Eng Ru
Отправить письмо

гидроэлектростанция, ГЭС. Что это такое гэс


Малая гидроэлектростанция - это... Что такое Малая гидроэлектростанция?

Малая гидроэлектростанция в Швейцарии

Малая гидроэлектростанция или малая ГЭС (МГЭС) — гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии. Общепринятого для всех стран понятия малой гидроэлектростанции нет, в качестве основной характеристики таких ГЭС принята их установленная мощность.

Классификация МГЭС

Чаще к малым гидроэлектростанциям относят гидроэнергетические установки, установленная мощность которых не превышает 5 МВт (Австрия, Германия, Польша, Испания и др.). В Латвии и Швеции, малыми считают ГЭС с установленной мощностью до 2 МВт, в некоторых других странах — до 10 МВт (Греция, Ирландия, Португалия). Также в соответствии с определением Европейской Ассоциации Малой Гидроэнергетики считаются малыми ГЭС до 10 МВт. [1]

Время от времени происходят смены классификации: в США, где были принятые меры стимулирования развития малой гидроэнергетики (путём упрощения лицензионной процедуры оформления проектов здания малых ГЭС), изначально к ним относили ГЭС с установленной мощностью до 5 МВт, затем верхняя граница был увеличена до 15 МВт, а в 1980 их максимальная установленная мощность была ограничена 30 МВт. В СССР согласно СНиП 2.06.01-86 к малым относились ГЭС, с установленной мощностью до 30 МВт при диаметре рабочего колеса турбины до 3 м. Среди малых ГЭС условно выделяют микро-ГЭС, установленная мощность которых не превышает 0,1 МВт.

Малая гидроэнергетика по странам

В Белоруссии до создания единой Белорусской энергетической системы существовало 179 малых ГЭС, которые обеспечивали электроэнергией сельское хозяйство, после — большинство из них было заброшено, а сейчас делаются попытки воссоздать их. Согласно Постановлению СМ РБ от 24 апреля 1997 № 400 «О развитии малой и нетрадиционной энергетики», малыми электростанциями считаются электростанции с установленной мощностью до 6 МВт. Концерн «Белэнерго» должен рассчитываться с малыми электростанциями за поставленную электроэнергию по удвоенным тарифам. На 2010 год в стране действует 36 МГЭС общей мощностью 13,5 МВт и выработкой свыше 33 млн кВт·ч в год.

Аналогичные льготы действуют и в Латвии, исходя с «Закона об энергетике» от 3 сентября 1998 г., государство гарантирует закупку электроэнергии от малых ГЭС по двойному тарифу в течение 8 лет после ввода в эксплуатацию.

В Швеции действует 1350 малых ГЭС, которые вырабатывают 10 % необходимой стране электроэнергии, в Китае действует около 83 тысяч малых ГЭС.

В России к малой гидроэнергетике относят ГЭС, мощность которых не превышает 30 МВт (ГОСТ Р51238-98). В стране действует около сотни ГЭС мощностью до 6 МВт, с суммарной мощностью 90 МВт и выработкой около 200 млн кВт·ч в год, большинство строящихся в стране малых станций находится на Северном Кавказе.

Мощность малой гидроэнергетики в странах Евросоюза на 2005 год: [1]

Страна Количество агрегатов Мощность МГЭС, МВт Доля МГЭС в общей мощности в ЕС (%) Доля МГЭС в общей мощности ГЭС (%) Производство электроэнергии от МГЭС (ТВт*ч) Доля МГЭС в генерации электроэнергии в ЕС (%)
Бельгия 82 96 0.61 6.86 385 0.46
Дания 40 11 0.09 100.00 30 0.08
Германия 6200 1500 1.27 16.67 6500 1.14
Греция 40 69 0.63 2.30 350 0.65
Испания 1106 1607 3.06 9.08 4825 2.14
Франция 1730 2000 1.73 7.81 7500 1.39
Ирландия 45 23 0.48 4.51 96 0.40
Италия 1510 2229 3.12 10.98 8320 3.01
Люксембург 29 39 3.25 3.55 195 0.22
Нидерланды 3 2 0.01 2.22 1 8.47
Австрия 1700 866 4.89 7.53 4246 6.87
Португалия 74 286 2.62 6.36 1100 2.51
Финляндия 204 320 1.96 11.03 1280 1.83
Швеция
1615
1050 3.20 6.40 4600 3.15
Великобритания 110 162 0.21 3.77 840 0.22

Потенциал в России

30 мая 2005 года в Москве прошел международный Круглый Стол организованный Российско-Европейским Технологическим Центром. На нем было отмечено, что технический потенциал малой гидроэнергетики России очень высок, и составляет около 360 млрд. кВт*ч в год это около трети потребляемой в России энергии. [1]

См. также

Примечания

dal.academic.ru

Иркутская ГЭС - это... Что такое Иркутская ГЭС?

Страна Река Каскад Собственник Статус Год начала строительства Годы ввода агрегатов
Основные характеристики Годовая выработка электричества, млн кВт·ч Разновидность электростанции Расчётный напор, м Электрическая мощность Характеристики оборудования Тип турбин Количество и марка турбин Расход через турбины, м³/сек Количество и марка генераторов Мощность генераторов, МВт Основные сооружения Тип плотины Высота плотины, м Длина плотины, м Шлюз На карте
Иркутская ГЭС

 Россия

Ангара

Ангарский

Иркутскэнерго/Росимущество

действующая

1954

1956-1958

4 100

плотинно-деривационная

26

662,4

поворотно-лопастные

8хПЛ 577-ВБ-720[1]

8х410

8хСВ 1160/180-72

8х82,8

земляная насыпная, бетонная водосбросная

44

2500

нет

Иркутская ГЭС

Координаты: 52°14′12″ с. ш. 104°19′18″ в. д. / 52.236667° с. ш. 104.321667° в. д. (G) (O) (Я)52.236667, 104.321667

Распределительное устройство станции

Ирку́тская гидроэлектроста́нция — на реке Ангара в Иркутской области, в г. Иркутск. ГЭС является первой ступенью Ангарского каскада.

Общие сведения

Строительство Иркутской ГЭС началось в 1950, закончено в 1958. ГЭС является русловой с совмещённым зданием ГЭС. Состав сооружений ГЭС:

  • бетонная водосливная плотина;
  • совмещённое здание ГЭС длиной 240 м;
  • земляная насыпная плотина с суглинистым ядром максимальной высотой 44 м и длиной 2500 м, состоящая из левобережного, островного, руслового и правобережного участков.

Высота верхнего бьефа над уровнем моря (НПУ) составляет 457 м.[2] По плотине ГЭС проходит автодорожный переход. Судоходных шлюзов ГЭС не имеет, поскольку сквозное судоходство по Ангаре отсутствует, однако место для шлюзов зарезервировано.

Мощность ГЭС — 662,4 МВт, среднегодовая выработка — 4,1 млрд кВт·ч. В здании ГЭС установлено 8 поворотно-лопастных гидроагрегатов мощностью по 82,8 МВт, работающих при расчётном напоре 26 м. Оборудование ГЭС устарело и изношено, проводится его модернизация.

Напорные сооружения ГЭС (длина напорного фронта 2,73 км) образуют крупное Иркутское водохранилище, включающее в себя озеро Байкал. ГЭС спроектирована институтом «Гидропроект».

Иркутская ГЭС контролируется ОАО «Иркутскэнерго», однако плотины ГЭС находятся в федеральной собственности, планируется их передача ОАО «РусГидро».

История строительства

Фактически комплексные исследования на Ангаре начались в 1930, когда при ВСНХ было создано «Управление по изучению Ангарской проблемы». В 1931 это «Управление» было переименовано в «Бюро Ангары» и вошло в состав треста «Гидроэнергопроект».

В 1935 под руководством профессора В. М. Малышева был закончен первый этап исследовательских работ по проблеме Ангары, результатом которого явились: схема использования верхнего участка Ангары, схематический проект первоочередной байкальской «Иркутской» гидроустановки и технико-экономическая схема Прибайкальского комплекса промышленных предприятий, потребителей её энергии. Эти материалы в 1936 были рассмотрены экспертной комиссией Госплана СССР. Результатом рассмотрения явилось решение о строительстве на р. Ангаре шести ГЭС, образующих непрерывный каскад. Первоочередной из всех Ангарских гидроэлектростанций по совокупности условий, была намечена самая верхняя — Иркутская ГЭС. Великая Отечественная война прервала проектные работы.

В августе 1947 по решению ЦК ВКП/б/ и Совета Министров СССР в Иркутске на Конференции Академии Наук СССР были намечены реальные пути осуществления Ангарской проблемы, в частности проведение специальных изысканий для разработки задания на проектирование Иркутского гидроузла — первой ступени каскада.

В 1948 Иркутская ГЭС включена в титульный список проектно-изыскательских работ треста «Гидроэнергопроект» «МОСГИДЭП».

К концу 1949 проект гидроэлектростанции был разработан и утверждён, а в январе 1950 правительством СССР принято решение о сооружении Иркутского гидроузла. И уже через месяц в створе будущей плотины появились первые гидростроители. Для выполнения работ по строительству Иркутской ГЭС в системе Главгидроэнергостроя Министерства электростанций было организовано специальное строительно-монтажное управление «Ангарагэсстрой».

Машинный зал, 1960

При проектировании каскада гидростанций на Ангаре инженеры Гидроэнергопроекта предлагали для повышения мощности ГЭС направленным взрывом создать проран в истоке Ангары. Дело в том, что объём её стока и уровень сработки водохранилища ограничивается уровнем дна реки в створе Шаман-камня. Это ограничение влияет на пропускную способность истока и, следовательно, на расход воды на Иркутской ГЭС, особенно при низких уровнях Байкала. Создание прорана глубиной 25 м позволило бы направить в Ангару около 120 куб.км в год воды и тем самым увеличить среднегодовую выработку электроэнергии на каскаде. Однако эта идея вызвала протесты общественности и осталась нереализованной. Сибирские ученые и писатели опубликовали в октябре 1958 открытое письмо-протест в «Литературной газете».

Проект ГЭС неоднократно изменялся, например, по первоначальным вариантам планировалось строительство приплотинного здания ГЭС и судоходных шлюзов.

Окончательное утверждение переработанного проекта было произведено Министерством электростанций 16 ноября 1955, менее чем через год (10 июля 1956) была перекрыта Ангара, а 28 декабря 1956 поставлен под нагрузку первый гидроагрегат. В 1958 строители досрочно ввели в эксплуатацию последние два агрегата, и Иркутская ГЭС заработала на полную проектную мощность. 24 октября 1959 Государственная комиссия под председательством М. Н. Маркелова, председателя Восточно-Сибирского совнархоза, приняла Иркутскую гидроэлектростанцию в постоянную эксплуатацию.

Иркутское водохранилище

Иркутское водохранилище заполнялось в течение семи лет. За это время подпор от плотины распространился на озеро Байкал, повысив его уровень на 1,46 метра. Таким образом, с одной стороны, долина Ангары превратилась в залив Байкала, а с другой — само великое озеро стало главной регулирующей частью Иркутского водохранилища.

В результате наполнения Иркутского водохранилища была затоплена часть Кругобайкальской железной дороги от Иркутска до посёлка Байкал, проходившая вдоль Ангары, что превратило КБЖД в тупиковый участок[3].

Примечания

Снимок астронавтов всего комплекса сооружений, 2005

Ссылки

dal.academic.ru

гидроэлектростанция, ГЭС - это... Что такое гидроэлектростанция, ГЭС?

 гидроэлектростанция, ГЭС

гидроэлектростанция, ГЭС : электростанция, преобразующая механическую энергию воды в электрическую энергию (ГОСТ 19431-84, ГОСТ 23875-88).

3.8 гидроэлектростанция, ГЭС : Электростанция, преобразующая механическую энергию воды в электрическую энергию [ГОСТ 19431-84, ГОСТ 23875-88].

3.3 гидроэлектростанция, ГЭС: Электростанция, преобразующая механическую энергию воды в электрическую энергию.

3.10 гидроэлектростанция, ГЭС: Электростанция, преобразующая механическую энергию воды в электрическую энергию.

3.10 гидроэлектростанция, ГЭС: Электростанция, преобразующая механическую энергию воды в электрическую энергию

3.8 гидроэлектростанция, ГЭС: Электростанция, преобразующая механическую энергию воды в электрическую энергию

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • гидроэлектростанция русловая
  • гидроэлектростанция; ГЭС

Смотреть что такое "гидроэлектростанция, ГЭС" в других словарях:

  • ГИДРОЭЛЕКТРОСТАНЦИЯ (ГЭС) — ГИДРОЭЛЕКТРОСТАНЦИЯ (ГЭС), электростанция, преобразующая механическую энергию потока воды в электрическую энергию посредством гидравлических турбин, приводящих во вращение электрические генераторы. Мощность крупнейших гидроэлектростанций до… …   Энциклопедический словарь

  • гидроэлектростанция (ГЭС) — 3.20 гидроэлектростанция (ГЭС): Комплекс гидротехнических сооружений и оборудования для преобразования потенциальной энергии водотока в электрическую энергию. Источник: СТО 17330282.27.140.011 2008: Гидроэлектростанции. Условия создания. Нормы и… …   Словарь-справочник терминов нормативно-технической документации

  • гидроэлектростанция; ГЭС — 3.12 гидроэлектростанция; ГЭС : Комплекс сооружений и оборудования, преобразующих Гравитационную энергию воды в электрическую энергию Источник: ГОСТ Р 51238 98: Нетрадиционная энергетика. Гидроэнергетика малая. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • гидроэлектростанция — ГЭС Электростанция, преобразующая механическую энергию воды в электрическую энергию. [ГОСТ 19431 84] гидроэлектростанция ГЭС Комплекс сооружений и оборудования, преобразующих гравитационную энергию воды в электрическую энергию [ГОСТ Р 51238 98]… …   Справочник технического переводчика

  • ГИДРОЭЛЕКТРОСТАНЦИЯ — (ГЭС) электростанция, преобразующая механическую энергию потока воды в электрическую энергию посредством гидравлических турбин, приводящих во вращение электрические генераторы. Мощность крупнейших гидроэлектростанций до нескольких ГВт (напр.,… …   Большой Энциклопедический словарь

  • Гидроэлектростанция — (Hydro power plant, ГЭС) Определение гидроэлектростанции, особенности и принцип работы электростанции Информация об определении гидроэлектростанции, особенности и принцип работы электростанции Содержание Содержание Определение Особенности Принцип …   Энциклопедия инвестора

  • Гидроэлектростанция — 31. Гидроэлектростанция ГЭС D. Wasserkraftwerk E. Hydroelectric power plant F. Centrale hydro électrique Электростанция, преобразующая механическую энергию воды в электрическую энергию Источник: ГОСТ 19431 84: Энергетика и электрификация. Термины …   Словарь-справочник терминов нормативно-технической документации

  • Гидроэлектростанция — Запрос «ГЭС» перенаправляется сюда; см. также другие значения. Одна из самых крупных по выработке российская ГЭС  Братская …   Википедия

  • ГЭС Илья-Солтейра — ГЭС Илья Солтейра …   Википедия

  • гэс — гидроэлектростанция Словарь русских синонимов. гэс сущ., кол во синонимов: 1 • гидроэлектростанция (3) Словарь синонимов ASI …   Словарь синонимов

normative_reference_dictionary.academic.ru

Гидроэлектростанция - это... Что такое Гидроэлектростанция?

Одна из самых крупных по выработке российская ГЭС — Братская

Гидроэлектроста́нция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

  • Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.[1]
  • Турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют медленно изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • Сток реки является возобновляемым источником энергии.
  • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
  • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
  • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
  • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой — требуют применения шлюзов для перевода судов с одного бьефа на другой.
  • Водохранилища делают климат более умеренным.

Принцип работы

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные — вырабатывают от 25 МВт и выше;
  • средние — до 25 МВт;
  • малые гидроэлектростанции — до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

  • высоконапорные — более 60 м;
  • средненапорные — от 25 м;
  • низконапорные — от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

  • русловые и плотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.
  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации, и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций. [2]

Крупнейшие ГЭС в мире

Наименование Мощность,ГВт Среднегодоваявыработка, млрд кВт·ч Собственник География
Три ущелья 22,40 100,00 р. Янцзы, г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана, г. Фос-ду-Игуасу, Бразилия/Парагвай
Гури 10,30 40,00 р. Карони, Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс, Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,ГВт Среднегодоваявыработка, млрд кВт·ч Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40)[сн 1] 23,50[сн 1] ОАО РусГидро р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Усть-Илимск
Богучанская ГЭС[сн 2] 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга, г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга, г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8)[сн 3] 3,31 (2,2)[сн 3] ОАО РусГидро р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45)[сн 3] 2,67 (1,8)[сн 3] ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак, п. Дубки

Примечания:

  1. ↑ 1 2 Восстанавливается после аварии (2009 год), в скобках указано доаварийное значение.
  2. ↑ Строящиеся объекты.
  3. ↑ 1 2 3 4 Мощность и выработка при проектном уровне водохранилища; в настоящее время фактическая мощность и выработка значительно ниже, указаны в скобках.

Другие гидроэлектростанции России

Предыстория развития гидростроения в России [3]

Район Название Мощность,тыс. кВт
Северный Волховская 30
  Нижнесвирская 110
  Верхнесвирская 140
Южный Александровская 200
Уральский Чусовая 25
Кавказский Кубанская 40
  Краснодарская 20
  Терская 40
Сибирь Алтайская 40
Туркестан Туркестанская 40

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны — ГОЭЛРО, который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником — Днём энергетика. Глава плана, посвященная гидроэнергетике — называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России — мощностью 7394, в Туркестане — 3020, в Сибири — 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.[5]

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо—машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) — вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.[6]

Преимущества

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 22 февраля 2012.
  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  Крупнейшие ГЭС мира Google Maps  KMZ (файл меток KMZ для Google Earth)

xzsad.academic.ru

Волжская ГЭС - это... Что такое Волжская ГЭС?

Координаты: 48°49′28″ с. ш. 44°40′36″ в. д. / 48.824444° с. ш. 44.676667° в. д. (G) (O)48.824444, 44.676667

Страна Река Каскад Собственник Статус Год начала строительства Годы ввода агрегатов Основные характеристики Годовая выработка электричества, млн кВт·ч Разновидность электростанции Расчётный напор, м Электрическая мощность Характеристики оборудования Тип турбин Количество и марка турбин Расход через турбины, м³/сек Количество и марка генераторов Мощность генераторов, МВт Основные сооружения Тип плотины Высота плотины, м Длина плотины, м Шлюз ОРУ На карте
Волжская ГЭС
Панорама Волжской ГЭС

 Россия

Волга

Волжско-Камский

РусГидро

действующая

1952

1958/1961

11 100

русловая

20

2592,5

поворотно-лопастные

1хПР 30/587а-В-930, 15хПЛ587-ВБ-930, 7хПЛ 30/587-В-930, 1хПЛ30-В-330

1х ,15х695, 7х , 1х

23 агрегата СВ2 1500/200-88, ВГС 525/84-32

15х115, 4х120, 3х125,5 , 1х11

бетонная водосливная, земляная намывная

44,47

725, 3249

двухниточный двухкамерный

220 кВ и 500 кВ

Волжская ГЭС

Координаты: 48°49′28″ с. ш. 44°40′36″ в. д. / 48.824444° с. ш. 44.676667° в. д. (G) (O) (Я)48.824444, 44.676667

Во́лжская гидроэлектроста́нция (Сталинградская/Волгоградская ГЭС, им. XXII съезда КПСС) — ГЭС на реке Волге в Волгоградской области, в городе Волжском. Крупнейшая гидроэлектростанция в Европе. Входит в Волжско-Камский каскад ГЭС.

Общие сведения

Строительство ГЭС началось в 1950 году, закончилось в 1961 году. ГЭС является средненапорной гидроэлектростанцией руслового типа.

Состав сооружений ГЭС:

  • бетонная водосливная плотина длиной 725 м, наибольшей высотой 44 м;
  • земляная намывная плотина длиной 3249 м и наибольшей высотой 47 м, состоит из правобережного руслового участка длиной 1193 м, пойменного участка длиной 803 м, левобережного участка длиной 1253 м;
  • здание ГЭС совмещённого типа длиной 736 м, состоящее из одиннадцати агрегатных секций по два гидроагрегата в каждой;
  • рыбоподъёмник;
  • двухниточные двухкамерные судоходные шлюзы с аванпортом, низовым походным каналом и водосбросом;
  • межшлюзовая ГЭС;
  • ОРУ 220 кВ;
  • ОРУ 500 кВ.

По сооружениям ГЭС проложены железнодорожный и автомобильный переходы.

Машинный зал. 1961 год.

Мощность ГЭС — 2592,5 МВт, среднегодовая выработка — 11,1 млрд.кВт·ч. В здании ГЭС установлены 22 гидроагрегата с поворотно-лопастными турбинами ПР 30/587а-В-930 (ст. №1), ПЛ587-ВБ-930 (ст. №№ 2, 5-8, 10, 12-15, 18, 20, 21) и ПЛ 30/877-В-930 (ст. № 3, 9, 11, 16, 17, 19, 22), работающими при рабочем напоре 20 м: 16 — мощностью по 115 МВт, 3 — мощностью по 125,5 МВт и 3 — мощностью по 120 МВт, а также агрегат рыбоподъёмника ПЛ30-В-330 мощностью 11 МВт. В здании Межшлюзовой ГЭС, конструктивно являющейся частью гидроузла, но юридически не относящейся к Волжской ГЭС, установлено два гидроагрегата с поворотно-лопастными турбинами ПЛ30-В-330 и генераторами ВГС-525/84-32, работающих при расчётном напоре 17 м.

Производитель гидротурбин основных гидроагрегатов станции (6 лопастей, диаметр рабочего колеса 9,3 м) и всех гидрогенераторов — ОАО «Силовые машины», гидротурбин рыбоподъемника и межшлюзовой ГЭС (6 лопастей, диаметр рабочего колеса 3,3 м) — харьковское предприятие «Турбоатом».

Максимальная пропускная способность гидроузла составляет 25 000 м³/сек.[1] Напорные сооружения ГЭС, с общей длиной напорного фронта 4,9 км, образуют крупное Волгоградское водохранилище.

Электростанцию проектировали 11 научно-исследовательских институтов во главе с «Гидропроектом».

Волжская ГЭС входит в состав ОАО «РусГидро» на правах филиала.

Экономическое значение

Ввод в эксплуатацию Волжской ГЭС сыграл решающую роль в энергоснабжении Нижнего Поволжья и Донбасса и объединении между собой крупных энергосистем Центра, Поволжья, Юга. Эконо­мический район Нижнего Поволжья также получил мощную энергетическую базу для дальнейшего развития народного хозяйства. Важную роль играет ГЭС и в создании глубоководного пути на всем протяжении Нижней Волги — от Саратова до Астрахани. Сооружения гидроузла использованы для устройства по ним постоянных железнодорожного и автодорожного переходов через Волгу. Они обеспечивают кратчайшую связь районов Поволжья между собой. Кроме своей основной функции — выработки электроэнергии — Волжская ГЭС создаёт возможность для орошения и обводнения больших массивов засушливых земель Заволжья.

Электроснабжение местных потребителей — «Волгоградэнерго» — осуществляется на напряжении 220 кВ. С Объединённой энергосистемой Центра гидроэлектростанция связана двумя линиями электропередачи 500 кВ. На напряжении 800 кВ по линии «Волгоград — Донбасс» осуществляется связь с объединённой энергосистемой Юга. Управление, регулирование и контроль работы электромеханического оборудования гидростанции осуществляется автоматически с использованием средств телемеханики ближнего действия. Контроль и регулирование режима гидроэлектростанции могут выполняться телемеханически по линиям электропередачи с объединенного диспетчерского пункта из Москвы.

Показатели деятельности

Выработано электроэнергии за год, млн кВт·ч 2006 2007 2008 2009 2010 2011
11 306,9 13 536,928 11 816,6 11 853,4[2]. 10 260[3] 10 425,6

Экологические аспекты

Плотина Волжской ГЭС, являющейся нижней ступенью каскада, перекрыла путь на нерест проходным рыбам Каспийского моря. Особенно пострадали белуга, русский осётр, белорыбица, волжская сельдь. Для поддержания их поголовья применяется искусственное рыборазведение. Построенный рыбоподъёмник оказался недостаточно эффективным (так, с 1962 по 1967 через плотину Волжской ГЭС осетровых пропускалось от 17 до 67 тысяч особей в год, сельдевых — от 435 до 1228 тысяч в год, кроме того, проходило также много сомов, сазанов, судаков, лещей и других рыб; однако, это не более 15 % от необходимого). Меньше пострадали виды, нерестящиеся ниже плотины ГЭС, например, севрюга и вобла. Ухудшились условия воспроизводства рыб и в результате перераспределения стока — впрочем, здесь виноват весь Волжско-Камский каскад ГЭС.

Как и другие крупные равнинные ГЭС, Волжская гидроэлектростанция критикуется за большие потери земель в результате затопления, подтопления и переработки берегов.

История строительства

Многочисленные С-80 на строительстве ВГЭС, ноябрь 1961

6 августа 1950 года было подписано постановление Совмина СССР № 3555 о сооружении севернее Сталинграда гидроузла мощностью не менее 1,7 млн. кВт. Уже 31 августа в печати было опубликовано постановление Совета Министров СССР о строительстве Сталинградской ГЭС. Этим постановлением правительства образована строительная организация «Сталинградгидрострой».

Первый грунт в котловане для будущей гидроэлектростанции был вынут в 1952 году. На сооружении ГЭС трудились 10000 комсомольцев, а также 20000 заключенных Ахтубинского исправительно-трудового лагеря (входившего в Сталинградгидрострой МВД СССР; лагерь просуществовал до мая 1953 года).[4]

Строящаяся ГЭС получала оборудование со всей страны: турбины и генераторы из Ленинграда, из Свердловска и Запорожья — новейшее электрооборудование, различные машины слали Москва, Ташкент, Челябинск , Харьков, лес — Карелия. Свыше 1500 предприятий страны, десятки научно-исследовательских институтов направляли свое оборудование и специалистов.

Многое на гидростанции делалось впервые в истории отечественной энергетики. В декабре 1959 года впервые была введена в эксплуатацию высоковольтная линия электропередачи напряжением 500 кВ «Сталинград — Москва». Впервые в мировой практике была построена, испытана и сдана в промышленную эксплуатацию передача постоянного тока 800 кВ «Волгоград — Донбасс». После ввода в постоянную эксплуатацию Волжская ГЭС стала испытательным полигоном электротехнического и гидромеханического оборудования для строившихся в 1960-70-е годы сибирских и зарубежных гидростанций. Первый гидроагрегат был пущен 22 декабря 1958 года. В эксплуатацию ГЭС была принята правительственной ко­миссией 10 сентября 1961 года. Указом Президиума Верховно­го Совета СССР ей было при­своено название «Волжская гидроэлектростанция имени XXII съезда КПСС».

Реконструкция станции

За 50 лет эксплуатации станции её оборудование значительно устарело, в связи с чем производится его постепенная замена и реконструкция. В первую очередь обновляется тракт выдачи электроэнергии, в частности, реконструируется открытое распределительное устройство. Также проходит модернизацию гидросиловое оборудование — заменяются гидротурбины, модернизируются гидрогенераторы. К концу 2007 года произведена реконструкция 10 гидроагрегатов без увеличения их мощности; в дальнейшем планируется заменять гидротурбины на новые, более эффективные, что позволит увеличить мощность гидроагрегатов. Поставщиком новых гидротурбин является ОАО «Силовые машины»[5].

  • в феврале 2008 года была закончена реконструкция гидроагрегата со станционным номером 17 — произведена замена гидротурбины на более мощную, модернизирована система управления гидроагрегатом[6]. Перемаркировка гидроагрегата на повышенную мощность была произведена через два года.
  • с 1 января 2009 года мощность станции увеличилась на 10 МВт в результате перемаркировки двух гидроагрегатов (станционные номера 16 и 22) после реконструкции, включающей замену гидротурбин[7].
  • 29 декабря 2009 года после реконструкции пущена турбина гидроагрегата со станционным номером 3. Гидротурбина заменена на новую, мощностью 125,5 МВт[8].
  • 25 января 2010 года установленная мощность увеличена на 21 МВт (в результате перемаркировки гидроагрегатов со станционными номерами 11 и 17) и теперь составляет 2 572 МВт[9].
  • 10 февраля 2010 года было объявлено о заключении контракта между ОАО «Силовые машины» и ОАО «Русгидро». Контракт предусматривает замену гидротурбин со станционными номерами 12, 8, 5, 20. Максимальная мощность новых, экологически чистых гидротурбин составит 145 МВт. Пуск новых турбин планируется осуществить в 2012—2013 годах[10].
  • с 1 апреля 2010 года увеличена на 10,5 МВт и теперь составляет 2 582,5 МВт вместо прежних 2 572 МВт. На основании акта о перемаркировке гидроагрегатов установленная мощность 3-го гидроагрегата изменилась со 115 до 125,5 МВт.
  • с 7 апреля 2011 года установленная мощность Волжской ГЭС увеличена на 5 МВт и составляет 2587,5 МВт, вследствие перемаркировки гидроагрегата № 9[11].

Интересные факты

  • Перед въездом на плотину помещены таблички, запрещающие производить фото и видеосъёмку на ГЭС.
  • На строительстве Волжской ГЭС в районе водосливной плотины гидростроители утрамбовали глину толщиной в 12 метров.[12]:С. 42
  • 140 000 000 м³ грунта было выбрано во время строительства Волжской ГЭС. Если бы была необходимость весь этот грунт перевезти в товарном поезде, то потребовалось бы 8 миллионов вагонов[12]:С. 44

Источники

Ссылки

dic.academic.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта