнергетика-2003-№1-стр.2-11.

6. Алхасов А.Б. «Повышение эффективности использования геотермального тепла» Теплоэнергетика-2003-№3-стр.52-54.

7. Гончар В.И. Нетрадиционные возобновляемые источники энергии в Энергетической программе СССР – География в школе. 4/90 – М.: Педагогика, 1990 г.

8. Кондаков А.М. Альтернативные источники энергии – География в школе. 4/88 – М.: Педагогика. 1988 г.

9. Кононов Ю.Д. Энергетика и экономика. Проблемы перехода к новым источникам энергии. – М.: Наука, 1981.

mirznanii.com

Геотермальные источники энергии | Живи интересно

Один из самых известных альтернативных источников энергии - это подземное тепло или геотермальные источники. Природа сама предоставляет людям экологически чистый вид энергии к поверхности земли в виде пара или перегретой воды.

Остается только правильно воспользоваться предоставленными возможностями. В отличие от солнечной энергии, тепловую мощность земных недр можно использовать и днем, и ночью, и в любую погоду.

Геотермальные источники энергии

В России подземное энергетическое богатство сосредоточено на Камчатке, Курилах, в Приморье, Прибайкалье и Западной Сибири. Действующие геотермальные электростанции на Камчатке на сегодняшний момент обеспечивают до 30% энергопотребления этого региона.

Но на самом деле подземные геотермальные источники способны выдать до 5000 МВт энергии. И этого достаточно, чтобы обеспечить электроэнергией весь Камчатский край.

Геотермальные источники энергии

Кроме северных областей нашей родины, геотермальные месторождения открыты и на Северном Кавказе. Здесь геотермальные ресурсы используются для обогрева теплиц и частных домов. Но пока развитие геоэнергетики в этом регионе тоже не на достаточно высоком уровне.

В основном, ограничение использования природных источников тепла связано с отсутствием технических возможностей, либо их высокой себестоимостью. Но темпы развития инновационной техники сейчас велики, поэтому и надежды экологов на более рациональное использование тепловых способностей недр земли все более оправданы.

Примером эффективного практического использования геотермальных источников может служить островное государство Исландия. Сам остров вулканического происхождения, поэтому здесь существуют все условия для того, чтобы подземное тепло служило на благо человеку.

Геотермальные источники энергии

Энергетика Исландии в прямом смысле получила мощнейшую поддержку земли. Дома, фабрики и заводы здесь снабжаются электричеством с помощью геотермальной энергии.

Недаром Великобритания заинтересовалась успехами Исландии в области зеленой энергетики и предлагает очень смелый проект - поделиться геотермальной энергией с Англией. Для этих целей планируется протянуть передающий энергетический кабель под водой длиной в 930 км для доставки энергии в Великобританию, а затем и в Европу.

Экологов же Исландии в первую очередь волнует вопрос, не навредит ли такой проект экологической обстановке острова. В любом случае такие непростые решения масштабного характера не принимаются в одночасье. Проект требует тщательного рассмотрения и оценки специалистов и экологов, а затем уже возможного воплощения в реальность.

Интересности от клуба "Живи интересно"

Интересные статьи

jivi-interesno.ru

Геотермальные источники энергии

При контакте грунтовых вод с раскаленными подземными породами, происходит выброс нагретой воды на поверхность. Таким образом, появляются геотермальные источники. Вода нагревается до высокой температуры и выбрасывается в виде фонтанов гейзеров или в виде обыкновенного пара, вырывающегося из небольших разломов. В горячих источниках появляются небольшие пузырьки. Все это геотермальные источники энергии, которые широко используются для различных нужд. Самое простое применение заключается в приготовлении пищи и купании, а в более сложных случаях удается обогревать дома и получать электрическую энергию.

Понятие геотермальной энергии

Геотермальная энергия относится к возобновляемым источникам тепла и электричества. Данный источник является более доступным, нежели ветер или солнце, поскольку взамен горячей всегда возвращается охлажденная вода.

Данный вид энергии образуется за счет внутреннего тепла нашей планеты. В отдельных случаях, расплавленная магма очень близко подходит к земной поверхности. В результате, слои породы, расположенные сверху, сильно нагреваются. Дождевая или грунтовая вода, попадающая в такой грунт, также подвергается нагреву. Под высоким давлением, температура воды может достигать значения более 2700С.

С помощью таких источников возможно получение тепла или электрической энергии, осуществляемые с помощью геотермального нагрева или геотермальных станций.

Практическое использование геотермальной энергии

Одним из способов является прямое геотермальное нагревание. С его помощью успешно обогреваются дома и промышленные предприятия, парники, теплицы и снегоплавильные установки.

Существуют специальные системы, использующие прямой нагрев. В одном из вариантов, горячая вода выкачивается насосами из источника и напрямую подается в отопительную сеть. После охлаждения, использованная вода возвращается обратно к месту нагрева. В другом случае, с помощью горячей воды происходит нагрев теплообменника, наполненного жидкостью. Далее, уже нагретая жидкость используется для различных нужд. Таким образом, соли и минералы, содержащиеся в горячих грунтовых водах, не засоряют систему отопления.

Электрическая энергия производится с помощью геотермальных электростанций. Здесь используется три различных процесса.

  1. В первом случае, применяется энергия сжатого пара, который проходит через турбину и вращает ее лопасти.
  2. Турбина соединяется с генератором, вырабатывающим электричество. Импульсные станции работают за счет пара, образованного при распрыскивании горячей воды в емкости при низком давлении.
  3. Электростанция использует двойной цикл с использованием теплообменника.

Во всех случаях образуется пар, работа которого позволяет вращать турбины и генераторы.

Геотермальная система отопления дома

electric-220.ru

Энергия геотермальных источников « Интереcно о науке

Мы зависим от наших автомобилей, которые ежедневно возят нас на работу, а наших детей в школу, которые доставляют продукты питания и перевозят другие грузы. Трудно себе представить жизни в нашей стране без системы отопления в зимнее время. Такие электроприборы как холодильник, телевизор, компьютер, сотовый телефон до неузнаваемости изменили нашу жизнь и сейчас практически невозможно от них отказаться.  Мы воспринимаем эти обыденные явления как должное и уже не замечаем, что все они требует внешнего источника питания.

Одновременно с этим ученые уже давно говорят, что используемые нами источники энергии не бесконечны. Разведанных запасов нефти хватит всего лишь на 40 лет при текущем объеме потребления, природного газа – немногим больше. Эти ископаемые источники энергии добываются из-под земли, где процесс их формирования занял миллионы лет. Поэтому надеяться на скорое их пополнение бессмысленно. Кроме того, что эти ресурсы не бесконечны существует еще одна проблема вокруг их использования – экологическая. Сжигая углеводородное топливо высвобождается огромное количество вредных для природы веществ, загрязняющих Землю.

Ученые ведут гонку со временем, в поисках нового чистого и неисчерпаемого источника энергии. Одно из решений находится прямо у нас под ногами. Глубоко в земной коре находятся огромные озера разогретой до сотен градусов воды, которая могла бы послужить отличным источником чистой, не дорогой и теоретически неисчерпаемой энергии, которую еще называю геотермальной (от греч. «гео» – Земля, «термо» – тепло).

В центре нашей планеты находится огромное ядро расплавленного металла, разогретого до температуры свыше 4200 градусов на поверхности. Край жидкого ядра расположен на глубине 6400 км. Часть тепловой энергии осталась еще со времени образования нашей планеты около 4 миллиардов лет назад, а часть является результатом ядерной реакции внутри Земли.

Температуры ядра вполне достаточно, чтобы расплавить породу мантии Земли, окружающей ядро и создать жидкие потоки магмы. Магма менее плотная чем, мантия и поднимается к внешней твердой корке планеты. Иногда магма пробивает ее, что приводит к возникновению вулканов. Однако большая часть магмы остается под твердой поверхностью и разогревает окружающую породу и подземные воды. Разогретая до нескольких сотен градусов вода иногда прорывается сквозь трещины на поверхность Земли, что приводит к появлению геотермальных источников и гейзеров. Остальная вода остается под поверхностью земли в толще породы, где и хранится в, так называемых, геотермальных резервуарах.

Таким образом, огромные запасы энергии скрыты под нашими ногами. Необходимо лишь найти наиболее рациональный метод извлечения выгоды из этого «клада». Существует несколько способов использовать геотермальную энергию.

Прямая геотермальная энергия. Если геотермальные резервуары находятся близко к земной поверхности, то разогретую воду (пар) можно непосредственно направлять по средствам труб в систему отопления домов и офисов. Остывшая после прохождения системы отопления вода должна быть направлена обратно в резервуар для пополнения запасов воды. Однако этот способ подходит только для тех областей где геотермальные источники расположены рядом с отапливаемыми помещениями.

Помпа для геотермальной воды. В случае, когда рядом с поверхностью земли нет сильно разогретых областей породы или геотермальных резервуаров  можно использовать другую схему. Вода, либо другая жидкость закачивается под землю на глубину нескольких десятков метров, где она разогревается до 10-20 градусов. Зимой разогретая вода под действие м водяной помпы поступает в систему отопления и используется для повышения внутренней температуры помещения, а летом в жаркую погоду эта система может быть использована для охлаждения домов за счет переноса лишнего тепла из домов к более прохладной подземной области.

Геотермальная электростанция. Эта схема наиболее привычна и позволяет получить наибольшую отдачу от геотермальных источников. Разогретая до нескольких сотен градусов (300-700) вода под большим давлением подается на поверхность Земли к турбине. В ней пар подается на лопасти турбины, которая приводит в движение вал с другой стороны соединенный с электрогенератором. В результате производится переменный ток. Разогретую воду можно либо сразу возвращать в недра Земли, либо параллельно использовать для отопления близлежащих строений.

Подобные термальные электростанции уже функционируют в некоторых странах, в том числе и в России на Камчатке. Однако наибольших успехов в геотермальной энергии достигла Исландия. В этой стране практически вся производимая электроэнергия геотермального происхождения.

Главным сдерживающим фактором повсеместного строительства подобных станций является труднодоступность геотермальных источников. Поэтому производимая ими энергия оказывается слишком дорогой. Пока что, эта технологии доступна менее чем для 1% населения Земли, но рост дефицита энергии со временем может привести к росту рентабельности подобных проектов и повсеместной их реализации.

coolsci.ru

Геотермальные источники энергии

СОДЕРЖАНИЕ: ВВЕДЕНИЕ 2

ВЫВОДЫ 12

СПИСОК ЛИТЕРАТУРЫ 14

ВВЕДЕНИЕ

В последнее десятилетие использование нетрадиционных возобновляемых источников энергии (НВИЭ) переживает в мире настоящий бум. Масштаб применения этих источников возрос в несколько раз. Данное направление развивается наиболее интенсивно по сравнению с другими направлениями энергетики. Причин этого явления несколько. Прежде всего, очевидно, что эпоха дешевых традиционных энергоносителей бесповоротно закончилась. В этой области имеется только одна тенденция - рост цен на все их виды. Не менее значимо стремление многих стран, лишенных своей топливной базы к энергетической независимости. Существенную роль играют экологические соображения, в том числе по выбросу вредных газов. Активную моральную поддержку применению НВИЭ оказывает население развитых стран.

По этим причинам развитие НВИЭ во многих государствах приоритетная задача технической политики в области энергетики. В ряде стран эта политика реализуется через принятую законодательную и нормативную базу, в которой установлены правовые, экономические и организационные основы использования НВИЭ. В частности, экономические основы состоят в различных мерах поддержки НВИЭ на стадии освоения ими энергетического рынка (налоговые и кредитные льготы, прямые дотации и др.)

В России практическое применение НВИЭ существенно отстает от ведущих стран. Отсутствует какая-либо законодательная и нормативная база, равно как и государственная экономическая поддержка. Всё это крайне затрудняет практическую деятельность в этой сфере. Основная причина тормозящих факторов затянувшееся экономическое неблагополучие в стране и, как следствие трудности с инвестициями, низкий платежеспособный спрос, отсутствие средств на необходимые разработки. Тем не менее, некоторые работы и практические меры по использованию НВИЭ в нашей стране проводятся (геотермальная энергетика). Парогидротермальные месторождения в России имеются только на Камчатке и Курильских островах. Поэтому геотермальная энергетика не может и в перспективе занять значимое место в энергетике страны в целом. Однако она способна радикально и на наиболее экономической основе решить проблему энергоснабжения указанных районов, которые пользуются дорогим привозным топливом(мазут, уголь, дизельное топливо) и находятся на грани энергетического кризиса. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить по разным источникам от 1000 до 2000 Мвт установленной электрической мощности, что значительно превышает потребности этого региона на обозримую перспективу. Таким образом, существуют реальные перспективы развития здесь геотермальной энергетики.

Повышение цен, которое произошло в последние годы, на органическое топливо (газ, мазут, дизельное топливо) и на его транспортировку в отдалённые районы России и соответственно объективный рост отпускных цен на электрическую и тепловую энергию принципиально изменяют отношение к использованию НВИЭ: геотермальной, ветровой, солнечной.

В отличие от ископаемых топлив нетрадиционные формы энергии не ограничены геологически накопленными запасами. Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.

Основной фактор при оценке целесообразности использования нетрадиционных возобновляемых источников энергии – стоимость производимой энергии в сравнении со стоимостью энергии, получаемой при использовании традиционных источников. Особое значение приобретают нетрадиционные источники для удовлетворения локальных потребителей энергии.

Основными направлениями развития генерирующих мощностей в энергетике страны на ближайшую перспективу является техническое перевооружение и реконструкция электростанций, а также ввод новых генерирующих мощностей. Прежде всегоэто строительство парогазовых установок с КПД 55-60% , что позволит повысить эффективность существующих ТЭС на 25-40%. Следующим этапом должно стать сооружение тепловых электростанций с использованием новых технологий сжигания твёрдого топлива и со сверхкритическими параметрами пара для достижения КПД ТЭС, равного 46-48%. Дальнейшее развитие получат и атомные электростанции с реакторами новых типов на тепловых и быстрых нейтронах.

Важное место в формировании энергетики России занимает сектор теплоснабжения страны, который является самым большим по объёму потребляемых энергоресурсов более 45% их общего потребления. В системах централизованного теплоснабжения (ЦТ) производится более 71%, а децентрализованными источниками около 29% всего тепла. Электростанциями отпускается более 34% всего тепла, котельными примерно 50%. В соответствии с энергетической стратегией России до 2020г. планируется рост теплопотребления в стране не менее чем в 1,3 раза, причём доля децентрализованного теплоснабжения будет возрастать с 28,6% (2000г.) до 33% в 2020г.

Так, развитие геотермальной энергетики в отдельных регионах страны позволяет уже сегодня решать проблему электро и теплоснабжения, в частности на Камчатке, Курильских островах, а также на Северном Кавказе, в отдельных районах Сибири и европейской части России.

В числе основных направлений совершенствования и развития систем теплоснабжения должно стать расширения использования местных нетрадиционных возобновляемых источников энергии и в первую очередь геотермального тепла земли. Уже в ближайшие 7-10 лет с помощью современных технологий локального теплоснабжения благодаря термальному теплу можно сэкономить значительные ресурсы органического топлива.

  1. ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ
С незапамятных времен люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это - проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Энергетика земли (геотермальная энергетика) базируется на использовании природной теплоты Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8 * 1014 млрд. кВт * час. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре. 2. ИСТОЧНИКИ ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ Могут быть двух типов. Первый тип – это подземные бассейны естественных теплоносителей – горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип – это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях.

Но в обоих вариантах использования главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 130 – 150° С) и высокотемпературные (свыше 150°). От температуры во многом зависит характер их использования.

Можно утверждать, что геотермальная энергия имеет четыре выгодных отличительных черты.

  • Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.
  • Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.
  • В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.
  • Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.
Человек издавна использует энергию внутреннего тепла Земли (вспомним хотя бы знаменитые Римские бани), но её коммерческое использование началось только в 20-х годах нашего века со строительством первых геоЭС в Италии, а затем и в других странах. К началу 80-х годов в мире действовало около 20 таких станций общей мощностью 1,5 млн. кВт. Самая крупная из них – станция Гейзерс в США (500 тыс. кВт).

Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и т.п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т.п.). История развития геотермальной энергетики.3. ЗАПАСЫ РОССИИНаряду с огромными ресурсами органического топлива Россия располагает значительными запасами тепла земли, которые могут быть преумножены за счет геотермальных источников, находящихся на глубине от 300 до 2500м в основном в зонах разломов земной коры.

Территория России хорошо исследована, и сегодня известны основные ресурсы тепла земли, которые имеют значительный промышленный потенциал, в том числе и энергетический. Более того, практически везде имеются запасы тепла с температурой от 30 до 200С.

Ещё в 1983г. во ВСЕГИНГЕО был составлен атлас ресурсов термальных вод СССР. В нашей стране разведано 47 геотермальных месторождений с запасами термальных вод, которые позволяют получить более 240·10імі/сут. Сегодня в России проблемами использования тепла земли занимаются специалисты почти 50 научных организаций.

Для использования геотермальных ресурсов пробурено более 3000 скважин. Стоимость исследований геотермии и буровых работ, уже выполненных в этой области, в современных ценах составляет более 4млрд. долларов. Так на Камчатке на геотермальных полях уже пробурено 365 скважин глубиной от 225 до 2266 м и израсходовано (ещё в советское время) около 300млн. долларов (в современных ценах).

Эксплуатация первой геотермальной электростанции была начата в Италии в 1904г. Первая геотермальная электростанция на Камчатке, да и первая в СССР Паужетская ГеоТЭС была введена в работу в 1967г. и имела мощность 5мВт, увеличенную впоследствии до 11 мВт. Новый импульс развитию геотермальной энергетике на Камчатке был придан в 90-е годы с появлением организаций и фирм (АО «Геотерм», АО «Интергеотерм», АО «Наука»), которые в кооперации с промышленностью (прежде всего с Калужским турбинным заводом) разработали новые прогрессивные схемы, технологии и виды оборудования по преобразованию геотермальной энергии в электрическую и добились кредитования от Европейского банка реконструкции и развития. В результате в 1999г. на Камчатке была введена Верхне-Мутновская ГеоТЭС (три модуля по 4мВт.). Вводится первый блок 25мВт. первой очереди Мутновской ГеоТЭС суммарной мощностью 50мВт.

Таким образом, ближайшие и вполне реальные перспективы геотермальной энергетики на Камчатке определились, что является положительным несомненным примером использования НВИЭ в России, несмотря на имеющиеся в стране серьезные экономические трудности. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить 1000МВт установленной электрической мощности, что значительно перекрывает потребности этого региона на обозримую перспективу.

По данным Института вулканологии ДВО РАН, уже выявленные геотермальные ресурсы позволяют полностью обеспечить Камчатку электричеством и теплом более чем на 100 лет. Наряду с высокотемпературным Мутновским месторождением мощностью 300МВт (э) на юге Камчатки известны значительные запасы геотермальных ресурсов на Кошелевском, Больше Банном, а на севере на Киреунском месторождениях. Запасы тепла геотермальных вод на Камчатке оцениваются в 5000МВт (т).

На Чукотке также имеются значительные запасы геотермального тепла (на границе с Камчатской областью), часть из них уже от-крыта и может активно использоваться для близлежащих городов и посёлков.

Курильские острова также богаты запасами тепла земли, их вполне достаточно для тепло и электрообеспечения этой территории в течение 100200 лет. На острове Итуруп обнаружены запасы двухфазного геотермального теплоносителя, мощности которого (30МВт(э)) достаточно для удовлетворения энергопотребностей всего острова в ближайшие 100 лет. Здесь на Океанском геотермальном месторождении уже пробурены скважины и строится ГеоЭС. На южном острове Кунашир имеются запасы геотермального тепла, которые уже используются для получения электроэнергии и теплоснабжения г. Южно Курильска. Недра северного острова Парамушир менее изучены, однако известно, что и на этом острове есть значительные запасы геотермальной воды температурой от 70 до 95 С, здесь также строится ГеоТС мощностью 20 МВт (т).

Гораздо большее распространение имеют месторождения термальных вод с температурой 100-200С. При такой температуре целесообразно использование низкокипящих рабочих тел в паротурбинном цикле. Применение двухконтурных ГеоТЭС на термальной воде возможно в ряде районов России, прежде всего на Северном Кавказе. Здесь хорошо изучены геотермальные месторождения с температурой в резервуаре от 70 до 180 С, которые находятся на глубине от 300 до 5000 м. Здесь уже в течение длительного времени используется геотермальная вода для теплоснабжения и горячего водоснабжения. В Дагестане в год добывается более 6 млн. м. геотермальной воды. На Северном Кавказе около 500 тыс. чел, используют геотермальное водоснабжение.

Приморье, Прибайкалье, Западно-Сибирский регион также располагают запасами геотермального тепла, пригодного для широкомасштабного применения в промышленности и сельском хозяйстве.

ВЫВОДЫ

Роль энергии неоспорима в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы, прямо или косвенно, большей энергии, чем могут дать ресурсы человека.

Потребление энергии – важный показатель жизненного уровня. За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник бал исчерпан.

Сейчас, в 21-го веке, начинается новый значительный этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, заботился об охране уже сильно поврежденной биосферы.

На пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость : создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т.д, В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию.

Практически на всей территории России имеются уникальные запасы геотермального тепла с температурами теплоносителя (вода, двухфазный поток и пар) от 30 до 200 С.

В последние годы в России на основе крупных фундаментальных исследований были созданы геотермальные технологии, способные быстро обеспечить эффективное применение тепла земли на ГеоЭС и ГеоТС для получения электроэнергии и тепла.

Геотермальная энергетика должна занять важное место в общем балансе использования энергии. В частности, для реструктуризации и перевооружения энергетики Камчатской области и Курильских островов и частично Приморья, Сибири и Северного Кавказа следует использовать собственные геотермальные ресурсы.

Широкомасштабное внедрение новых схем теплоснабжения с тепловыми насосами с использованием низкопотенциальных источников тепла позволит снизить расход органического топлива на 20-25%.

Для привлечения инвестиций и кредитов в энергетику следует выполнять эффективные проекты и гарантировать своевременный возврат заемных средств, что возможно только при полной и своевременной оплате электричества и тепла, отпущенных потребителям.

СПИСОК ЛИТЕРАТУРЫ

  1. Тепло Земли: Из доклада «Перспективы развития геотермальных технологий» Экология и жизнь-2001-№6-стр49-52.
  2. Тарнижевский Б.В. «Состояние и перспективы использования НВИЭ в России» Промышленная энергетика-2002-№1-стр. 52-56.
  3. Бутузов В.А. «Геотермальные системы теплоснабжения в Краснодарском крае» Энергоменеджер-2002-№1-стр.14-16.
  4. Бутузов В.А. «Анализ геотермальных систем теплоснабжения России» Промышленная энергетика-2002-№6-стр.53-57.
  5. Доброхотов В.И. «Использование геотермальных ресурсов в энергетике России» Теплоэнергетика-2003-№1-стр.2-11.
  6. Алхасов А.Б. «Повышение эффективности использования геотермального тепла» Теплоэнергетика-2003-№3-стр.52-54.
  7. Гончар В.И. Нетрадиционные возобновляемые источники энергии в Энергетической программе СССР – География в школе. 4/90 – М.: Педагогика, 1990 г.
  8. Кондаков А.М. Альтернативные источники энергии – География в школе. 4/88 – М.: Педагогика. 1988 г.
  9. Кононов Ю.Д. Энергетика и экономика. Проблемы перехода к новым источникам энергии. – М.: Наука, 1981.

www.coolreferat.com

Реферат - Геотермальные источники энергии

СОДЕРЖАНИЕ:

ВВЕДЕНИЕ………………………………………………………………………3

1. ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ …………………….………………..6

2. ИСТОЧНИКИ ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ……………………..7

3. ЗАПАСЫ РОССИИ……………………………………………………9

ВЫВОДЫ………………………………………………………………………...12

СПИСОК ЛИТЕРАТУРЫ……………………………………………………….14

ВВЕДЕНИЕ

В последнее десятилетие использование нетрадиционных возобновляемых источников энергии (НВИЭ) переживает в мире настоящий бум. Масштаб применения этих источников возрос в несколько раз. Данное направление развивается наиболее интенсивно по сравнению с другими направлениями энергетики. Причин этого явления несколько. Прежде всего, очевидно, что эпоха дешевых традиционных энергоносителей бесповоротно закончилась. В этой области имеется только одна тенденция — рост цен на все их виды. Не менее значимо стремление многих стран, лишенных своей топливной базы к энергетической независимости. Существенную роль играют экологические соображения, в том числе по выбросу вредных газов. Активную моральную поддержку применению НВИЭ оказывает население развитых стран.

По этим причинам развитие НВИЭ во многих государствах приоритетная задача технической политики в области энергетики. В ряде стран эта политика реализуется через принятую законодательную и нормативную базу, в которой установлены правовые, экономические и организационные основы использования НВИЭ. В частности, экономические основы состоят в различных мерах поддержки НВИЭ на стадии освоения ими энергетического рынка (налоговые и кредитные льготы, прямые дотации и др.)

В России практическое применение НВИЭ существенно отстает от ведущих стран. Отсутствует какая-либо законодательная и нормативная база, равно как и государственная экономическая поддержка. Всё это крайне затрудняет практическую деятельность в этой сфере. Основная причина тормозящих факторов затянувшееся экономическое неблагополучие в стране и, как следствие трудности с инвестициями, низкий платежеспособный спрос, отсутствие средств на необходимые разработки. Тем не менее, некоторые работы и практические меры по использованию НВИЭ в нашей стране проводятся (геотермальная энергетика). Парогидротермальные месторождения в России имеются только на Камчатке и Курильских островах. Поэтому геотермальная энергетика не может и в перспективе занять значимое место в энергетике страны в целом. Однако она способна радикально и на наиболее экономической основе решить проблему энергоснабжения указанных районов, которые пользуются дорогим привозным топливом(мазут, уголь, дизельное топливо) и находятся на грани энергетического кризиса. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить по разным источникам от 1000 до 2000 Мвт установленной электрической мощности, что значительно превышает потребности этого региона на обозримую перспективу. Таким образом, существуют реальные перспективы развития здесь геотермальной энергетики.

Повышение цен, которое произошло в последние годы, на органическое топливо (газ, мазут, дизельное топливо) и на его транспортировку в отдалённые районы России и соответственно объективный рост отпускных цен на электрическую и тепловую энергию принципиально изменяют отношение к использованию НВИЭ: геотермальной, ветровой, солнечной.

В отличие от ископаемых топлив нетрадиционные формы энергии не ограничены геологически накопленными запасами. Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.

Основной фактор при оценке целесообразности использования нетрадиционных возобновляемых источников энергии – стоимость производимой энергии в сравнении со стоимостью энергии, получаемой при использовании традиционных источников. Особое значение приобретают нетрадиционные источники для удовлетворения локальных потребителей энергии.

Основными направлениями развития генерирующих мощностей в энергетике страны на ближайшую перспективу является техническое перевооружение и реконструкция электростанций, а также ввод новых генерирующих мощностей. Прежде всегоэто строительство парогазовых установок с КПД 55-60%, что позволит повысить эффективность существующих ТЭС на 25-40%. Следующим этапом должно стать сооружение тепловых электростанций с использованием новых технологий сжигания твёрдого топлива и со сверхкритическими параметрами пара для достижения КПД ТЭС, равного 46-48%. Дальнейшее развитие получат и атомные электростанции с реакторами новых типов на тепловых и быстрых нейтронах.

Важное место в формировании энергетики России занимает сектор теплоснабжения страны, который является самым большим по объёму потребляемых энергоресурсов более 45% их общего потребления. В системах централизованного теплоснабжения (ЦТ) производится более 71%, а децентрализованными источниками около 29% всего тепла. Электростанциями отпускается более 34% всего тепла, котельными примерно 50%. В соответствии с энергетической стратегией России до 2020г. планируется рост теплопотребления в стране не менее чем в 1,3 раза, причём доля децентрализованного теплоснабжения будет возрастать с 28,6% (2000г.) до 33% в 2020г.

Так, развитие геотермальной энергетики в отдельных регионах страны позволяет уже сегодня решать проблему электро и теплоснабжения, в частности на Камчатке, Курильских островах, а также на Северном Кавказе, в отдельных районах Сибири и европейской части России.

В числе основных направлений совершенствования и развития систем теплоснабжения должно стать расширения использования местных нетрадиционных возобновляемых источников энергии и в первую очередь геотермального тепла земли. Уже в ближайшие 7-10 лет с помощью современных технологий локального теплоснабжения благодаря термальному теплу можно сэкономить значительные ресурсы органического топлива.

1. ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ

С незапамятных времен люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это — проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Энергетика земли (геотермальная энергетика) базируется на использовании природной теплоты Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8 * 1014 млрд. кВт * час. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре.

2. ИСТОЧНИКИ ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ

Могут быть двух типов. Первый тип – это подземные бассейны естественных теплоносителей – горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип – это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях.

Но в обоих вариантах использования главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 130 – 150° С) и высокотемпературные (свыше 150°). От температуры во многом зависит характер их использования.

Можно утверждать, что геотермальная энергия имеет четыре выгодных отличительных черты.

· Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.

· Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.

· В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.

· Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.

Человек издавна использует энергию внутреннего тепла Земли (вспомним хотя бы знаменитые Римские бани), но её коммерческое использование началось только в 20-х годах нашего века со строительством первых геоЭС в Италии, а затем и в других странах. К началу 80-х годов в мире действовало около 20 таких станций общей мощностью 1,5 млн. кВт. Самая крупная из них – станция Гейзерс в США (500 тыс. кВт).

Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и т.п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т.п.). История развития геотермальной энергетики.

3. ЗАПАСЫ РОССИИ

Наряду с огромными ресурсами органического топлива Россия располагает значительными запасами тепла земли, которые могут быть преумножены за счет геотермальных источников, находящихся на глубине от 300 до 2500м в основном в зонах разломов земной коры.

Территория России хорошо исследована, и сегодня известны основные ресурсы тепла земли, которые имеют значительный промышленный потенциал, в том числе и энергетический. Более того, практически везде имеются запасы тепла с температурой от 30 до 200°С.

Ещё в 1983г. во ВСЕГИНГЕО был составлен атлас ресурсов термальных вод СССР. В нашей стране разведано 47 геотермальных месторождений с запасами термальных вод, которые позволяют получить более 240·10імі/сут. Сегодня в России проблемами использования тепла земли занимаются специалисты почти 50 научных организаций.

Для использования геотермальных ресурсов пробурено более 3000 скважин. Стоимость исследований геотермии и буровых работ, уже выполненных в этой области, в современных ценах составляет более 4млрд. долларов. Так на Камчатке на геотермальных полях уже пробурено 365 скважин глубиной от 225 до 2266 м и израсходовано (ещё в советское время) около 300млн. долларов (в современных ценах).

Эксплуатация первой геотермальной электростанции была начата в Италии в 1904г. Первая геотермальная электростанция на Камчатке, да и первая в СССР Паужетская ГеоТЭС была введена в работу в 1967г. и имела мощность 5мВт, увеличенную впоследствии до 11 мВт. Новый импульс развитию геотермальной энергетике на Камчатке был придан в 90-е годы с появлением организаций и фирм (АО «Геотерм», АО «Интергеотерм», АО «Наука»), которые в кооперации с промышленностью (прежде всего с Калужским турбинным заводом) разработали новые прогрессивные схемы, технологии и виды оборудования по преобразованию геотермальной энергии в электрическую и добились кредитования от Европейского банка реконструкции и развития. В результате в 1999г. на Камчатке была введена Верхне-Мутновская ГеоТЭС (три модуля по 4мВт.). Вводится первый блок 25мВт. первой очереди Мутновской ГеоТЭС суммарной мощностью 50мВт.

Таким образом, ближайшие и вполне реальные перспективы геотермальной энергетики на Камчатке определились, что является положительным несомненным примером использования НВИЭ в России, несмотря на имеющиеся в стране серьезные экономические трудности. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить 1000МВт установленной электрической мощности, что значительно перекрывает потребности этого региона на обозримую перспективу.

По данным Института вулканологии ДВО РАН, уже выявленные геотермальные ресурсы позволяют полностью обеспечить Камчатку электричеством и теплом более чем на 100 лет. Наряду с высокотемпературным Мутновским месторождением мощностью 300МВт (э) на юге Камчатки известны значительные запасы геотермальных ресурсов на Кошелевском, Больше Банном, а на севере на Киреунском месторождениях. Запасы тепла геотермальных вод на Камчатке оцениваются в 5000МВт (т).

На Чукотке также имеются значительные запасы геотермального тепла (на границе с Камчатской областью), часть из них уже от-крыта и может активно использоваться для близлежащих городов и посёлков.

Курильские острова также богаты запасами тепла земли, их вполне достаточно для тепло и электрообеспечения этой территории в течение 100200 лет. На острове Итуруп обнаружены запасы двухфазного геотермального теплоносителя, мощности которого (30МВт(э)) достаточно для удовлетворения энергопотребностей всего острова в ближайшие 100 лет. Здесь на Океанском геотермальном месторождении уже пробурены скважины и строится ГеоЭС. На южном острове Кунашир имеются запасы геотермального тепла, которые уже используются для получения электроэнергии и теплоснабжения г. Южно Курильска. Недра северного острова Парамушир менее изучены, однако известно, что и на этом острове есть значительные запасы геотермальной воды температурой от 70 до 95° С, здесь также строится ГеоТС мощностью 20 МВт (т).

Гораздо большее распространение имеют месторождения термальных вод с температурой 100-200°С. При такой температуре целесообразно использование низкокипящих рабочих тел в паротурбинном цикле. Применение двухконтурных ГеоТЭС на термальной воде возможно в ряде районов России, прежде всего на Северном Кавказе. Здесь хорошо изучены геотермальные месторождения с температурой в резервуаре от 70 до 180° С, которые находятся на глубине от 300 до 5000 м. Здесь уже в течение длительного времени используется геотермальная вода для теплоснабжения и горячего водоснабжения. В Дагестане в год добывается более 6 млн. м. геотермальной воды. На Северном Кавказе около 500 тыс. чел, используют геотермальное водоснабжение.

Приморье, Прибайкалье, Западно-Сибирский регион также располагают запасами геотермального тепла, пригодного для широкомасштабного применения в промышленности и сельском хозяйстве.

Роль энергии неоспорима в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы, прямо или косвенно, большей энергии, чем могут дать ресурсы человека.

Потребление энергии – важный показатель жизненного уровня. За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник бал исчерпан.

Сейчас, в 21-го веке, начинается новый значительный этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, заботился об охране уже сильно поврежденной биосферы.

На пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость: создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т.д, В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию.

Практически на всей территории России имеются уникальные запасы геотермального тепла с температурами теплоносителя (вода, двухфазный поток и пар) от 30 до 200 С.

В последние годы в России на основе крупных фундаментальных исследований были созданы геотермальные технологии, способные быстро обеспечить эффективное применение тепла земли на ГеоЭС и ГеоТС для получения электроэнергии и тепла.

Геотермальная энергетика должна занять важное место в общем балансе использования энергии. В частности, для реструктуризации и перевооружения энергетики Камчатской области и Курильских островов и частично Приморья, Сибири и Северного Кавказа следует использовать собственные геотермальные ресурсы.

Широкомасштабное внедрение новых схем теплоснабжения с тепловыми насосами с использованием низкопотенциальных источников тепла позволит снизить расход органического топлива на 20-25%.

Для привлечения инвестиций и кредитов в энергетику следует выполнять эффективные проекты и гарантировать своевременный возврат заемных средств, что возможно только при полной и своевременной оплате электричества и тепла, отпущенных потребителям.

СПИСОК ЛИТЕРАТУРЫ

1. Тепло Земли: Из доклада «Перспективы развития геотермальных технологий» Экология и жизнь-2001-№6-стр49-52.

2. Тарнижевский Б.В. «Состояние и перспективы использования НВИЭ в России» Промышленная энергетика-2002-№1-стр. 52-56.

3. Бутузов В.А. «Геотермальные системы теплоснабжения в Краснодарском крае» Энергоменеджер-2002-№1-стр.14-16.

4. Бутузов В.А. «Анализ геотермальных систем теплоснабжения России» Промышленная энергетика-2002-№6-стр.53-57.

5. Доброхотов В.И. «Использование геотермальных ресурсов в энергетике России» Теплоэнергетика-2003-№1-стр.2-11.

6. Алхасов А.Б. «Повышение эффективности использования геотермального тепла» Теплоэнергетика-2003-№3-стр.52-54.

7. Гончар В.И. Нетрадиционные возобновляемые источники энергии в Энергетической программе СССР – География в школе. 4/90 – М.: Педагогика, 1990 г.

8. Кондаков А.М. Альтернативные источники энергии – География в школе. 4/88 – М.: Педагогика. 1988 г.

9. Кононов Ю.Д. Энергетика и экономика. Проблемы перехода к новым источникам энергии. – М.: Наука, 1981.

www.ronl.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта