Датчик освещенности схема: Схемы датчиков освещенности

Схемы датчиков освещенности

Датчики освещенности или так называемые фотодатчики, по своей сути, устройства несложные. При желании простое изделие такого рода можно вполне собрать самостоятельно, имея элементарные навыки чтения электронных схем и умение держать в руках паяльник. Подобное устройство может управлять, например, включением или выключением какого-нибудь бытового прибора в зависимости от освещенности того места, где установлен датчик.

Так или иначе, схемы фотодатчиков весьма просты. Три из них, давно зарекомендовавшие себя и считающиеся классическими, мы и рассмотрим ниже. С их помощью можно будет легко автоматизировать то, что может нуждаться в такой автоматизации.

Сигнализация при затемнении с функцией ручного сброса

На данном рисунке представлена классическая и очень простая схема, могущая стать основой для системы охранной сигнализации, работающей по принципу детектора падающего светового потока:

В качестве индикатора срабатывания здесь используется светодиод (обозначенный как LED), который начинает светиться в момент, когда на фоторезистор PR не попадает достаточного количества света. Свет может быть естественным или искусственным, в зависимости от того места, где будет установлено данное устройство.

Если датчик установить в жилом помещении, то это будет, например, сигнализация контроля определенной зоны в доме. Если же установку произвести на улице, то к срабатыванию устройства побудит либо наступление сумерек, либо в светлое время суток — пересечение рабочей зоны датчика посторонним движущимся объектом.

Схема работает очень просто. Пока на датчик PR попадает достаточно света, его электрическое сопротивление постоянному току очень мало, следовательно в цепи постоянного тока данного устройства при указанном напряжении питания (от 10 до 18 вольт) вместе с резистором R1 образован такой делитель напряжения, что на элементе PR падение напряжения настолько мало, что этого напряжения не хватит чтобы тиристор VS перешел в проводящее состояние.

Конденсатор C1 практически шунтирован элементом PR. Но как только световой поток значительно уменьшится или прервется, сопротивление чувствительного элемента PR тут же вернется к значению в несколько мегаом! В этот момент параметры делителя напряжения радикально изменятся, напряжение повысится, и от источника питания U через резистор R1 начнет активно заряжаться конденсатор C1.

Как только напряжение на конденсаторе C1 достигнет напряжения отпирания тиристора VS (в районе 1 вольта), он тут же перейдет в проводящее состояние и светодиод LED получит питание через ограничительный резистор R2.

Чтобы переключить датчик в исходное состояние достаточно замкнуть кнопку S (здесь может быть установлена кнопка без фиксации или микропереключатель), а затем отпустить ее — ток через тиристор прекратится, он снова будет «ожидать», пока датчик освещенности PR не окажется затемнен.

Принципиально вместо светодиода LED с ограничительным резистором R2 в схему можно установить слаботочное электромагнитное реле с током срабатывания в районе 20 мА и с подходящим напряжением питания. Очевидно, если напряжение питания сделать больше или меньше, то и включающееся при отпирании тиристора устройство также должно быть соответствующим, то есть рассчитанным на установленное на входе схемы напряжение.

Тиристор в принципе может быть любым из тех, что применяют в устройствах плавного пуска коллекторных двигателей или в диммерах, главное чтобы параметры тиристора по току и нарпяжению обеспечивали запас относительно параметров нагрузки.

Фотодатчик PR при необходимости можно составить из нескольких соединенных параллельно элементов, с тем чтобы повысить его чувствительность. Конденсатор С1 лучше выбрать пленочный. Конденсатор фильтра по питанию C2 – чем больше — тем лучше, однако при небольшой мощности потребителя, такого как светодиод или реле, достаточно и 100 мкФ. Питание схемы осуществляется от блока питания или от набора аккумуляторов.

Датчик освещенности с регулировкой чувствительности на базе операционного усилителя

Данная схема, в отличие от предыдущей, чуть-чуть усложнена. Сюда добавлен компаратор, включенный по схеме операционного усилителя с петлей положительной обратной связи, получаемой при помощи внедренного в схему резистора R4. Операционный усилитель DA с резистором R4 защищен таким образом от паразитных колебаний и самовозбуждения.

Постоянное питание 12 вольт подается на слаботочное реле, срабатывание которого наступает в момент снижения освещенности чувствительного элемента PR, что приводит к коммутации цепи исполнительного устройства. Чувствительность фотодатчика, построенного по данной схеме, настраивается регулировкой подстроечного резистора R3.

Для защиты транзистора VT от индуктивных выбросов с обмотки реле К (в момент резкого размыкания цепи транзистором VT), в схему включен защитный диод VD. Операционный усилитель может быть использован любой подходящий. А за подавление высокочастотных помех по питающему напряжению отвечает конденсатор C, емкости которого в 47 нФ вполне достаточно.

Итак, пока на чувствительный элемент PR датчика освещенности падает достаточное количество света, его сопротивление мало. Соответственно делитель напряжения, образованный элементами PR и R1 дает на входе №2 операционного усилителя (на неинвертирующем его входе) потенциал больший, чем на входе №3 (на инвертирующем входе операционного усилителя).

В таком состоянии на выходе операционного усилителя будет минимальный уровень напряжения и транзистор VT не откроется, так как напряжение (определяемое делителем на резисторах R5 и R6) и ток его базы (ограничиваемый резистором R5) находятся на уровне нуля. В такой ситуации обмотка реле К не получает питания.

Как только освещенность элемента PR окажется настолько слабой, что его сопротивление повысится до такой степени, что потенциал на входе №2 операционного усилителя окажется ниже потенциала на его входе №1, в этот момент на выходе ОУ появится напряжение высокого уровня, которое приведет к отпиранию транзистора VT и к питанию через него обмотки реле К, коммутирующего исполнительное устройство. Исполнительным устройством может выступать лампа, сирена, электрический замок и т.д.

Фотореле на 555 таймере

Для включения ночного освещения на территории приусадебного участка или возле подъезда, отлично подойдет это несложное устройство на базе популярной микросхемы 555.

Когда на чувствительный фоторезистор PR падает достаточное количество света, его сопротивление сильно снижено, так что через делитель напряжения на резисторе R1 и сопротивлении элемента PR, на базу транзистора VT поступает очень слабый ток, недостаточный для отпирания данного транзистора.

Если освещенность уменьшается, сопротивление PR возрастает, и напряжение и ток базы транзистора VT увеличиваются, что приводит в свою очередь к тому, что транзистор VT переходит в проводящее состояние. Обмотка реле К1 активируется и коммутирует тиристор VS анодом к плюсовой шине питания.

Таймер 555 запускается, и на выводе №3 данной микросхемы появляется напряжение 10,5 В. Данное напряжение способно питать обмотку маломощного реле К2 (с током потребления обмотки до 250 мА).

Реле К2 коммутирует нагрузку, например лампу системы освещения во дворе и т.п. Главное условие — чтобы реле К2 допускало пропускание через себя номинального тока нагрузки и при этом не перегревалось. При восходе солнца лампа погаснет (по принципу, аналогичному схеме №2)

Характеристики пассивных и активных элементов, приведенных на данных принципиальных схемах, подбираются исходя из величины напряжения и возможностей источника питания, а также в соответствии с параметрами нагрузки, включение и выключение которой призвана автоматизировать та или иная собираемая схема.

Ранее ЭлектроВести писали, что в Луцке (Волынская область) планируют обустроить 9 новых «умных» остановок общественного транспорта на солнечных панелях и с контейнерами для раздельного сбора мусора.

По материалам: electrik.info.

Датчик освещённости своими руками | KAVMASTER

В этой статье будет рассмотрена схема и пошаговая сборка датчика освещенности, который может пригодиться в быту или хозяйстве. Схема датчика освещенности очень проста, есть печатная плата и подробное описание.

Датчик освещённости может пригодиться например для контроля освещения в закрытой теплице, когда нужно автоматически включать или выключать свет, ориентируясь на время суток. Например если на улице ночь, то и в теплице свет гореть не будет, если на улице день, то свет соответственно включается. 

Это устройство регистрирует интенсивность попадающего на него солнечного света. Когда света будет много, т.е. взойдёт солнце, на выходе установится лог. 1. Когда день подойдёт к концу, солнце уйдёт за горизонт, на выходе будет лог. 0, лампы освещения выключатся до следующего утра. Вообще, область применения датчика освещённости весьма широка и ограничивается лишь фантазией собравшего его человека. Нередко такие датчики используются для подсветки шкафа при открытии дверцы.

Схема датчика освещённости

Ключевое звено схемы – фоторезистор (R4). Чем больше света на него попадает, тем сильнее уменьшается его сопротивление. Можно применить любой фоторезистор, какие получится найти, ведь это достаточно дефицитная деталь. Импортные фоторезисторы компактные, но стоят порой весьма существенно. Примеры импортных фоторезисторов — VT93N1, GL5516. Можно применить также отечественные, например, ФСД-1, СФ2-1. Они стоят куда меньше, но также будут неплохо работать в этой схеме. 

Если достать фоторезистор не удалось, а сделать датчик освещённости очень хочется, то можно поступить следующим образом. Взять старый, желательно германиевый транзистор в круглом металлическом корпусе и спилить его верхушку, оголив тем самым кристалл транзистора. На фото ниже показан как раз такой транзистор со спиленной крышкой.

Очень важно при этом не повредить сам кристалл, отрывая крышку. Подойдут практически любые транзисторы в таком круглом корпусе, особенно хорошо будут работать советские германиевые, например, МП16, МП101, МП14, П29, П27. Т.к. теперь кристалл такого «модифицированного» транзистора открыт, сопротивление перехода К-Э будет зависеть от интенсивности света, попадающего на кристалл. Вместо фоторезистора впаиваются коллектор и эмиттер транзистора, вывод базы просто откусывается. 

В схеме используется операционный усилитель, можно применить любой одинарный, подходящий по цоколёвке. Например, широкодоступные TL071, TL081. Транзистор в схеме – любой маломощный структуры NPN, подходят BC547, КТ3102, КТ503. Он коммутирует нагрузку, которой может служить как реле, так и небольшой отрезок светодиодной ленты, например. Мощную нагрузку желательно подключать с использованием реле, диод D1 стоит в схеме для гашения импульсов самоиндукции обмотки реле. Нагрузка подключается к выходу, обозначенному OUT. Напряжение питания схемы – 12 вольт.

Номинал подстроечного резистора в этой схеме зависит от выбора фоторезистора. Если фоторезистор имеет среднее сопротивление, например, 50 кОм – то подстроечный должен иметь в два-три раза большее сопротивление, т.е. 100-150 кОм. Мой фоторезистор СФД-1 имеет сопротивление более 2 МОм, поэтому и подстроечный я взял на 5 МОм. Существуют и более низкоомные фоторезисторы.

Сборка датчика освещённости

Итак, перейдём от слов к делу – в первую очередь нужно изготовить печатную плату. Для этого существует ЛУТ метод, которым я и пользуюсь.

Файл с печатной платой к статье прилагается, отзеркаливать перед печатью не нужно.

Скачать печатную плату:

Скачать печатную плату датчика освещенности

 

Плата рассчитана на установку отечественного фоторезистора ФСД-1 и подстроечного резистора типа CA14NV. Несколько фотографий процесса:

Теперь можно впаивать детали. Сначала устанавливаются резисторы, диод, затем всё остальное.

В последнюю очередь впаиваются самые крупные детали – фотодиод и подстроечный резистор, провода для удобства можно вывести через клеммники. После завершения пайки обязательно нужно удалить с платы флюс, проверить правильность монтажа, прозвонить соседние дорожки на замыкание. Только после этого можно подавать на плату питание.

Настройка датчика

При первом включении светодиод на плате либо будет светится, либо будет полностью погашен. Аккуратно вращаем подстроечный резистор – в каком-то его положении светодиод сменит своё состояние. Нужно установить подстроечный резистор на эту грань между двумя положениями, и закрывая или наоборот засвечивая фоторезистор добиться нужного порога срабатывания.

Как работает датчик освещённости видео

Датчик освещенности — принципиальная схема, работа и ее применение

Управление уличным освещением, создание цепи датчика освещенности, наружное освещение, несколько бытовых приборов в помещении и т. д. обычно обслуживаются и управляются вручную несколько раз. Это не только рискованно, но и приводит к растрате энергии из-за небрежности персонала или необычных обстоятельств при включении и выключении этих электроприборов. Следовательно, (исходя из требования) мы можем использовать схему датчика освещенности для автоматического переключения нагрузок в зависимости от интенсивности дневного света с помощью датчика освещенности. В этой статье мы кратко обсудим, как сделать схему датчика освещенности и как она работает.

Что такое датчик?

Прежде чем перейти к изучению датчика освещенности, прежде всего, мы должны знать, что такое датчик. Датчик — это устройство, которое используется для обнаружения изменений в количествах или событиях и получения соответствующих выходных данных.

Различные типы датчиков

Существуют различные типы датчиков, такие как датчики освещенности, датчик температуры, датчик влажности, датчик давления, датчик огня, ультразвуковые датчики, ИК-датчик, сенсорный датчик и так далее.

Что такое цепь датчика освещенности?

Цепь датчика освещенности представляет собой простую электрическую цепь, которую можно использовать для автоматического управления (включения и выключения) электроприборов, таких как освещение, вентиляторы, охладители, кондиционеры, уличные фонари и т. д. Используя эту схему датчика освещенности, мы можем исключить ручное переключение, поскольку нагрузками можно управлять автоматически в зависимости от интенсивности дневного света. Следовательно, мы можем описать его как автоматический датчик освещенности.

Схема датчика освещенности помогает избежать ручного управления уличными фонарями, установленными на автомагистралях, что является рискованным, а также приводит к перерасходу электроэнергии. Цепь датчика света состоит из основных электрических и электронных компонентов, таких как датчик света, пара Дарлингтона и реле. Чтобы понять работу схемы датчика освещенности, мы должны кратко ознакомиться с компонентами, используемыми при разработке схемы датчика освещенности.

Световой датчик

Доступны различные типы световых датчиков, такие как фоторезисторы, фотодиоды, фотогальванические элементы, фотоэлементы, фотоумножители, фототранзисторы, устройства с зарядовой связью и т.д. Но LDR (светозависимый резистор или фоторезистор) используется в качестве датчика света в этой схеме датчика света. Эти датчики LDR являются пассивными и не производят никакой электрической энергии.

Датчик освещенности LDR

Но сопротивление фоторезистора изменяется с изменением интенсивности дневного света (свет, освещаемый фоторезистором). Датчик LDR прочный по своей природе, поэтому его можно использовать даже в грязных и неблагоприятных внешних условиях. Следовательно, LDR предпочтительнее других датчиков освещенности, поскольку его можно использовать даже в наружном освещении домов, а также в автоматических уличных фонарях.

Изменение сопротивления LDR с изменением интенсивности света

Светозависимый резистор — это переменный резистор, который управляется интенсивностью света. LDR изготовлены из полупроводникового материала с высоким сопротивлением, сульфида кадмия, который обладает фотопроводимостью.

Интенсивность света в зависимости от сопротивления LDR

В ночное время (когда освещенность LDR уменьшается) LDR демонстрирует очень высокое сопротивление, составляющее несколько МОм (мегаом). В дневное время (когда на LDR горит свет) сопротивление LDR уменьшается примерно до нескольких 100 Ом (сотни Ом). Следовательно, сопротивление LDR обратно пропорционально свету, освещаемому LDR.

Как показано на рисунке выше, LDR состоит из двух выводов, подобных обычному резистору, и волнообразной конструкции на его верхней поверхности. График, показанный выше, представляет собой обратную зависимость LDR от интенсивности света.

Основным недостатком LDR является то, что он чувствителен к падающему на него свету независимо от природы света (естественный дневной свет или даже искусственный свет).

Пара Дарлингтона

Встречное соединение двух транзисторов называется парой Дарлингтона, это соединение транзисторов пары Дарлингтона используется в этой схеме датчика освещенности.

Пара Дарлингтона

Этот транзистор с парой Дарлингтона также рассматривается как одиночный транзистор, который имеет очень высокий коэффициент усиления по току по сравнению с обычным коэффициентом усиления транзистора. Произведение входного тока и коэффициента усиления транзистора дает вход, подаваемый на нагрузку через пару Дарлингтона. Мы знаем, что если базовое напряжение должно быть больше 0,7 В, транзистор включается, но в случае пары Дарлингтона базовое напряжение должно быть 1,4 В, так как два транзистора должны быть включены.

Реле

Реле играет жизненно важную роль в цепи датчика освещенности для активации нагрузки или для подключения нагрузки к цепи датчика освещенности, а также к сети переменного тока.

Реле

Как правило, реле состоит из катушки, на эту катушку подается напряжение всякий раз, когда на нее поступает достаточно питания (необходимое количество питания зависит от номинала реле).

Работа цепи датчика света

Схема датчика света представляет собой электронную схему, разработанную с использованием (датчика света) LDR, пары Дарлингтона, реле, диода и резисторов, которые подключены, как показано на принципиальной схеме датчика света. На нагрузку подается питание 230 В переменного тока (в данном случае нагрузка представлена ​​лампочкой).

Напряжение постоянного тока, необходимое для цепи датчика освещенности, подается от батареи или с помощью схемы мостового выпрямителя. Эта схема мостового выпрямителя преобразует источник переменного тока 230 В в постоянный ток 6 В. Схема мостового выпрямителя использует понижающий трансформатор для понижения напряжения 230В до 12В. Диоды, соединенные в виде моста, используются для преобразования 12 В переменного тока в 12 В постоянного тока. Регулятор постоянного напряжения IC7806 используется для преобразования 12 В постоянного тока в 6 В постоянного тока, а затем эти 6 В постоянного тока подаются в схему. Питание 230 В переменного тока как для нагрузки, так и для мостового выпрямителя должно поддерживаться непрерывно для бесперебойной работы цепи датчика освещенности.

Схема датчика света

В дневное время датчик света LDR имеет очень низкое сопротивление около нескольких 100 Ом. Таким образом, питание проходит через LDR и заземление через резистор и переменный резистор, как показано в схеме датчика освещенности. Это связано с тем, что сопротивление, предлагаемое LDR в дневное время или когда свет горит на LDR, меньше по сравнению с сопротивлением остальной части цепи (то есть через реле и пару Дарлингтона). Мы знаем о принципе тока, что ток всегда течет по пути с низким сопротивлением.

Таким образом, катушка реле не получает достаточного питания для подачи питания. Следовательно, нагрузка отключается в светлое время суток.

Аналогичным образом, в ночное время (когда освещенность LDR очень слабая), сопротивление LDR увеличивается до очень высокого значения, составляющего несколько мегаом (приблизительно 20 МОм). Таким образом, из-за очень высокого сопротивления LDR протекающий ток очень мал или почти равен нулю, как при разомкнутой цепи. Теперь ток протекает по пути с низким сопротивлением, так что он увеличивает базовое напряжение пары Дарлингтона до более чем 1,4 В. Когда активируется пара Дарлингтона, катушка реле получает достаточно питания для подачи питания, и, следовательно, нагрузка включается в ночное время или когда на LDR не горит свет.

Практическое применение схемы датчика освещенности

Схема датчика освещенности может использоваться для разработки различных практических встроенных систем, основанных на датчиках, таких как система охранной сигнализации с фотоэлектрическим датчиком, управляемый Arduino высокочувствительный энергосберегатель на основе LDR для системы управления уличным освещением. , солнечная система освещения шоссе с автоматическим отключением в дневное время, переключением освещения от заката до восхода и т. д.

Переключатель освещения от заката до восхода солнца

Переключатель освещения от заката до восхода солнца представляет собой схему датчика освещенности, предназначенную для автоматического управления на основе света, подаваемого на датчик освещенности LDR.

Применение цепи датчика освещенности — Проект переключения освещения от заката до восхода солнца

Сопротивление LDR изменяется с изменением интенсивности света, подаваемого на LDR. Выход LDR подается на таймер 555, подключенный в бистабильном режиме. Выход таймера 555 используется для управления запуском нагрузки через TRIAC. Таким образом, эта схема датчика освещенности включает нагрузку вечером или на закате и автоматически выключает нагрузку утром или на восходе солнца.

Перейдите по этой ссылке, чтобы узнать больше о роли встроенных систем в автомобилях.

Перейдите по этой ссылке, чтобы узнать больше об ультразвуковых датчиках MCQ и датчиках влажности MCQ.

Надеюсь, эта статья содержит достаточную информацию о том, как сделать схему датчика освещенности и как она работает. Для самостоятельной разработки инновационных проектов в области электротехники и электроники вы можете обратиться к нам, опубликовав свои идеи и комментарии в разделе комментариев ниже.

 

Схема простого датчика освещенности

Физза Бейг

4126 просмотров

Цепь датчика света активируется, когда цепь обнаруживает свет. Это простая схема, включающая фоторезистор, за которым следует транзистор. Когда свет падает на поверхность фоторезистора, световая энергия преобразуется в электрический сигнал, и, таким образом, схема работает.

Здесь датчик освещенности состоит из двух разных цепей.

Купить на Amazon

Аппаратные компоненты

Следующие компоненты необходимы для изготовления цепи датчика освещенности 9.0003

S.no Components Value Qty
1. Photoresistor 2
2. Diode 1N4001 2
3. Relay 2
4. Transistor 2N2222 2
5. LED 2
6. Battery 6V-12V 2
7. Resistor 470Ω, 1KΩ 1, 2
8. Variable Resistor 50KΩ 2

2N2222 Схема контактов

Подробное описание схемы контактов, размеров и спецификаций можно найти в техническом описании 2N2222

Схема датчика освещенности

Схема простого датчика освещенности

Описание работы

Это простейшая схема датчиков света.

Датчик освещенности схема: Схемы датчиков освещенности