Буква относительная погрешность: Погрешность измерений. Классификация

Содержание

Как Определить Погрешность Предмета? — Метрологический надзор

Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе. Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована ( эталоны ).

расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;физический износ шкалы измерений, что приводит к невозможности распознавания значений.

Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой. Рис. \(1\). Линейка и брусок Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет \(1\) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между \(9\) и \(10\) метками.

У нас есть два варианта определения длины этого бруска. \(1\). Если мы заявим, что длина бруска — \(9\) сантиметров, то недостаток длины от истинной составит более половины сантиметра (\(0,5\) см \(= 5\) мм). \(2\). Если мы заявим, что длина бруска — \(10\) сантиметров, то избыток длины от истинной составит менее половины сантиметра (\(0,5\) см \(= 5\) мм).

Погрешность измерений — это отклонение полученного значения измерения от истинного. Погрешность измерительного прибора равна цене деления прибора. Для первой линейки цена деления составляет \(1\) сантиметр. Значит, погрешность этой линейки \(1\) см. Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. Рис. \(2\). Деревянная линейка Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления \(0,1\) мм и \(0,05\) мм, Рис. \(3\). Штангенциркуль На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений. Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.

Как вычислить погрешность?

Физические величины и погрешности их измерений — Задачей физического эксперимента является определение числового значения измеряемых физических величин с заданной точностью. Сразу оговоримся, что при выборе измерительного оборудования часто нужно также знать диапазон измерения и какое именно значение интересует: например, среднеквадратическое значение (СКЗ) измеряемой величины в определённом интервале времени, или требуется измерять среднеквадратическое отклонение (СКО) (для измерения переменной составляющей величины), или требуется измерять мгновенное (пиковое) значение.

При измерении переменных физических величин (например, напряжение переменного тока) требуется знать динамические характеристики измеряемой физической величины: диапазон частот или максимальную скорость изменения физической величины, Эти данные, необходимые при выборе измерительного оборудования, зависят от физического смысла задачи измерения в конкретном физическом эксперименте,

Итак, повторимся: задачей физического эксперимента является определение числового значения измеряемых физических величин с заданной точностью. Эта задача решается с помощью прямых или косвенных измерений, При прямом измерении осуществляется количественное сравнение физической величины с соответствующим эталоном при помощи измерительных приборов.

Отсчет по шкале прибора указывает непосредственно измеряемое значение. Например, термометр дает значения измеряемой температуры, а вольтметр – значение напряжения. При косвенных измерениях интересующая нас физическая величина находится при помощи математических операций над непосредственно измеренными физическими величинами (непосредственно измеряя напряжение U на резисторе и ток I через него, вычисляем значение сопротивления R = U / I ).

Точность прямых измерений некоторой величины X оценивается величиной погрешности или ошибки, измерений относительно действительного значения физической величины X Д, Действительное значение величины X Д (согласно РМГ 29-99 ) – это значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Различают абсолютную (∆ X) и относительную (δ) погрешности измерений. Абсолютная погрешность измерения – это п огрешность средства измерений, выраженная в единицах измеряемой физической величины, характеризующая абсолютное отклонение измеряемой величины от действительного значения физической величины: ∆X = X – X Д,

Относительная погрешность измерения – это п огрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному значению измеряемой величины. Обычно относительную погрешность выражают в процентах: δ = (∆X / Xд) * 100%, При оценке точности косвенных измерений некоторой величины X 1, функционально связанной с физическими величинами X 2, X 3,, X 1 = F (X 2, X 3, ), учитывают погрешности прямых измерений каждой из величин X 2, X 3, и характер функциональной зависимости F (),

Как найти погрешность измерений формула?

Абсолютная погрешность Δ измерений, выражаемая в единицах измеряемой величины, представляется разностью между измеренным и истинным (действительным) значениями измеряемой величины: Δ = х изм — х и (х д ).

Как измеряется погрешность измерений?

По форме представления — Первый тип — абсолютная погрешность. Она представляет собой алгебраическую разность между реальным и номинальными значениями. Она регистрируется в тех же величинах, что и основной объект. В расчетах абсолютный показатель помечается буквой ∆.

  • Например, линейка — наиболее простой и привычный каждому измерительный инструмент.
  • При помощи верхней шкалы на ней определяются значения с точностью до миллиметра.
  • Нижняя имеет другой масштаб (до 0,1 дюйма–2,54 мм).
  • Несложно проверить, что на этом приборе погрешность верхней части меньше, чем нижней.
  • Точность измерений в случае с линейкой будет зависеть от ее конструктивных особенностей.

Абсолютная погрешность измеряется той же единицей измерений, что и изучаемая величина. В процессе используется формула: Δ = х1 – х2, где х1 — измеренная величина, а х2 — реальная величина. Второй тип – относительная погрешность (проявляется в виде отношение абсолютного и истинного значения).

  • Показатель не имеет собственной единица измерения или отражается процентно.
  • В расчетах помечается как δ.
  • Она является более сложным значением, чем может показаться.
  • В расчетах используется формула: δ = (Δ / х2)·100 % Стоит отметить, что если истинное значение имеет малую величину, то относительная — большую.

Например, если стандартной линейкой (30 см) измеряется коробки (150 мм), то вычисление будет иметь вид: δ = 1 мм/150 мм = 0,66%. Если этот же прибор использовать для экрана смартфона (80 мм), то получится δ = 1 мм/80 мм = 1,25%. Получается, что в обоих случаях абсолютная погрешность не изменяется, но относительная отличается в разы.

  • Во втором случае рекомендуется использовать более точный прибор.
  • Последний тип — приведенная погрешность.
  • Она используется, чтобы не допустить такого разброса на одном приборе.
  • Работает, как относительная, но вместо истинного значения в формуле применяется нормирующая шкала (общая длина линейки, например).

γ = (Δ / х3)·100 %, где х3 — это нормирующая шкала Например, если потребуется измерить ту же коробку и смартфон, то придется учесть абсолютную величину в 1мм и приведенную погрешность — 1/300*100 =0,33 %. Если взять швейный метр и сравнить его с линейкой, то получится, что первый показатель в обоих случаях остается 1 мм, а второй отличается в разы (0,33% и 0,1%).

Как найти погрешность в математике?

Абсолютная погрешность — Абсолютной погрешностью числа называют разницу между этим числом и его точным значением. Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26. Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

  1. Существует формула абсолютной погрешности.
  2. Обозначим точное число буквой А, а буквой а – приближение к точному числу.
  3. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях.
  4. Тогда формула будет выглядеть следующим образом: Δа=А-а.
  5. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой.

  1. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным.
  2. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.
  3. Записывают абсолютную погрешность числа, используя знак ±.
  4. Например, длина рулона обоев составляет 30 м ± 3 см.

Границу абсолютной погрешности называют предельной абсолютной погрешностью.

В чем измеряется погрешность?

Погрешность средств измерения и результатов измерения. Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины. Инструментальные и методические погрешности. Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета.

  1. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается.
  2. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.
  3. Инструментальная погрешность обусловлена несовершенством применяемых средств измерений.

Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы. Статическая и динамическая погрешности.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей. Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях. Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Как определить погрешность деления?

Как определить погрешность и объем жидкости — Погрешность равна половине цены деления мензурки. В нашем случае погрешность составляет 2,5 мл. Чтобы определить объем, берем ближайшее число от верхней границы жидкости (на рисунке — это значение 40 мл) и прибавляем количество штрихов (на рисунке — 2 штриха) по 5 мл: V = 40 + 2 × 5 = 50 мл.

Чему равна абсолютная погрешность?

При измерении каких-либо величин важным понятием является понятие о погрешности. Это связано с тем, что абсолютно точно измерить какую либо величину невозможно. Поэтому вводят понятие погрешности. Есть очень много видов погрешности, связанных с человеческим фактором или процессом измерения.

Как определить цену деления и погрешность?

Найти две соседних отметки шкалы, возле которых написаны величины, соответствующие этим отметкам шкалы; найти разность этих величин; сосчитать количество промежутков между величинами отметок шкалы; полученную разность величин разделить на количество промежутков.

Какие существуют погрешности?

Абсолютная погрешность измерения — разность между значением величины, полученным при измерении, и ее истинным значением, выражаемая в единицах измеряемой величины. Относительная погрешность измерения — отношение абсолютной погрешности, измерения к истинному значению измеряемой величины.

Как учитывается погрешность измерительного прибора?

Погрешность — Погрешность является индикатором корректности измерения. Из-за того, что в одном измерении точность оказывает влияние на погрешность, то учитывается среднее серии измерений. Погрешность измерительного прибора обычно задается двумя значениями: погрешностью показания и погрешностью по всей шкале.

Эти две характеристики вместе определяют общую погрешность измерения. Эти значения погрешности измерения указываются в процентах или в ppm ( parts per million, частей на миллион) относительно действуюшего национального стандарта.1% соответствует 10000 ppm, Погрешность приводится для указанных температурных диапазонов и для определенного периода времени после калибровки.

Обратите внимание, что в разных диапазонах, возможны, и различные погрешности.

Как вычислить погрешность функции?

Главная страница УЧЕБНЫЕ МАТЕРИАЛЫ ПРОГРАММА КУРСА КОНСПЕКТЫ ЛЕКЦИЙ ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ВОПРОСЫ К ЗАЧЁТУ РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА Кафедра физхимии ЮФУ (РГУ) ЧИСЛЕННЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ Материалы к лекционному курсу Лектор – Щербаков И. Н. Пусть X – некоторая величина, истинное значение которой известно или неизвестно и равно x*, Число x, которое можно принять за значение величины X, мы будем называть ее приближенным значением или просто приближенным числом. Число x называют приближенным значением по недостатку, если оно меньше истинного значения ( x x* ). Например, число 3,14 является приближенным значением числа π по недостатку, а 2,72 – приближенным значением числа е (основание натурального логарифма) по избытку. Абсолютная погрешность приближенного числа есть абсолютная величина разности между истинным значением величины и данным ее приближенным значением. Δx = | x * – x | Поскольку истинное значение величины обычно остается неизвестным, неизвестной остается также и абсолютная погрешность. Вместо нее приходится рассматривать оценку абсолютной погрешности, так называемою предельную абсолютную погрешность, которая означает число, не меньшее абсолютной погрешности (далее, в том случае, если это не принципиально, будем под абсолютной погрешностью понимать именно предельную абсолютную погрешность). Абсолютная погрешность приближенного числа не в полной мере характеризует его точность. Действительно, погрешность в 0,1 г слишком велика при взвешивании реактивов для проведения микро-синтеза, допустима при взвешивании 100 г колбасы, и не может быть замечена при измерении массы, например, железнодорожного вагона. Более информативным показателем точности приближенного числа является его относительная погрешность, Относительной погрешностью δx приближенного значения величины X называют абсолютную величину отношения его абсолютной погрешности к истинному значению этой величины. Часто эту относительную погрешность выражают в процентах. C учетом положительности абсолютной погрешности можно записать: δx = Δx / | x* | Ввиду того, что фактически вместо абсолютной погрешности приходится рассматривать предельную, относительную погрешность также заменяют предельной относительной погрешностью, которая означает число, не меньшее относительной погрешности. Более того, при отыскании предельной относительной погрешности приходится заменять неизвестное истинное значение величины x* приближенным – x, Последняя замена обычно не отражается на величине относительной погрешности ввиду близости этих значений и малости абсолютной погрешности. δx = Δx / | x | Например, для приближенного значения π = 3,14 предельная абсолютная погрешность составляет 0,0016, а относительная – 0,00051 или 0,051%. Выражение относительной погрешности в процентах иногда называют процентной погрешностью.

Как найти абсолютную погрешность 8 класс?

Погрешность и точность приближения. Найдем значение функции у = х 2 при х=1,5 и при х=2,1. Можно найти значение функции двумя способами: по формуле и с помощью графика. С помощью графика приближенные значения функции равны: при х = 1,5 у ≈ 2,3; при х = 2,1 у ≈ 4,4.

Чему равна относительная погрешность?

Относительная погрешность – это отношение абсолютной погрешности к самому числу. Относительную погрешность принято выражать в процентах, то есть, умножать полученное отношение на 100 %.

Как вычислить погрешность функции?

Главная страница УЧЕБНЫЕ МАТЕРИАЛЫ ПРОГРАММА КУРСА КОНСПЕКТЫ ЛЕКЦИЙ ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ВОПРОСЫ К ЗАЧЁТУ РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА Кафедра физхимии ЮФУ (РГУ) ЧИСЛЕННЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ Материалы к лекционному курсу Лектор – Щербаков И. Н. Пусть X – некоторая величина, истинное значение которой известно или неизвестно и равно x*, Число x, которое можно принять за значение величины X, мы будем называть ее приближенным значением или просто приближенным числом. Число x называют приближенным значением по недостатку, если оно меньше истинного значения ( x x* ). Например, число 3,14 является приближенным значением числа π по недостатку, а 2,72 – приближенным значением числа е (основание натурального логарифма) по избытку. Абсолютная погрешность приближенного числа есть абсолютная величина разности между истинным значением величины и данным ее приближенным значением. Δx = | x * – x | Поскольку истинное значение величины обычно остается неизвестным, неизвестной остается также и абсолютная погрешность. Вместо нее приходится рассматривать оценку абсолютной погрешности, так называемою предельную абсолютную погрешность, которая означает число, не меньшее абсолютной погрешности (далее, в том случае, если это не принципиально, будем под абсолютной погрешностью понимать именно предельную абсолютную погрешность). Абсолютная погрешность приближенного числа не в полной мере характеризует его точность. Действительно, погрешность в 0,1 г слишком велика при взвешивании реактивов для проведения микро-синтеза, допустима при взвешивании 100 г колбасы, и не может быть замечена при измерении массы, например, железнодорожного вагона. Более информативным показателем точности приближенного числа является его относительная погрешность, Относительной погрешностью δx приближенного значения величины X называют абсолютную величину отношения его абсолютной погрешности к истинному значению этой величины. Часто эту относительную погрешность выражают в процентах. C учетом положительности абсолютной погрешности можно записать: δx = Δx / | x* | Ввиду того, что фактически вместо абсолютной погрешности приходится рассматривать предельную, относительную погрешность также заменяют предельной относительной погрешностью, которая означает число, не меньшее относительной погрешности. Более того, при отыскании предельной относительной погрешности приходится заменять неизвестное истинное значение величины x* приближенным – x, Последняя замена обычно не отражается на величине относительной погрешности ввиду близости этих значений и малости абсолютной погрешности. δx = Δx / | x | Например, для приближенного значения π = 3,14 предельная абсолютная погрешность составляет 0,0016, а относительная – 0,00051 или 0,051%. Выражение относительной погрешности в процентах иногда называют процентной погрешностью.

Как определить погрешность при прямых измерениях?

Абсолютную погрешность прямых измерений определяют суммой абсолютной инструментальной погрешности и абсолютной погрешности отсчёта Δx = Δ и x + Δ о x при условии, что случайная погрешность и погрешность вычисления или отсутствуют, или незначительны и ими можно пренебречь.

Как определить цену деления с учётом погрешности?

Как определить погрешность и объем жидкости — Погрешность равна половине цены деления мензурки. В нашем случае погрешность составляет 2,5 мл. Чтобы определить объем, берем ближайшее число от верхней границы жидкости (на рисунке — это значение 40 мл) и прибавляем количество штрихов (на рисунке — 2 штриха) по 5 мл: V = 40 + 2 × 5 = 50 мл.

Что такое приведенная погрешность простыми словами?

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона.

Что такое абсолютная и относительная погрешность измерений: как определить, примеры

Понятия приближенных значений известны науке с древнейших времен. После открытия пифагорейцами иррациональных чисел приближенными вычислениями стали заниматься более серьезно. Но понятие само погрешности появилось лишь в XV веке.

Оглавление

  • Как определить
  • Связь абсолютной и предельной абсолютной погрешностей
  • Относительная погрешность
  • Простейшие примеры вычисления погрешностей
    • Пример 1
    • Пример 2
    • Пример 3

Как определить

Приближенное значение определяется следующим образом:

Число а называется приближенным значением некоторого числа А, если его значение несколько отклоняется от значения А. При этом:

  • если а < А, то а – это приближение по недостатку;
  • если а > А, то а – это приближение по избытку.

Разность между числом А и его приближенным значением а называют ошибкой или погрешностью. Ошибку приближенной величины а обозначают как Δа:

Δа = А — а

Модуль разности между величиной и ее приближенным значением называется абсолютной погрешностью. Ее часто обозначают греческой буквой Δ:

Δ = |А — а|

Запись приближенного результата при этом имеет вид:

а ± Δ

В простейших случаях, когда значение величины А известно точно, абсолютная погрешность вычисляется просто. Рассмотрим такой пример:

Пусть точное значение А = 2/625 = 0,0032, а его приближенное значение а = 0,003.

В этом случае абсолютная погрешность будет:

Δ = |0,0032 — 0,003| = 0,0002

Но на практике такие простые задачи встречаются редко. Гораздо чаще точное значение А вообще неизвестно. В этих случаях абсолютная погрешность определяется при помощи разных способов, в зависимости от условий конкретной задачи.

Если речь идет об измерениях, то под абсолютной погрешностью понимают разность между показаниями измерительного прибора и истинным значением величины.

Связь абсолютной и предельной абсолютной погрешностей

Как уже говорилось, в большинстве случаев точное значение величины А нам неизвестно. Это означает, что точное значение абсолютной погрешности найти просто невозможно, и приходится лишь оценивать ее каким-то числом, которое называют предельной абсолютной погрешностью Δа. При этом справедливо неравенство:

Δа > Δ = |А — а|

Предельная абсолютная погрешность может иметь бесконечное количество значений. Ведь если нам удалось оценить какое-то значение Δа, то все числа, которые больше него, тоже будут удовлетворять определению предельной абсолютной погрешности. Для решения практических задач нужно стараться найти минимальное значение Δа.

Относительная погрешность

Если внимательно проанализировать определения, то становится очевидно, что ни абсолютная погрешность, ни предельная абсолютная погрешность не могут хорошо характеризовать точность, с которой выполнены измерения или вычисления. Например, если мы вычисляем или измеряем расстояние от Земли до Солнца, то абсолютная погрешность в 1 метр – это ничтожно мало. Но если мы измеряем рост человека, то точно такая же абсолютная погрешность в 1 м – это недопустимо много.

Оценить насколько «хороша» полученная абсолютная погрешность позволяет величина, называемая относительной погрешностью δ. Она равна отношению абсолютной погрешности к модулю самой величины:

δ = Δ / |А|

Аналогично определяется предельная относительная погрешность:

δа = Δа / |А|

Относительные погрешности часто вычисляются в процентах, то есть:

δ = Δ / |А| * 100%

Простейшие примеры вычисления погрешностей

Рассмотрим несколько наглядных примеров определения погрешностей.

Пример 1

Дано значение числа А = 0,2656. Округлить его до трех значащих цифр, вычислить абсолютную и относительную погрешности.

Решение:

А = 0,2655.

Приближенное значение: а = 0,266.

Абсолютная погрешность: Δ = |А — а| = |0,2655 – 0,266| = 0,0005.

Относительная погрешность: δ = Δ / |А| * 100% = 0,0005/0,2655*100 = 0,188%.

Ответ: Δ = 0,0005; δ = 0,188%.

Пример 2

Даны значение числа А = 5,8650 и его относительная погрешность δ = 2%. Найти абсолютную погрешность.

Решение:

δ = Δ / |А| * 100%, следовательно

Δ = А * δ / 100 = 5,8650 * 2 / 100 = 0,1173.

Ответ: Δ = 0,1173.

Пример 3

Расстояние А = 12,5 км было измерено с точностью до 5 м, а расстояние В = 10 м было измерено с точностью до 1 см. Какое из этих измерение является более качественным?

Дано:

А = 12,5 км = 12500 м;

ΔА = 5 м;

В = 10 м = 1000 см;

ΔВ = 1 см.

Решение:

Чтобы ответить на поставленный вопрос, нам нужно сравнить относительные погрешности измерений. Имеем:

δА = ΔА / |А| * 100% = 5 / 12500 * 100 = 0,04%.

δВ = ΔВ / |А| * 100% = 1 / 1000 * 100 = 0,1%.

Так как δВ > δА, то качество измерения расстояния В ниже, чем качество измерения расстояния А.

Ответ: Измерение расстояния А является более качественным.

Об абсолютной и относительной погрешности в видео:

О том как найти процент от числа читайте на нашем сайте по ссылке.

Абсолютная и относительная погрешность

и способы их расчета

погрешность измерения или расчета.

Абсолютная, относительная и процентная ошибки являются наиболее распространенными расчетами экспериментальных ошибок в науке. Сгруппированные вместе, они представляют собой типы ошибок аппроксимации. Суть в том, что независимо от того, насколько тщательно вы что-то измеряете, вы всегда будете немного ошибаться из-за ограничений измерительного прибора. Например, вы можете измерить только с точностью до ближайшего миллиметра на линейке или до ближайшего миллилитра на градуированном цилиндре. Вот определения, уравнения и примеры того, как использовать эти типы вычислений ошибок.

Абсолютная ошибка

Абсолютная ошибка — это величина (размер) разницы между измеренным значением и истинным или точным значением.

Абсолютная ошибка = |Истинное значение – Измеренное значение|

Абсолютная ошибка Пример:
Измеренное значение равно 24,54 мм, а истинное или известное значение равно 26,00 мм. Найдите абсолютную ошибку.
Абсолютная ошибка = |26,00 мм – 25,54 мм|= 0,46 мм
Обратите внимание, что абсолютная ошибка сохраняет свои единицы измерения.

Вертикальные полосы указывают абсолютное значение. Другими словами, вы отбрасываете любой негативный знак, который можете получить. По этой причине на самом деле не имеет значения, вычитаете ли вы измеренное значение из истинного значения или наоборот. В учебниках вы увидите формулу, написанную в обоих вариантах, и обе формы верны.

Важно правильно интерпретировать ошибку. Если вы нарисуете полосы ошибок, половина ошибки будет выше, чем измеренное значение, а половина — ниже. Например, если ваша ошибка составляет 0,2 см, это то же самое, что сказать ±0,1 см.

Абсолютная ошибка показывает, насколько велика разница между измеренным и истинным значениями, но эта информация не очень полезна, когда вы хотите узнать, близко ли измеренное значение к реальному значению или нет. Например, абсолютная ошибка в 0,1 грамма более значительна, если истинное значение равно 1,4 грамма, чем если истинное значение равно 114 килограммам! Здесь помогают относительная ошибка и процентная ошибка.

Относительная ошибка

Относительная ошибка рассматривает абсолютную ошибку в перспективе, поскольку она сравнивает размер абсолютной ошибки с размером истинного значения. Обратите внимание, что в этом расчете единицы измерения выпадают, поэтому относительная ошибка безразмерна (безразмерна).

Относительная ошибка = |Истинное значение – Измеренное значение| / Истинное значение
Относительная ошибка = Абсолютная ошибка / Истинное значение

Относительная ошибка Пример:
Измерение равно 53, а истинное или известное значение равно 55. Найдите относительную ошибку.
Относительная ошибка = |55 – 53| / 55 = 0,034
Обратите внимание, что это значение содержит две значащие цифры.

Примечание. Относительная ошибка не определена, если истинное значение равно нулю. Кроме того, относительная ошибка имеет смысл только тогда, когда шкала измерения начинается с истинного нуля. Итак, это имеет смысл для температурной шкалы Кельвина, но не для шкалы Фаренгейта или Цельсия!

Процентная ошибка

Процентная ошибка — это относительная ошибка, умноженная на 100%. Он сообщает, какой процент измерения является сомнительным.

Процент ошибки = |Истинное значение – Измеренное значение| / Истинное значение x 100%
Погрешность в процентах = Абсолютная погрешность / Истинное значение x 100%
Погрешность в процентах = Относительная погрешность x 100%

Погрешность в процентах Пример:
72 мили в час. Найдите процент ошибки.
Процентная ошибка = |72 – 70| / 72 x 100% = 2,8%

Средняя абсолютная ошибка

Абсолютная ошибка допустима, если вы проводите только одно измерение, но что делать, если вы собираете больше данных? Затем полезна средняя абсолютная ошибка. Средняя абсолютная ошибка или MAE представляет собой сумму всех абсолютных ошибок, деленную на количество ошибок (точек данных). Другими словами, это среднее значение ошибок. Средняя абсолютная ошибка, как и абсолютная ошибка, сохраняет свои единицы.

Средняя абсолютная ошибка Пример:
Вы взвешиваетесь три раза и получаете значения 126 фунтов, 129 фунтов, 127 фунтов. Ваш реальный вес 127 фунтов. Какова средняя абсолютная погрешность измерений.
Средняя абсолютная ошибка = [|126-127 фунтов|+|129-127 фунтов|+|127-127 фунтов|]/3 = 1 фунт

Ссылки

  • Hazewinkel, Michiel, ed. (2001). «Теория ошибок». Математическая энциклопедия . Springer Science + Business Media BV / Kluwer Academic Publishers. ISBN 9(−6)

    спросил

    Изменено
    2 месяца назад

    Просмотрено
    16 тысяч раз

    Во многих задачах программирования упомянутое выше ограничение упоминается.
    Мне кажется, это в codechef, а также в SPOJ.

    Ссылка-1, Ссылка-2 и многие другие. (См. раздел ВЫВОД в этих двух примерах ссылок)

    Что означает это ограничение? И как я могу убедиться, что это ограничение указано в моем выводе?

    • c++
    • c
    • алгоритм

    3

    Абсолютная ошибка:

     |computedAnswer - correctAnswer|
     

    Относительная ошибка:

     |(вычисленный ответ - правильный ответ) / правильный ответ |
     

    Интуитивно абсолютная ошибка показывает, насколько далеко вычисленный ответ (или приближение) от правильного (и, возможно, неизвестного) ответа. Относительная ошибка – это отношение абсолютной ошибки к правильному ответу.

    Таким образом, измеряете ли вы расстояние до Луны с помощью лазерного дальномера или пытаетесь правильно поставить левую ногу во время фокстрота, ваша абсолютная погрешность может составить полметра в любом случае. Для измерения расстояния до Луны это было бы неплохо; для фокстрота вас вышвырнут из «Танцев со звездами».

    9

    В дополнение к тому, что сказал Тед Хопп, возможно, важным фактором для уменьшения ошибок является минимизация дрейфа/неточностей с плавающей запятой на:

    • Сокращение общего количества вычислений с плавающей запятой за счет упрощения/оценки набора операций, которые будут работать с вашими входными данными. (например, максимально упростив математическое выражение). Это связано с тем, что ошибки с плавающей запятой накапливаются в последующих операциях.
    • Использование максимальной точности (например, двойной) для ваших вычислений.
    • В качестве альтернативы вы можете использовать классы дробного типа или более численно обоснованные классы, которые вы затем оцениваете в значение с плавающей запятой в самом конце.

    9

    Вот простая компьютерная задача: вычислить 1/3. -6; оба 0,333333333332 и 0,333333333334 соответствуют этому требованию точности. 9-6

    Тогда вы «правильно»

    Очень проблематично точно сравнивать значения с плавающей запятой. Это связано с округлением в машине с ограниченной точностью (т. е. некоторые математические ответы не могут быть представлены конечным числом цифр, например 1,0/3,0).

    Многие решения задач, выполняемые на компьютере, являются итеративными. Это означает, что вы начинаете с первого предположения и вычисляете, насколько оно может измениться. Затем вы повторяете это, подсчитывая, насколько измениться ваша догадка. После того, как вы повторите эту процедуру, величина, на которую вы измените свою догадку, будет становиться все меньше и меньше (она будет сходиться). Как только изменение станет меньше определенной суммы, вы можете считать, что ваш ответ сошелся, и теперь у вас есть «правильный» ответ. Алгоритмы градиентного приличия являются классическим примером этой техники. Я не внимательно просматривал предоставленные ссылки, но, возможно, для получения ответа вам нужно итеративное решение, которое в этом случае вы должны использовать 1,0 * 10 ^ -6 в качестве предела, чтобы проверить, сошлось ли ваше решение.

    Буква относительная погрешность: Погрешность измерений. Классификация