Допустимые длительные токи для неизолированных проводов и шин. Допустимый длительный ток для шин прямоугольного сеченияДлительно-допустимый ток для алюминиевой шиныДлительно-допустимый ток для алюминиевой шиныРасчет сечения алюминиевой шины по токуТакже вы можете изучить материалы Расчет сечения алюминиевой шины по длительно допустимым токовым нагрузкам проводят в соответствии с главой 1.3 "Правил устройства электроустановок" выпущенных Министерством Энергетики СССР в 1987 году - выбираются допустимые длительные токи для неизолированных проводов и шин. Предельно допустимые длительные токи для алюминиевых шин прямоугольного сечения для постоянного и переменного тока при подключении 1 полосы на фазу собраны в нижеследующей таблице: Какой длительно допустимый предельный ток для алюминиевой шины?
Купить электротехнические медные и алюминиевые шины можно в нашей компании со склада и под заказ: spbalum.ru ПУЭ 7. Правила устройства электроустановок. Издание 71.3.22. Допустимые длительные токи для неизолированных проводов и окрашенных шин приведены в табл. 1.3.29-1.3.35. Они приняты из расчета допустимой температуры их нагрева +70 °С при температуре воздуха +25 °С. Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:
1.3.23. При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм. 1.3.24. При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.). Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80
Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений
* В числителе приведены нагрузки при переменном токе, в знаменателе — при постоянном. Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения
* В числителе приведены значения переменного тока, в знаменателе — постоянного. Таблица 1.3.32. Допустимый длительный ток для неизолированных бронзовых и сталебронзовых проводов
* Токи даны для бронзы с удельным сопротивлением ρ20=0,03 Ом•мм2/м. Таблица 1.3.33. Допустимый длительный ток для неизолированных стальных проводов
Таблица 1.3.34. Допустимый длительный ток для четырехполосных шин с расположением полос но сторонам квадрата («полый пакет»)
Таблица 1.3.35. Допустимый длительный ток для шин коробчатого сечения
www.elec.ru ПУЭ Раздел 1 => Таблица 1.3.31. допустимый длительный ток для шин прямоугольного сечения.
Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения
________________ * В числителе приведены значения переменного тока, в знаменателе - постоянного. firenotes.ru Длительно допустимый ток для медных шинРасчет для медных шин по токуПолоса медная пропускная способность по токуТок медной шины по ПЭУ п.1.3.24Расчет сечения медной шины по длительно допустимым токам нужно проводить в соответствии с главой 1.3 "Правил устройства электроустановок" выпущенных Министерством Энергетики СССР в 1987 году. То есть те самые ПУЭ 1.3.24, знакомые всем электрикам " При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т. п.).". На основании их выбираются допустимые длительные токи для неизолированных проводов и шин. Кроме того, часто в среде электротехники можно услышать, что это пропускная способность по току медной полосы. Предельно допустимые длительные токи для медных шин прямоугольного сечения ПУЭ 1.3.31 для постоянного и переменного тока при подключении 1 полосы на фазу собраны в нижеследующей таблице токов медных шин: Кроме таблицы токов медных шин, Вы также можете изучить материалы Какой длительно допустимый предельный ток для медной шины?Таблица токов медных шин
Купить электротехнические медные и алюминиевые шины можно в нашей компании со склада и под заказ: Присылайте ваши заявки на покупку алюминиевого и медного проката на нашу почту Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. spbalum.ru Допустимый длительный ток для шин прямоугольного сечения* В числителе приведены нагрузки при переменном токе, в знаменателе – при постоянном. Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения
* В числителе приведены значения переменного тока, в знаменателе – постоянного. Таблица 1.3.32. Допустимый длительный ток для неизолированных бронзовых и сталебронзовых проводов
* Токи даны для бронзы с удельным сопротивлением 20 = 0,03 Ом∙мм2/м Таблица 1.3.33. Допустимый длительный ток для неизолированных стальных проводов
1.3.23. При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5 % для шин с шириной полос до 60 мм и на 8 % для шин с шириной полос более 60 мм. 1.3.24. При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости, и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т. п.). ВЫБОР СЕЧЕНИЯ ПРОВОДНИКОВ ПО ЭКОНОМИЧЕСКОЙПЛОТНОСТИ ТОКА 1.3.25. Сечения проводников должны быть проверены по экономической плотности тока. Экономически целесообразное сечение S, мм2, определяется из соотношения: , где I – расчетный ток в час максимума энергосистемы, А; Jэк – нормированное значение экономической плотности тока, А/мм2, для заданных условий работы, выбираемое по табл. 1.3.36. Сечение, полученное в результате указанного расчета, округляется до ближайшего стандартного сечения. Расчетный ток принимается для нормального режима работы, т. е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается. Таблица 1.3.34. Допустимый длительный ток для четырехполосных шин с расположением полос по сторонам квадрата («полый пакет»)
1.3.26. Выбор сечений проводов линий электропередачи постоянного и переменного тока напряжением 330 кВ и выше, а также линий межсистемных связей и мощных жестких и гибких токопроводов, работающих с большим числом часов использования максимума, производится на основе технико-экономических расчетов. 1.3.27. Увеличение количества линий или цепей сверх необходимого по условиям надежности электроснабжения в целях удовлетворения экономической плотности тока производится на основе технико-экономического расчета. При этом, во избежание увеличения количества линий или цепей, допускается двукратное превышение нормированных значений, приведенных в табл. 1.3.36. В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии. Данными указаниями следует руководствоваться также при замене существующих проводов проводами большего сечения или при прокладке дополнительных линий для обеспечения экономической плотности тока при росте нагрузки. В этих случаях должна учитываться также полная стоимость всех работ по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и материалов. Таблица 1.3.35. refdb.ru Длительно допустимый ток для медных шинМедные шины - хороший электротехнический проводник. УГМК-ОЦМ предлагает медные электротехнические шины изготовленные согласно ГОСТ 434-78 и EN 13601. В качестве сырья используются катоды медные по ГОСТ 859-2001. Выбор медных шинМедная электротехническая шина – это проводник, обладающий низким сопротивлением. Медные электротехнические шины изготавливают прямоугольной формы поперечного сечения. Визуально медная электротехническая шина похожа на лист, но большей толщины. УГМК-ОЦМ выпускает медные электротехнические шины широкого диапазона размеров: толщиной 1,2 - 80 мм и шириной 8 - 250 мм. Шины выпускаются в прессованном и тянутом состоянии, в бухтах и отрезках. На поверхности медных шин не допускаются трещины, раковины, вздутия, поперечные надрывы и грязная технологическая смазка. Отклонения по форме сечения, механическим свойствам, серповидности не превышают значений, установленных нормативной документацией. Возможно изготовление нестандартных форм шины. В этом случае форма оговаривается в спецификации и обязательно прилагается чертеж будущего изделия. Выбор медной шины зависит от условий использования. При выборе сечения медных шин по току, учитывают, какой максимальный ток будет проходить по шинопроводу. Сечение – соотношение ширины и толщины. Исходя из значения максимального тока выбирается сечение шин по ПУЭ и ГОСТ 434-78. Допустимый ток для медных шинДлительно допустимый ток для неизолированных медных шин 30х4 в однофазном токопроводе составляет 475 А для постоянного и для переменного тока. Шина медная 50х5 обеспечивает работу при 870 А м 860 А (для постоянного и переменного тока соответственно). Таким образом, увеличение сечения медных шин резко увеличивает пропускную способность. Особенности выбора медной шины по токуПоказанные примеры показателей длительно допустимого тока для медных шин приведены исходя из допустимой температуры нагрева до 70о С. Температура окружающей среды не должна превышать 25о С. Надежность эксплуатации медных электротехнических шин обеспечивается при нагреве не выше 85о С. Но при выборе сечения медной шины, учитывается максимально допустимую температуру компонентов, с которыми взаимодействует изделие. И вероятность того, что температура окружающей среды превысит 25о С. Для облегчения выбора техническими специалистами рассчитаны корректирующие коэффициенты. Параметры максимального тока пересчитаны под несколько вариантов температурных условий. Эти таблицы общедоступны. Они помогут сделать правильный выбор. Если нет жестких критериев, выбор делается в пользу гибких шин. Они долговечнее и обладают лучшими характеристиками. Допустимый длительный ток для шин прямоугольного сечения
*В числителе приведены значения переменного тока, в знаменателе — постоянного. Преимущества медных шинНаряду с медными шинами в электротехнике используются шины алюминиевые. Алюминиевую шину ценят за доступную цену и легкость металла. Однако в долгосрочной перспективе медные шины станут экономически выгодным решением. Медь имеет большую теплопроводимость. При одинаковом сечении медная шина выдержит в процентном отношении большую нагрузку, чем алюминиевая такого же размера. Медная шина сводит к минимуму потерю энергии при передаче. Они высокоэластичны и устойчивы к растяжению. Медная шина легко изгибается, не теряя своих технических свойств. Это позволяет собирать распределительные и силовые установки меньшего размера. Она устойчива к воздействию высоких и низких температур, выдерживает большее напряжение. Выбирая между алюминиевой шиной и медной, предпочтение отдают последней. Поставка медных шинУГМК-ОЦМ предлагает поставку медных электротехнических шин. Шины изготовлены из меди марок М1, Cu-ETP, С11000. Шина поставляется в отрезках и бухтах. Прессованного и тянутого состояния. Минимальный объем заказа – 300 кг. Оформите заявку на поставку медной электротехнической шины на сайте или свяжитесь с нами любым удобным для вас способом. www.ocm.ru Допустимые длительные токи для неизолированных проводов и шин1.3.22. Допустимые длительные токи для неизолированных проводов и окрашенных шин приведены в табл. 1.3.29-1.3.35. Они приняты из расчета допустимой температуры их нагрева +70°С при температуре воздуха +25°С. Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:
1.3.23. При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм. 1.3.24. При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.). Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80
Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений
* В числителе приведены нагрузки при переменном токе, в знаменателе - при постоянном. Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения
* В числителе приведены значения переменного тока, в знаменателе - постоянного. Таблица 1.3.32. Допустимый длительный ток для неизолированных бронзовых и сталебронзовых проводов
* Токи даны для бронзы с удельным сопротивлением r20 = 0,03 Ом·мм2/м. Таблица 1.3.33. Допустимый длительный ток для неизолированных стальных проводов
Таблица 1.3.34. Допустимый длительный ток для четырехполосных шин с расположением полос но сторонам квадрата ("полый пакет")
Таблица 1.3.35. Допустимый длительный ток для шин коробчатого сечения
Выбор сечения проводников по экономической плотности тока 1.3.25. Сечения проводников должны быть проверены по экономической плотности тока. Экономически целесообразное сечение , мм2, определяется из соотношения , где - расчетный ток в час максимума энергосистемы, А; - нормированное значение экономической плотности тока, А/мм , для заданных условий работы, выбираемое по табл. 1.3.36. Сечение, полученное в результате указанного расчета, округляется до ближайшего стандартного сечения. Расчетный ток принимается для нормального режима работы, т. е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается. 1.3.26. Выбор сечений проводов линий электропередачи постоянного и переменного тока напряжением 330 кВ и выше, а также линий межсистемных связей и мощных жестких и гибких токопроводов, работающих с большим числом часов использования максимума, производится на основе технико-экономических расчетов. 1.3.27. Увеличение количества линий или цепей сверх необходимого по условиям надежности электроснабжения в целях удовлетворения экономической плотности тока производится на основе технико-экономического расчета. При этом во избежание увеличения количество линий или цепей допускается двукратное превышение нормированных значений, приведенных в табл. 1.3.36. Таблица 1.3.36. Экономическая плотность тока
В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии. Данными указаниями следует руководствоваться также при замене существующих проводов проводами большего сечения или при прокладке дополнительных линий для обеспечения экономической плотности тока при росте нагрузки. В этих случаях должна учитываться также полная стоимость всех работ по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и материалов. 1.3.28. Проверке по экономической плотности тока не подлежат: · сети промышленных предприятий и сооружений напряжением до 1 кВ при числе часов использования максимума нагрузки предприятий до 4000-5000; · ответвления к отдельным электроприемникам напряжением до 1 кВ, а также осветительные сети промышленных предприятий, жилых и общественных зданий; · сборные шины электроустановок и ошиновка в пределах открытых и закрытых распределительных устройств всех напряжений; · проводники, идущие к резисторам, пусковым реостатам и т. п.; · сети временных сооружений, а также устройства со сроком службы 3-5 лет. 1.3.29. При пользовании табл. 1.3.36 необходимо руководствоваться следующим (см. также 1.3.27): 1. При максимуме нагрузки в ночное время экономическая плотность тока увеличивается на 40%. 2. Для изолированных проводников сечением 16 мм и менее экономическая плотность тока увеличивается на 40%. 3. Для линий одинакового сечения с ответвляющимися нагрузками экономическая плотность тока в начале линии может быть увеличена в раз, причем определяется из выражения , где - нагрузки отдельных участков линии; - длины отдельных участков линии; - полная длина линии. 4. При выборе сечений проводников для питания однотипных, взаиморезервируемых электроприемников (например, насосов водоснабжения, преобразовательных агрегатов и т. д.), из которых одновременно находятся в работе, экономическая плотность тока может быть увеличена против значений, приведенных в табл. 1.3.36, в раз, где равно: . 1.3.30. Сечение проводов ВЛ 35 кВ в сельской местности, питающих понижающие подстанции 35/6 - 10 кВ с трансформаторами с регулированием напряжения под нагрузкой, должно выбираться по экономической плотности тока. Расчетную нагрузку при выборе сечений проводов рекомендуется принимать на перспективу в 5 лет, считая от года ввода ВЛ в эксплуатацию. Для ВЛ 35 кВ, предназначенных для резервирования в сетях 35 кВ в сельской местности, должны применяться минимальные по длительно допустимому току сечения проводов, исходя из обеспечения питания потребителей электроэнергии в послеаварийных и ремонтных режимах. 1.3.31. Выбор экономических сечений проводов воздушных и жил кабельных линий, имеющих промежуточные отборы мощности, следует производить для каждого из участков, исходя из соответствующих расчетных токов участков. При этом для соседних участков допускается принимать одинаковое сечение провода, соответствующее экономическому для наиболее протяженного участка, если разница между значениями экономического сечения для этих участков находится в пределах одной ступени по шкале стандартных сечений. Сечения проводов на ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой производится ответвление. При большей длине ответвления экономическое сечение определяется по расчетной нагрузке этого ответвления. 1.3.32. Для линий электропередачи напряжением 6-20 кВ приведенные в табл. 1.3.36 значения плотности тока допускается применять лишь тогда, когда они не вызывают отклонения напряжения у приемников электроэнергии сверх допустимых пределов с учетом применяемых средств регулирования напряжения и компенсации реактивной мощности. lektsia.com |