Что такое емкостная проводимость: Активное и индуктивное сопротивление кабелей и проводов. Емкостная проводимость линий электропередач

Активное и индуктивное сопротивление кабелей и проводов. Емкостная проводимость линий электропередач

Для того, чтобы произвести расчет электрической сети на потерю напряжения необходимо знать параметры линий, а именно их сопротивления и проводимости. Если производятся расчеты цепей постоянного тока, то вполне достаточно знать только омическое сопротивление линии. А вот при расчете линии переменного тока одного омического сопротивления бывает недостаточно, и помимо активных сопротивлений, необходимо знать еще индуктивные сопротивления и емкостные проводимости проводов и кабелей.

Активное сопротивление проводов и кабелей

Из электротехники известно, что полное сопротивление при равных условиях переменному и постоянному току будут отличаться. Касается это также проводов и кабелей. Это вызвано тем, что переменный ток распределяется по сечению неравномерно (поверхностный эффект). Однако для проводов из цветных металлов и с частотой переменного напряжения 50 Гц этот эффект не оказывает слишком большого влияния и им можно пренебречь. Таким образом, при расчете проводников из цветных металлов, их сопротивления переменному и постоянному току принимаются равными.

На практике активное сопротивление медных и алюминиевых проводников рассчитывают по формуле:

Где: l – длина в км, γ – удельная проводимость материала провода м/ом∙мм2, r0 – активное сопротивление 1 км провода на фазу Ом/км, s – площадь поперечного сечения, мм2.

Величина r0, как правило, берется из таблиц справочников.

На активное сопротивление провода влияет и температура окружающей среды. Величину r0 при температуре Θ можно определить по формуле:

Где: α – температурный коэффициент сопротивления; r20 – активное сопротивление при температуре 20 0С, γ20 – удельная проводимость при температуре в 20 0С.

Стальные провода обладают значительно большими активными сопротивлениями, чем аналогичные провода из цветных металлов. Его увеличение обусловлено значительно меньшей величиной удельной проводимости и поверхностным эффектом, который у стальных проводов выражен гораздо более ярко, чем у алюминиевых или медных. Более того, в стальных проводах присутствуют потери активной энергии на вихревые токи и перемагничивание, что в схемах замещения линий учитывают дополнительной составляющей активного сопротивления.

Активное сопротивление стальных проводов (в отличии от проводов из цветных металлов) сильно зависит от величины протекаемого тока, поэтому использовать постоянное значение удельной проводимости при расчетах нельзя.

Активное сопротивление стальных проводов в зависимости от протекающего тока аналитически выразить весьма трудно, поэтому для его определения используют специальные таблицы.

Индуктивное сопротивление проводов и кабелей

Для определения индуктивного сопротивления (обозначается Х) кабельной или воздушной линии определенной протяженности в километрах удобно пользоваться выражением:

Где: Х0 – индуктивное сопротивление одного километра провода или кабеля на фазу, Ом/км.

Х одного километра воздушной или кабельной линии можно определить по формуле:

Где: Dср – расстояние среднее между проводами или центрами жил кабелей, мм; d – диаметр токоведущей жилы кабеля или диаметр провода, мм; μт – относительная магнитная проницаемость материала провода;

Первый член правой части уравнения обусловлен внешним магнитным полем и называется внешним индуктивным сопротивлением Х0/. Из этого выражения видно, что Х0/ зависит только от расстояния между проводами и их диаметра, а так как расстояние между проводами выбирается исходя из номинального напряжения линии, соответственно Х0/ будет расти с ростом номинального напряжения линии. Х0/ воздушных линий больше, чем кабельных. Это связано с тем, что токоведущие жилы кабеля располагаются друг к другу значительно ближе, чем провода воздушных линий.

Для одной фазы:

Где: D1:2 расстояние между проводами.

Для одинарной трехфазной линии при расположении проводов по треугольнику:

При горизонтальном или вертикальном расположении проводов трехфазной линии в одной плоскости:

Увеличение сечения проводов линии ведет к незначительному уменьшению Х0/.

Второй член уравнения для определения X0 обусловлен магнитным полем внутри проводника. Он выражает внутреннее индуктивное сопротивление Х0//.

Таким образом выражение для Х0 можно представить в виде:

Для линий из немагнитными материалов μ = 1 внутреннее индуктивное сопротивление Х0// по сравнению с внешним Х0/ составляет ничтожную величину, поэтому им очень часто пренебрегают.

В таком случае формула для определения Х0 примет вид:

Для практических расчетов индуктивные сопротивления кабелей и проводов определяют по соответствующим таблицам.

В случае приближенных расчетов можно считать для воздушных линий напряжением 6-10 кВ Х0 = 0,3 – 0,4 Ом/км, а для кабельных Х0 = 0,08 Ом/км.

Внутренне индуктивное сопротивление стальных проводов сильно отличается от Х0// проводов из цветных металлов. Это вызвано тем, что Х0// пропорционально магнитной проницаемости μr, которая сильно зависит от величины тока в проводе. Если для проводов из цветных металлов μr = 1, то для стальных проводов μr может достигать величины в 103 и даже выше.

Х0// для линий прокладываемых стальными проводами пренебрегать нельзя. Как правило, данную величину берут из таблиц, составленных на основе экспериментальных данных.

Сопротивления r0 и Х0// при некоторых значениях тока могут достигать максимальных значений, а затем с увеличением тока уменьшатся. Это явление объясняется магнитным насыщением стали.

Емкостная проводимость линий

Электрические линии, кроме активного и индуктивного сопротивлений, характеризуются и емкостной проводимостью, которая обусловлена емкостью между проводами и между проводам и землей.

Величину рабочей емкости в трехфазной воздушной линии приближенно можно определить по формуле:

Из данной формулы видно, что рабочая емкость будет увеличиваться с увеличением сечения проводов и уменьшением расстояния между ними. Поэтому при равных сечениях токоведущих частей линии низкого напряжения имеют большую рабочую емкость, чем линии высокого напряжения. В следствии небольших расстояний между токоведущими жилами кабеля и большей диэлектрической проницаемости изоляции по сравнению с воздухом рабочая емкость кабельной линии значительно больше, чем емкость воздушной линии.

Емкостная проводимость одноцепной воздушной линии определяется по формуле:

Определение рабочей емкости кабельной линии по формулам, в которые входят диэлектрическая проницаемость изоляции кабеля, геометрические размеры и другие конструктивные особенности, задача не из легких, поэтому значения рабочей емкости определяют по специальным таблицам, составленным заводом изготовителем для различных марок кабелей, в зависимости от их номинального напряжения.

Емкостной ток вначале линии при холостом ходе (при отключенных электроприемниках) можно определить из формулы:

Где: U – линейное напряжение сети, В; l – длина линии, км;

Емкостные токи имеют серьезное значение в воздушных линиях с рабочим напряжением 110 кВ и выше и в кабельных линиях с напряжением выше 10 кВ. При расчете электрических сетей с напряжениями ниже, чем выше перечисленные, емкость линии могут не учитывать. Емкость токопроводящих частей линии по отношению к земле имеет значение при расчете заземляющих устройств и защиты.

В сети с изолированной нейтралью величину емкостного тока однофазного замыкания на землю приближенно можно определить по формулам:

  • Для воздушной линии:
  • Для кабельной линии:

Емкостная проводимость — линия — Большая Энциклопедия Нефти и Газа, статья, страница 1

Cтраница 1

Сопротивления я проводимости сети в исходном режиме. | Матрица Y для предаварийного режима.
 [1]

Емкостные проводимости линии в узлах подключения нагрузки учтены в проводимости нагрузки.
 [2]

Емкостная проводимость линии обусловлена емкостью между проводами и между проводами и землей. Она определяется взаимным расположением фазных проводов, геометрическими размерами, высотой подвеса над землей, наличием заземленных тросов и второй, параллельной линии. При расчетах симметричных рабочих режимов используются средние значения погонной емкостной проводимости -, зависящие от рп и /) Ср, а для линий сверхвысоких напряжений и от высоты подвеса проводов над землей.
 [3]

При учете емкостных проводимостей линий собственная проводимость узла включает половины емкостных проводимостей всех линий, соединенных с данным узлом.
 [4]

Приходится также учитывать емкостную проводимость линий, наличие которой может привести к неправильному функционированию защит. Для исключения этого, например для некоторых продольных защит, применяют искусственное выравнивание токов в комплектах противоположных сторон с помощью компенсации емкостного тока участка. Эта компенсация может выполняться с приближенным учетом переходных электромагнитных процессов. Общие условия выполнения защит линий сверхвысоких и ультравысоких напряжений рассмотрены в работе В. М. Ермоленко, В. И. Козлова и В. Н. Красевой [62], где приведены также материалы других авторов по конкретным защитам.
 [5]

Ом / км; Ь0 — удельная емкостная проводимость линии, 1 / Ом км.
 [6]

Приведенные данные показывают, что половина емкостной проводимости линий Л-1 и Л-2 весьма близка по величине к индуктивной проводимости намагничивания соответственно трансформаторов Т-1 и 7 — 2, причем их алгебраическая сумма определяет сопротивление, несравненно большее остальных сопротивлений схемы. Это обстоятельство позволяет в дальнейшем расчете опустить и те и другие проводимости, не вводя заметной погрешности в результат.
 [7]

Для этого необходимо искусственным путем скомпенсировать емкостную проводимость линии.
 [8]

Заземленные тросы снижают индуктивные сопротивления и повышают емкостные проводимости линий.
 [9]

Здесь х0 и Ь0 — удельные индуктивное сопротивление и емкостная проводимость линии; 4 — длина & — й линии, примыкающей к рассматриваемому узлу; / эЯ / коСр, где x0cp — среднее значение сопротивления сетей энергосистемы.
 [10]

Из ( 2 — 3) следует, что емкостная проводимость линии мало зависит от расстояний между проводами и диаметра провода. Мощность, генерируемая линией, сильно зависит от напряжения. Для ВЛ напряжением 35 кВ и ниже она весьма мала. Для В Л 110 кВ длиной 100 км Qc 3 Мвар, для ВЛ 220 кВ той же длины Qc — 13 Мвар.
 [11]

В сетях до 35 кВ включительно угол ф ( мал, так как величина его определяется емкостной проводимостью линии. Отрезком de пренебрегают и принимают вместо действительной потери напряжения ае продольную составляющую падения напряжения а А. Ошибка в расчетах не превышает 0 3 %, что не играет существенной роли.
 [12]

Структурная схема автоматического регулирования напряжения при использовании управляемого реактора.
 [13]

При помощи управляемого реактора можно производить изменение величины емкостного тока в линии, обусловленного наличием у потребителя конденсаторной батареи или наличием емкостной проводимости линии электропередачи ( последнее существенно для длинных линий 500 кВ и более), не только дискретно, но и плавно — в соответствии с заданным законом регулирования.
 [14]

Зависимость максимальной напряженности электрического поля на поверхности провода расщепленной фазы 500 кВ от шага расщепления для различных марок проводов (.
 [15]

Страницы:  

   1

   2

   3

   4

Что такое емкостной датчик?

Емкостные бесконтактные датчики представляют собой бесконтактные устройства, которые могут обнаруживать присутствие или отсутствие практически любого объекта независимо от материала. Они используют электрическое свойство емкости и изменение емкости в зависимости от изменения электрического поля вокруг активной поверхности датчика.

Емкостная технология измерения часто используется в других технологиях измерения, таких как:

  • поток
  • давление
  • уровень жидкости
  • интервал
  • толщина
  • обнаружение льда
  • угол наклона вала или линейное положение
  • диммерные выключатели
  • клавишные переключатели
  • x-y планшет
  • акселерометры

Принцип действия

Емкостный датчик действует как простой конденсатор. Металлическая пластина на чувствительной поверхности датчика электрически соединена с цепью внутреннего генератора, а измеряемая цель действует как вторая пластина конденсатора. В отличие от индуктивного датчика, создающего электромагнитное поле, емкостный датчик создает электростатическое поле.

Внешняя емкость между мишенью и внутренней пластиной датчика образует часть емкости обратной связи в цепи генератора. По мере приближения к цели датчики сталкиваются с колебаниями, которые увеличиваются, пока не достигнут порогового уровня и не активируют выход.

Емкостные датчики имеют возможность регулировки чувствительности или порогового уровня генератора. Регулировку чувствительности можно выполнить с помощью потенциометра, встроенной кнопки обучения или дистанционно с помощью обучающего провода. Если датчик не имеет метода регулировки, датчик необходимо физически переместить для правильного обнаружения цели. Увеличение чувствительности приводит к увеличению рабочего расстояния до цели. Сильное увеличение чувствительности может привести к тому, что на датчик повлияют температура, влажность и грязь.

Есть две категории целей, которые емкостные датчики могут обнаруживать: первая из них является проводящей, а вторая — непроводящей. К проводящим мишеням относятся металл, вода, кровь, кислоты, щелочи и соленая вода. Эти мишени имеют большую емкость, а диэлектрическая прочность мишеней не имеет значения. В отличие от индуктивного датчика приближения, коэффициенты уменьшения для различных металлов не влияют на расстояние срабатывания датчиков.

Категория непроводящих целей действует как изолятор для электрода датчика. Диэлектрическая проницаемость цели, также иногда называемая диэлектрической проницаемостью, представляет собой меру изоляционных свойств, используемую для определения коэффициента уменьшения расстояния срабатывания. Диэлектрическая проницаемость твердых и жидких тел больше, чем у вакуума (1,00000) или воздуха (1,00059).). Материалы с высокой диэлектрической проницаемостью будут иметь большее расстояние срабатывания. Поэтому материалы с высоким содержанием воды, например дерево, зерно, грязь и бумага, будут влиять на расстояние обнаружения.

При работе с непроводящими объектами расстояние обнаружения определяется тремя факторами.

  • Размер активной поверхности сенсора – чем больше сенсорная поверхность, тем больше расстояние срабатывания
  • Емкостные свойства материала целевого объекта, также называемые диэлектрической проницаемостью – чем выше константа, тем больше расстояние обнаружения
  • Площадь поверхности целевого объекта для обнаружения – чем больше площадь поверхности, тем больше расстояние обнаружения

Прочие факторы, минимально влияющие на расстояние срабатывания

  • Температура
  • Скорость целевого объекта

Диапазон обнаружения

Максимальное опубликованное расстояние обнаружения емкостного датчика основано на стандартной цели, которая представляет собой заземленную квадратную металлическую пластину (Fe 360) толщиной 1 мм. Стандартная мишень должна иметь длину стороны, которая равна диаметру зарегистрированного круга поверхности обнаружения или трехкратному номинальному расстоянию обнаружения, если расстояние обнаружения больше диаметра. Обнаруженные объекты, которые не являются металлическими, будут иметь коэффициент уменьшения, основанный на диэлектрической проницаемости материала этого объекта. Этот коэффициент уменьшения необходимо измерить, чтобы определить фактическое расстояние срабатывания, однако есть несколько таблиц, в которых указан приблизительный коэффициент уменьшения.

Номинальное или номинальное расстояние срабатывания S n — это теоретическое значение, которое не учитывает производственные допуски, рабочие температуры и напряжения питания. Обычно это расстояние срабатывания, указанное в каталогах различных производителей и маркетинговых материалах.

Эффективное расстояние срабатывания S r — это расстояние срабатывания датчика, измеренное при определенных условиях, таких как монтаж заподлицо, номинальное рабочее напряжение U e , температура T a = 23°С +/- 5°С. Эффективный диапазон чувствительности емкостных датчиков можно регулировать с помощью потенциометра, кнопки обучения или провода дистанционного обучения.

Гистерезис

Гистерезис – это разница между точкой включения при приближении цели к чувствительной поверхности и точкой выключения при удалении цели от чувствительной поверхности. В датчики встроен гистерезис, чтобы предотвратить вибрацию выхода, если цель находилась в точке переключения.

Гистерезис указывается в % от номинального расстояния срабатывания. Например, датчик с номинальным расстоянием срабатывания 20 мм может иметь максимальный гистерезис 15% или 3 мм. Гистерезис — это независимый параметр, который не является постоянным и будет варьироваться от датчика к датчику. Есть несколько факторов, которые могут влиять на гистерезис, в том числе:

  • Температура датчика как окружающей среды, так и тепла, выделяемого датчиком, находящимся под напряжением
  • Атмосферное давление
  • Относительная влажность
  • Механические воздействия на корпус датчика
  • Электронные компоненты, используемые на печатной плате датчика
  • Коррелирует с чувствительностью – более высокая чувствительность связана с более высоким номинальным расстоянием срабатывания и большим гистерезисом

Как определить чувствительность емкостного датчика

Емкостные датчики имеют потенциометр или какой-либо метод для установки чувствительности датчика для конкретного применения. В случае с потенциометром число оборотов не является точным индикатором настройки датчиков по нескольким важным причинам. Во-первых, большинство потенциометров не имеют жестких упоров, вместо этого у них есть муфты, так что потенциометр не повреждается при настройке на полное минимальное или максимальное значение. Во-вторых, у горшков нет последовательной линейности.

Для определения чувствительности емкостного датчика расстояние срабатывания измеряется микрометром от заземленной металлической пластины. Пластина заземляется на минус источника питания, а мишень перемещается в осевом направлении к лицевой стороне датчиков. Переместите цель из диапазона обнаружения, а затем переместите ее к поверхности датчика. Остановите продвижение цели, как только активируется выход. Это расстояние является расстоянием срабатывания датчика. Отодвинув цель и отметив, когда выход выключится, вы получите гистерезис датчика.

Чтобы узнать больше о технологии емкостных датчиков, посетите сайт www. balluff.com.

Нравится:

Нравится Загрузка…

Кондуктометрические и емкостные сенсорные экраны: что нужно знать

Описание работы

Должность: техник по техническому обслуживанию : Нет

Основные должностные обязанности / функции:

Отвечает за выполнение установки и ремонта (двигатели, стартеры, предохранители, электропитание машин и т. д.) для промышленного оборудования и машин для поддержки достижения бизнес-целей Nelson-Miller и целей:

• Выполнять самые разнообразные обязанности по установке и обслуживанию электрического оборудования на производственных машинах и любом другом производственном оборудовании (трафаретная печать, штамповочный пресс, стальная линейка, автоматические машины, револьверная головка, станки для лазерной резки и т. д.).
• Осуществлять аварийную/внеплановую диагностику электрооборудования, ремонт производственного оборудования в процессе производства и выполнять плановые профилактические электротехнические ремонты производственного оборудования при обслуживании машин.
• Выполняйте регулярное профилактическое техническое обслуживание электрооборудования машин, оборудования и установок.
• Читать и интерпретировать руководства по электротехнике и рабочие задания для выполнения необходимого технического обслуживания и ремонта электрооборудования.
• Используйте различные ручные и силовые сборы, коды, диаграммы и тесты при выполнении своих обязанностей.
• Выполняйте все проекты от начала до конца, соблюдая принципы безопасного обслуживания.
• Соблюдайте правила техники безопасности и поддерживайте чистоту и порядок на рабочих местах.
• Эксплуатация вилочного погрузчика.
• Прочие обязанности и ответственность.

Требования

Образование и опыт:

• Высшее образование, GED или его эквивалент.
• 3-5 лет технического обслуживания в условиях производственной мастерской.
• Требуются знания в области электротехники и механики – практический опыт работы со схемами и электротехникой, схемами/иллюстрациями.
• Степень AA в области механического, электрического или промышленного обслуживания приветствуется, но не обязательна.

Навыки

• Сильные механические способности.
• Тайм-менеджмент – превосходные организационные навыки и навыки расстановки приоритетов.
• Способность решать проблемы путем точного определения, анализа, разбивки и решения сложных проблем.
• Необходимы сильные математические способности.
• Гибкость для удовлетворения изменяющихся требований в сложных условиях.
• Отличные письменные и устные коммуникативные навыки.
• Способность работать самостоятельно.
• Проверенный командный игрок.
• Быстро обучаемый.
• Стремление к личному и организационному совершенствованию.
• Особое внимание к деталям и забота о качестве.
• Желание самостоятельно принимать решения и брать на себя ответственность за результаты.

Рабочий контекст

• Воздействие загрязняющих веществ или опасных условий с чернилами и химикатами.

Что такое емкостная проводимость: Активное и индуктивное сопротивление кабелей и проводов. Емкостная проводимость линий электропередач