Eng Ru
Отправить письмо

3.2. Газовый разряд. Дуговой заряд


3.2. Газовый разряд

В эмиссионном анализе используется много электрических источников света. В основе большинства их лежит газовый разряд – это прохождение тока через воздух или другой газ.

В обычных условиях воздух и другие газы являются хорошими изоляторами. Если взять два металлических электрода, разделенных между собой небольшим воздушным промежутком, и подключить их к источнику тока, то цепь окажется разомкнутой, разряд между двумя электродами возможен, если в воздушном промежутке есть ионы и электроны, которые под действием электрического поля будут двигаться к электродам. Прохождение тока в воздухе возможно только в присутствии источника, вызывающего ионизацию. Такой разряд называется несамостоятельным. Он прекращается, когда убирают источник ионизации.

При достаточно высоком напряжении на электродах возникает самостоятельный газовый разряд. Под действием электрического поля между электродами заряженные частицы в воздушном промежутке приобретают значительную кинетическую энергию, которую передают при упругих соударениях молекулам газа, а также электродам. В результате за счет энергии источника тока происходит разогревание газа и электродов. Число заряженных частиц в воздушном промежутке начинает резко возрастать за счет ионизации атомов и молекул и эмиссии заряженных частиц с электродов. Раз начавшийся газовый разряд сам поддерживает себя и не нуждается во внешних источниках ионизации.

Газ, имеющий высокую температуру и состоящий из заряженных и нейтральных частиц, называется плазмой. При самостоятельном газовом разряде между электродами всегда образуется плазма.

Для возникновения газового разряда достаточно приложить к электродам высокое напряжение. Для пробоя воздушного промежутка в несколько миллиметров нужно напряжение около 10000В. Пробойное напряжение при атмосферном давлении растет с ростом ширины промежутка. Зависит она также от формы электродов. Промежуток между остроконечными электродами пробивается при более низком напряжении, чем между плоскими. Пробой облегчается в тех случаях, когда в воздушном промежутке уже имеются заряженные частицы. Так если концы электродов разогреты и с них вследствие термоэлектронной эмиссии вылетают электроны, то для пробоя такого промежутка достаточно напряжение около 100В. Внутри объема в пространстве между электродами, где происходит газовый разряд, в одну секунду выделяется энергия, величина которой зависит от мощности тока

(21)

где i – ток разряда;

U – напряжение на электродах.

Увеличение напряжения на электродах при неизменном токе приводит к сильному повышению температуры плазмы, т.к. увеличивается мощность электрического разряда, а ширина плазменного жгута даже несколько уменьшается под действием сильного электрического поля.

Увеличение тока разряда при постоянном напряжении почти не повышает температуру, т.к. одновременно с ростом электрической мощности увеличивается объем плазмы из-за взаимного отталкивания электронов.

Таким образом, температура плазмы зависит, главным образом, от напряжения на электродах и от плотности тока, проходящего через единицу площади в сечении разряда. Различные типы газового разряда при атмосферном давлении различаются по своим электрическим параметрам. Температура плазмы меняется в широких пределах от наиболее "мягкого" – дугового – разряда до высокотемпературных "жестких" режимов искрового и импульсного разрядов.

Дуговой разряд

Это основной вид самостоятельного разряда. Имеет температуру от 40000 до 80000. Разряд широко применяется в технике: дуговая сварка металлов, дуговые сталеплавильные печи и т.д. В спектральном анализе дуговой разряд – один из наиболее важных и распространенных источников света. Возникает при напряжении между электродами в 25-80В и токе от 1 – 2 до нескольких десятков ампер. Для него характерно продолжительное горение при неизменных электрических параметрах.

Структура разряда представлена на рис. 12. Наибольшую температуру плазма имеет в центральной части, где достигается большая плотность тока.. Интенсивность спектральных линий достигает наибольшей величины в разных частях дуги в зависимости от их потенциалов возбуждения и ионизации. Около катода обычно наблюдается повышенная концентрация ионов, что приводит к усилению спектральных линий, особенно искровых, в этой области разряда. Центральная часть плазмы окружена более холодной областью, температура которой по мере удаления от центра понижается до комнатной. Пары вещества электродов, попадая из плазмы в эту область, остывают, что может вызывать сильное самообращение некоторых спектральных линий.

Рис. 12. Структура дугового разряда

Концы электродов сильно разогреты, особенно высокую температуру имеют места, на которые опирается разряд. Они подвергаются сильной бомбардировке ионами и электронами и имеют вид раскаленных пятен. Температура более горячего анодного пятна, образованного ударами электронов, достигает 40000. Вещество электродов энергично испаряется, и пары поступают в плазму. Температура электрода быстро падает при удалении от анодного или катодного пятна. Чем больше теплопроводность электродов и их масса, тем резче падение температуры. Так, при работе с угольными электродами быстро разогреваются и начинают ярко светиться концы электродов. В металлических электродах, особенно медных, сильно нагреваются только места, на которые опирается разряд.

Разряд обычно делают вертикальным. Окружающий воздух течет вдоль оси разряда и не нарушает горения дуги. При горизонтальной установке поток воздуха отклоняет разряд вверх и его форма становится несимметричной относительно оси (рис. 13). Дуга горит менее стабильно.

Рис. 13. Горизонтальное расположение дугового разряда

Дуговой разряд не подчиняется закону Ома. Его сопротивление зависит от тока. Чем больше ток, тем больше число заряженных частиц во всем объеме, занятом плазмой, и сопротивление разрядного промежутка уменьшается. Если источник тока имеет большую мощность и обеспечивает дает постоянное напряжение на электродах, то при случайном увеличении тока дуги ее сопротивление падает, что приводит к еще большему увеличению тока. Этот процесс может нарастать самопроизвольно, что приведет к сгоранию проводов или источника. Поэтому последовательно всегда включается сопротивление, ограничивающее ток разряда (рис. 14).

Рис. 14. Способ стабилизации тока дугового разряда

Обычно горение дуги протекает очень нестабильно. Разряд часто перемещается по поверхности электродов, его сопротивление и ток дуги все время изменяются. Включение сопротивления несколько стабилизирует горение.

Сопротивление дугового разряда сильно зависит от ионизационного потенциала веществ, в парах которых он протекает. Чем ниже ионизационный потенциал, тем больше заряженных частиц в плазме и меньше ее электрическое сопротивление. Снижение сопротивления приводит к падению напряжения на электродах при том же разрядном токе. Мощность разряда и температура плазмы сильно уменьшаются.

Непрерывное горение дуги, большая мощность и энергичное испарение электродов обеспечивает высокую яркость дугового разряда. Относительно низкая температура плазмы приводит к появлению в спектре дуги линий, главным образом с невысокими потенциалами возбуждения. Наиболее интенсивные линии, возбуждаемые в дуговом разряде, расположенные в видимой, а также в ближней и средней ультрафиолетовой областях спектра.

Благодаря высокой яркости дуги и энергетическому испарению вещества, она обеспечивает высокую чувствительность при анализе всех элементов, кроме трудновозбудимых. Следует отметить, что для щелочных и щелочноземельных металлов даже дуга оказывается часто слишком горячим источником света. При их определении для повышения чувствительности необходимо снижать температуру дугового разряда примерно до 40000.

При возрастании тока мощность и яркость дуги, хотя и медленно, увеличиваются, что обычно приводит к повышению чувствительности анализа. Температура плазмы при этом заметно меняется только при работе с металлическими электродами. При использовании графитовых и угольных электродов она остается практически неизменной.

Сопротивление дуги и напряжение на электродах зависит от расстояния между ними. Поэтому для получения постоянной температуры плазмы при анализе необходимо всегда устанавливать строго одинаковое расстояние между электродами.

Дуговой разряд можно питать как постоянным, так и переменным током. В последнем случае горение дуги прерывается дважды в течение каждого периода тока, когда напряжение на электродах оказывается недостаточным для поддержания самостоятельного разряда.

Разогрев электродов и их испарение в дуге переменного тока происходит менее интенсивно, что приводит к небольшому повышению температуры плазма, так как в ней меньше паров веществ, ионизирующихся легче, чем воздух. Стабильность такой дуги значительно выше, чем при питании постоянным током.

Повысить температуру дуги можно значительным увеличением напряжения на электродах. Ток разряда при этом будет очень большой, т.к. сопротивление разряда очень мало. Такой разряд (называемый высоковольтной или горячей дугой) применяют редко, т.к. для его непрерывного горения необходим очень мощный источник питания.

Искровой разряд

Увеличить температуру плазмы без повышения средней мощности источника, можно, если от непрерывного горения перейти к отдельным кратковременным разрядам при большом напряжении и токе. Такой разряд называют искрой. Время его горения очень мало и средняя мощность невелика.

Рис. 15. Структура искрового разряда

Сначала при каждом пробое воздушного промежутка образуется очень узкий канал плазмы, в который почти не попадает вещество электродов. Температура канала – десятки тысяч градусов. Свечение канала состоит из линий кислорода и азота и интенсивного сплошного фона. В следующий момент небольшой участок поверхности электродов, на который опирается разряд, быстро нагревается до очень высокой температуры. Это тепло не успевает распространиться на соседние участки. В месте разогрева происходит взрывоподобный выброс вещества, который имеет вид факела. Яркость факела значительно больше, чем яркость канала. Его температура около 100000С. Излучение факела состоит главным образом, из спектральных линий вещества электродов (рис. 15). К моменту следующего разряда горячие участки на поверхности электродов остывают, и пробой промежутка происходит в новом месте. Для создания искры используют предварительное накопление заряда на конденсаторе. Такой источник называется конденсированной искрой. Количество электричества, запасенное в конденсаторе, определяется его емкостью и напряжением на обкладках

(22)

Для накопления такого количества электричества необходимо заряжать конденсатор в течение некоторого времени

(23)

где i – средний ток в амперах;

t – время заряда в секундах.

Весь накопленный заряд используется при разряде конденсатора через воздушный промежуток между электродами. Мгновенный ток искры достигает больших значений, так как продолжительность заряда мала.

Продолжительность разряда зависит от сопротивления цепи, через которую он происходит. При подключении конденсатора непосредственно к электродам (рис. 16, а) ток разряда ограничен только сопротивлением искрового промежутка. Все напряжение конденсатора оказывается приложенным к электродам. Ток разряда в этом случае достигает очень больших значений, а время разряда мало. Такой разряд называют очень жесткой искрой.

а б в

Рис. 16. Схемы цепей разряда конденсатора

При включении сопротивления, ограничивающего ток разряда, часть напряжения теряется на этом сопротивлении, поэтому напряжение на электродах падает и продолжительность разряда возрастает (рис. 16, б). На омическом сопротивлении теряется часть энергии, запасенной на конденсаторе. Поэтому обычно для ограничения разрядного тока ставят катушку индуктивности (рис. 16, в), которая вместе с конденсатором образует колебательный контур. После пробоя промежутка в контуре возникают высокочастотные колебания, период и частоту которых можно определить по формулам:

(24)

(25)

где Т – период колебаний, сек;

 - частота, Гц;

L – индуктивность катушки, Гн;

С – емкость конденсатора, Ф.

Рис. 17. Затухающие высокочастотные колебания при искровом разряде

Колебания в контуре быстро затухают (рис. 17), энергия запасенная на конденсаторе, расходуется на нагревание плазмы. Колебания прекращаются, когда напряжение на электродах становится недостаточным для поддержания самостоятельного разряда.

Все колебания за один пробой составляют цуг. Длительность цуга определяют, зная период одного колебания и число колебаний в цуге и обычно он составляет около 10-4сек. По мере расхода запасенной энергии и увеличения количества вещества, поступившего в разряд, его температура падает. Средняя температура искры зависит от соотношения энергии, выделившейся в начале и в конце цуга. При небольшой индуктивности катушки основная энергия выделяется в начале разряда при высоком напряжении на электроде и большой плотности тока. Общая продолжительность разряда в этом случае мала, а его температура велика. Даже при низком напряжении (200В) на конденсаторе при малой индуктивности удается получить достаточно жесткий разряд. Такой источник называют низковольтной искрой.

При включении катушки с большой индуктивностью начальный ток разряда сильно ограничен даже при высоком напряжении на конденсаторе, и основная часть его энергии выделяется при низковольтных колебаниях, когда плазма имеет невысокую температуру. Изменяя индуктивность (число витков) катушки, можно в очень широких пределах регулировать температуру конденсированной искры. Емкость конденсатора почти не оказывает влияния на температуру искры, так как при ее увеличении одновременно возрастает запасенная энергия и продолжительность разряда. Зато количество поступающего в разряд вещества и яркость искры быстро растут с увеличением емкости. При обычно применяемых конденсаторах небольшой емкости искра значительно уступает по яркости дуге, что приводит к увеличению продолжительности анализа. Сильное увеличение емкости при уменьшении (или отсутствии) индуктивности переводит искру в мощный импульсный разряд, который имеет очень большую яркость. Наоборот, уменьшение емкости приводит к резкому ослаблению яркости разряда. При переходе к неконденсированному разряду (емкость близка к нулю) яркость искры уменьшается, что делает невозможным применение такого разряда в качестве источника света для спектрального анализа.

Искра применяется для анализа трудновозбудимых элементов. Благодаря большой стабильности искрового разряда его также широко используют для количественного определения всех элементов.

studfiles.net

Типы разрядов

      В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов:

  •      тлеющий разряд;
  •      искровой разряд;
  •      дуговой разряд;
  •      коронный разряд.
  •       1. Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами (рис. 8.5). Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой 2.

          Между катодом и пленкой находится астоново темное пространство 1. Справа от светящейся пленки помещается слабо светящийся слой, называемый катодным темным пространством 3. Этот слой переходит в светящуюся область, которую называют тлеющим свечением 4, с тлеющим пространством граничит тёмный промежуток – фарадеево тёмное пространство 5. Все перечисленные слои образуют катодную часть тлеющего разряда. Вся остальная часть трубки заполнена святящимся газом. Эту часть называют положительным столбом 6.

    Рис. 8.5

          При понижении давления катодная часть разряда и фарадеево тёмное пространство увеличивается, а положительный столб укорачивается.

          Измерения показали, что почти все падения потенциала приходятся на первые три участка разряда (астоново темное пространство, катодная святящаяся плёнка и катодное тёмное пятно). Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала.

          В области тлеющего свечения потенциал не изменяется – здесь напряженность поля равна нулю. Наконец, в фарадеевом тёмном пространстве и положительном столбе потенциал медленно растёт.

          Такое распределение потенциала вызвано образованием в катодном темном пространстве положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

          Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны, пролетевшие без столкновений в область катодного тёмного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают. Т.е. интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы в начале имеют очень малую скорость и потому в катодном тёмном пространстве создаётся положительный пространственный заряд, что и приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

          Электроны, возникшие в катодном тёмном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов коленарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. В области тлеющего свечения идёт интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом, тлеющее свечение есть, в основном, свечение рекомбинации.

          Из области тлеющего свечения в фарадеево тёмное пространство электроны и ионы проникают за счёт диффузии. Вероятность рекомбинации здесь сильно падает, т.к. концентрация заряженных частиц невелика. Поэтому в фарадеевом тёмном пространстве имеется поле. Увлекаемые этим полем электроны накапливают энергию и часто в конце концов возникают условия, необходимые для существования плазмы. Положительный столб представляет собой газоразрядную плазму. Он выполняет роль проводника, соединяющего анод с катодными частями разряда. Свечение положительного столба вызвано, в основном, переходами возбужденных молекул в основное состояние.

          2. Искровой разряд возникает в газе обычно при давлениях порядка атмосферного. Он характеризуется прерывистой формой. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга (рис. 8.6). Эти полоски называют искровыми каналами.

    Тгаза = 10 000 К

     ~ 40 см

    I = 100 кА

    t = 10–4 c

    l ~ 10 км

    Рис. 8.6

          После того, как разрядный промежуток «пробит» искровым каналом, сопротивление его становится малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после этого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

          В естественных природных условиях искровой разряд наблюдается в виде молнии. На рисунке 8.7 изображен пример искрового разряда – молния, продолжительностью 0,2 ÷ 0,3 с силой тока 104 – 105 А, длиной 20 км (рис. 8.7).

             

    Рис. 8.7

          3. Дуговой разряд. Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным, возникает новая форма газового разряда, называемая дуговым разрядом (рис. 8.8).

     
    ~ 103 А  
    Рис. 8.8

          При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Согласно В.Ф. Литкевичу (1872 – 1951), дуговой разряд поддерживается, главным образом, за счет термоэлектронной эмиссии с поверхности катода. На практике – это сварка, мощные дуговые печи.

          4. Коронный разряд (рис. 8.9).возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие).

     

    Рис. 8.9

          Наличие второго электрода необязательна, но его роль могут играть ближайшие, окружающие заземленные металлические предметы. Когда электрическое поле вблизи электрода с большой кривизной достигает примерно 3∙106 В/м, вокруг него  возникает свечение, имеющее вид оболочки или короны, откуда и произошло название заряда.

    ens.tpu.ru

    ДУГОВОЙ РАЗРЯД - это... Что такое ДУГОВОЙ РАЗРЯД?

     ДУГОВОЙ РАЗРЯД

    один из типов стационарного электрического разряда в газе, характеризующийся большой плотностью тока и малым падением напряжения (сравнимым с потенциалом ионизации газа). Д. р. может возникнуть в результате электрич. пробоя разрядного промежутка при кратковрем. резком повышении напряжения между электродами. Если пробой происходит при давлении газа, близком к атмосферному, то Д. р. предшествует искровой разряд. Д. р. используется в дуговых печах, в газоразрядных источниках света, при дуговой сварке, в плазматронах и т. д.

    Большой энциклопедический политехнический словарь. 2004.

    • ДУГОВАЯ УГОЛЬНАЯ ЛАМПА
    • ДУГОГАСИТЕЛЬНОЕ УСТРОЙСТВО

    Смотреть что такое "ДУГОВОЙ РАЗРЯД" в других словарях:

    • ДУГОВОЙ РАЗРЯД — самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 10 2 10 4 мм рт. ст., при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Д.… …   Физическая энциклопедия

    • дуговой разряд — Самостоятельный электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов и который характеризуется малым катодным падением потенциала (порядка или меньше… …   Справочник технического переводчика

    • дуговой разряд — дуговой разряд; отрасл. дугообразный разряд; вольтова дуга Электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов, характеризуемый малым катодным… …   Политехнический терминологический толковый словарь

    • ДУГОВОЙ РАЗРЯД — электрический разряд в газах, характеризуемый большой плотностью тока и малым падением потенциала вблизи катода. Поддерживается термоэлектронной эмиссией или автоэлектронной эмиссией с катода. Температура газа в канале дугового разряда при… …   Большой Энциклопедический словарь

    • ДУГОВОЙ РАЗРЯД — один из видов самостоятельного электрического разряда в газе, характеризуемый высокой плотностью тока. Нагретый до высокой температуры ионизированный газ в столбе между электродами, к которым подведено электрическое напряжение, находится в… …   Большая политехническая энциклопедия

    • Дуговой разряд —         один из типов стационарного электрического разряда в газах (См. Электрический разряд в газах). Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо в 1808 09 Г. Дэви. Светящийся токовый канал… …   Большая советская энциклопедия

    • дуговой разряд — lankinis išlydis statusas T sritis fizika atitikmenys: angl. arc discharge; electric arc in gas vok. Bogenentladung, f rus. дуговой разряд, m; дуговой разряд в газе, m pranc. décharge d’arc, f; décharge en régime d’arc, f; décharge par arc, f …   Fizikos terminų žodynas

    • дуговой разряд — электрический разряд в газах, горящий практически при любых давлениях газа, превышающих 10 2   10 3 мм рт. ст.; характеризуется большой плотностью тока на катоде и малым падением потенциала. Впервые наблюдался в 1802 В. В. Петровым в воздухе… …   Энциклопедический словарь

    • Дуговой разряд — Электрическая дуга в воздухе Электрическая дуга физическое явление, один из видов электрического разряда в газе. Синонимы: Вольтова дуга, Дуговой разряд. Впервые была описана в 1802 году русским ученым В. В. Петровым. Электрическая дуга является… …   Википедия

    • дуговой разряд — lankinis išlydis statusas T sritis automatika atitikmenys: angl. arc discharge vok. Bogenentladung, f; Lichtbogenentladung, f rus. дуговой разряд, m pranc. décharge d arc, f; décharge en arc, f …   Automatikos terminų žodynas

    • дуговой разряд — lankinis išlydis statusas T sritis chemija apibrėžtis Savaiminio elektros išlydžio dujose rūšis. atitikmenys: angl. arc discharge rus. дуговой разряд …   Chemijos terminų aiškinamasis žodynas

    dic.academic.ru

    Дуговой разряд - «Энциклопедия»

    ДУГОВОЙ РАЗРЯД, самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 0,01-1 Па (10-4-10-2 мм ртутного столба), при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Для дугового разряда характерны высокая плотность тока на катоде (102-108 А/см2) и низкое катодное падение потенциала, не превышающее эффективный потенциал ионизации среды в разрядном промежутке. Впервые дуговой разряд между двумя угольными электродами в воздухе наблюдали в 1802 году В. В. Петров и независимо от него в 1808 Г. Дэви. Светящийся токовый канал этого разряда при горизонтальном расположении электродов под действием конвективных потоков изогнут дугообразно, отсюда и названия - дуговой разряд, электрическая дуга.

    Для большинства дуговых разрядов при большой плотности тока на катоде возникает малое очень яркое пятно, перемещающееся по всей поверхности катода. Температура в пятне может достигать температуры кипения (или возгонки) материала катода. Значительная роль в механизме поддержания тока дугового разряда играет термоэлектронная эмиссия. Над катодным пятном образуется слой положительного объёмного заряда, обеспечивающего ускорение эмитируемых электронов до энергий, достаточных для ударной ионизации атомов и молекул газа. Поскольку этот слой очень тонкий (меньше длины свободного пробега электрона), он создаёт высокую напряжённость поля у поверхности катода, особенно у микронеоднородностей, поэтому существенными оказываются и автоэлектронная эмиссия, и термоавтоэлектронная эмиссия. Высокая плотность тока и «перескоки» пятна с точки на точку создают условия для взрывной электронной эмиссии.

    Реклама

    От зоны катодного падения потенциала до анода расположен так называемый положительный столб. На аноде обычно формируется яркое анодное пятно, в котором температура поверхности почти такая же, как и в катодном. В некоторых видах дугового разряда при токах в десятки ампер на катоде и аноде возникают факелы в виде плазменных струй, вылетающих с большой скоростью перпендикулярно поверхности электродов. При токах 100-300 А возникают добавочные факелы, образуя пучок плазменных струй. Нагретый до высокой температуры и ионизованный газ в столбе представляет собой плазму. Электропроводность плазмы может быть очень высокой, но обычно она на несколько порядков ниже электропроводности металлов.

    При концентрации заряженных частиц более 1018 см-3 состояние плазмы иногда можно считать близким к равновесному. При меньших плотностях, вплоть до 1015 см-3, может возникнуть состояние локального термодинамического равновесия (ЛТР), когда в каждой точке плазмы все статистические распределения близки к равновесным при одном значении температуры, которая различна в разных точках. Исключение в этом случае составляет лишь излучение плазмы: оно далеко от равновесного и определяется составом плазмы и скоростями радиационных процессов. При ограниченных размерах столба дугового разряда даже в плотной плазме на оси столба состояние ЛТР нарушается за счёт радиационных потерь. Это выражается в сильном отклонении состава плазмы и населённостей возбуждённых уровней от их равновесных значений. Кинетика плазмы в столбе дугового разряда при высоких плотностях определяется в основном процессами соударений, а по мере снижения плотности (удаления от оси) всё большую роль играют радиационные процессы.

    Диаметр столба дугового разряда определяется условиями баланса возникающей и теряемой энергии. С ростом тока или давления меняются механизмы потерь, обусловленные теплопроводностью газа, амбиполярной диффузией, радиационными процессами и др. При таких сменах может происходить самосжатие (контракция) столба (смотри Контрагированный разряд).

    В зависимости от условий горения дугового разряда его параметры меняются в широких пределах. Классический пример дугового разряда - разряд постоянного тока, свободно горящий в воздухе между угольными электродами. Его типичные параметры: ток от 1 А до сотен ампер, расстояние между электродами от миллиметров до нескольких сантиметров, температура плазмы около 7000 К, температура анодного пятна около 3900 К.

    Дуговой разряд применяется как лабораторный источник света и в технике (дуговые угольные лампы). Дуговой разряд с угольным анодом, просверлённым и заполненным исследуемыми веществами, используется в спектральном анализе руд, минералов, солей и т.п. Дуговой разряд применяется в плазмотронах, дуговых печах для выплавки металлов, при электросварке, в различных электронных и осветительных приборах. Так называемая вакуумная дуга, которая зажигается в вакууме и горит в парах металла, испарившегося с катода, используется в вакуумных высоковольтных выключателях.

    Лит.: Кесаев И. Г. Катодные процессы электрической дуги. М., 1968; Грановский В. Л. Электрический ток в газе. М., 1971; Райзер Ю. П. Физика газового разряда. 2-е изд. М., 1992.

    В. Н. Колесников.

    knowledge.su

    Дуговой разряд - это... Что такое Дуговой разряд?

     Дуговой разряд

    Электрическая дуга в воздухе

    Электрическая дуга — физическое явление, один из видов электрического разряда в газе. Синонимы: Вольтова дуга, Дуговой разряд.

    Впервые была описана в 1802 году русским ученым В. В. Петровым. Электрическая дуга является частным случаем четвёртой формы состояния вещества — плазмы — и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.

    Электрическая дуга образуется следующим образом:

    Электроны, двигаясь от отрицательного полюса к положительному, проходят через переход между электрическими контактами образуя электрическую цепь. При разведении электрических контактов (например, при отключении цепи) электроны, продолжая двигаться, вылетают из электрического контакта, соединённого с отрицательным полюсом. Затем они пересекают газовую прослойку, образовавшуюся между электрическими контактами, и, достигнув контакта, соединённого с положительным полюсом, продолжают своё движение к положительному полюсу, тем самым сохраняя электрическую цепь. Газовая прослойка, образованная разведением электрических контактов и находящаяся между этими контактами, по сути своей является диэлектриком. Как следствие, прохождение через неё электронов равносильно появлению в цепи сопротивления, которое быстро нагревается до температуры испарения металлов. Это приводит к ионизации окружающего газа и созданию своеобразного плазменного тоннеля, имеющего гораздо меньшее сопротивление, чем изначальная воздушная прослойка, и как следствие — к росту проводимости электрической дуги.

    Электрическая дуга перегревает электрические контакты, провоцируя их плавление и быстрый износ за счёт испарения и окисления в окружающей среде. При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с электрической дугой осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно останавливающую электрическую цепь без разрыва последней.

    Электрическая дуга используется при электросварке металлов. Иначе электросварка называется ещё дуговой сваркой.

    См. также

    Литература

    1. Райзер Ю. П. Физика газового разряда. — 2-е изд. — М.: Наука, 1992. — 536 с. — ISBN 5-02014615-3

    Wikimedia Foundation. 2010.

    • Дугласово пространство
    • Дуглас Фэйрбенкс

    Смотреть что такое "Дуговой разряд" в других словарях:

    • ДУГОВОЙ РАЗРЯД — самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 10 2 10 4 мм рт. ст., при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Д.… …   Физическая энциклопедия

    • дуговой разряд — Самостоятельный электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов и который характеризуется малым катодным падением потенциала (порядка или меньше… …   Справочник технического переводчика

    • дуговой разряд — дуговой разряд; отрасл. дугообразный разряд; вольтова дуга Электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов, характеризуемый малым катодным… …   Политехнический терминологический толковый словарь

    • ДУГОВОЙ РАЗРЯД — электрический разряд в газах, характеризуемый большой плотностью тока и малым падением потенциала вблизи катода. Поддерживается термоэлектронной эмиссией или автоэлектронной эмиссией с катода. Температура газа в канале дугового разряда при… …   Большой Энциклопедический словарь

    • ДУГОВОЙ РАЗРЯД — один из видов самостоятельного электрического разряда в газе, характеризуемый высокой плотностью тока. Нагретый до высокой температуры ионизированный газ в столбе между электродами, к которым подведено электрическое напряжение, находится в… …   Большая политехническая энциклопедия

    • Дуговой разряд —         один из типов стационарного электрического разряда в газах (См. Электрический разряд в газах). Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо в 1808 09 Г. Дэви. Светящийся токовый канал… …   Большая советская энциклопедия

    • дуговой разряд — lankinis išlydis statusas T sritis fizika atitikmenys: angl. arc discharge; electric arc in gas vok. Bogenentladung, f rus. дуговой разряд, m; дуговой разряд в газе, m pranc. décharge d’arc, f; décharge en régime d’arc, f; décharge par arc, f …   Fizikos terminų žodynas

    • дуговой разряд — электрический разряд в газах, горящий практически при любых давлениях газа, превышающих 10 2   10 3 мм рт. ст.; характеризуется большой плотностью тока на катоде и малым падением потенциала. Впервые наблюдался в 1802 В. В. Петровым в воздухе… …   Энциклопедический словарь

    • дуговой разряд — lankinis išlydis statusas T sritis automatika atitikmenys: angl. arc discharge vok. Bogenentladung, f; Lichtbogenentladung, f rus. дуговой разряд, m pranc. décharge d arc, f; décharge en arc, f …   Automatikos terminų žodynas

    • дуговой разряд — lankinis išlydis statusas T sritis chemija apibrėžtis Savaiminio elektros išlydžio dujose rūšis. atitikmenys: angl. arc discharge rus. дуговой разряд …   Chemijos terminų aiškinamasis žodynas

    dic.academic.ru

    Вольтова дуга - это... Что такое Вольтова дуга?

    Если к полюсам сильной электрической батареи или другого источника электрического тока проволоками присоединить две угольные палочки и, приведя угли в соприкосновение, слегка раздвинуть их, то между концами углей образуется овальная масса яркого пламени, а самые концы углей накаливаются добела и испускают ослепительный голубоватый свет. Получается так называемая вольтова дуга. Сущность этого явления объясняется следующим образом. При раздвигании углей в момент разрыва цепи в ней от самоиндукции ее частей получается экстраток того же направления, как и ток от батареи. Этот суммарный ток обладает такой электровозбудительной силой, что пробивает малое расстояние между концами углей в начале их раздвигания и обращает небольшое количество угля в пары, которые, хотя и плохо, но проводят электричество и таким образом цепь с углями, раздвинутыми во время прохождения тока, не прерывается. Благодаря плохой проводимости, эти пары быстро накаляются и накаляют воздух на пути тока, а газы и пары или плохо, или вовсе не проводящие электричества при обыкновенных температурах, становятся посредственными проводниками при температурах высоких. Это свойство позволяет раздвигать угли на довольно значительное расстояние, после образования дуги, не разрывая цепи. Если вместо угольных электродов брать металлические, то при тех же условиях происходит то же самое явление В. дуги, только свет получается не столь яркий, как при употреблении углей, вследствие того, что металлы испаряются легче, чем уголь, и все явление происходит при более низких температурах; цвет дуги также зависит от вещества электродов: медные дают зеленую дугу, железные — красную и ртутные — белую. Прибавлением металлов в уголь можно несколько менять окраску дуги.

    Угольные электроды вольтовой дуги принимают особую характерную форму. Анод — положительный электрод, т. е. тот, который соединен с положительным полюсом батареи и из которого ток направляется в дугу и затем в катод (отрицательный), вследствие испарения, а также сгорания, если дуга не разобщена с воздухом, а также вследствие переноса частиц угля на катод, образует на конце выемку вроде чашки, а катод принимает заостренную форму. Приготовление электродов из разных сортов угля или из угля и металлов позволило обнаружить этот перенос частиц с анода на катод, а также, хотя и в меньшем количестве, обратный перенос с катода на анод. При вертикальном расположении углей, с анодом наверху, сила тяжести способствует этому переносу частиц с анода на катод и потому это положение дуги наилучшее. Пары угля разбрасываются от электродов во все стороны, и если дуга заключена в стеклянный сосуд, то легко заметить, что стенки его покрываются налетом угольной пыли, в которую обращаются угольные пары при охлаждении. Вследствие разбрасывания в стороны паров угля и горения, если дуга не защищена от доступа воздуха, угли постепенно расходуются и анод почти вдвое больше катода. Яркое свечение вольтовой дуги обуславливается весьма высокой ее температурой, доходящей, по измерениям Розетти, до 4800° Ц. В ней плавятся даже такие тугоплавкие тела, как кремень и алмаз, и легко обращаются в пары золото и платина. Металлические электроды сами плавятся. Посторонние примеси к углю понижают и температуру, и яркость. Температура дуги выше температуры углей; однако, концы углей испускают гораздо больше света, чем сама дуга, так как лучеиспускательная способность у твердых тел больше, чем у газов. Наибольшей яркостью обладает выемка анода. Как у всякого раскаленного тела, спектр углей сплошной (непрерывный) и с богатым содержанием ультрафиолетовых, химических, большой преломляемости лучей. В спектре дуги получаются линии углерода и металлов, попадающих примесью в угольные электроды.

    Разность потенциалов углей для поддержания В. дуги может быть выражена линейной формулой относительно длины дуги e=a+bl, где b — некоторая постоянная величина, от 3 до 5 вольт, l - длина дуги в миллиметрах, так что bl представляет величину падения потенциала вдоль дуги. По объяснению Эдлунда и многих других a есть величина гальванической поляризации дуги, т. е. величина новой электровозбудительной силы, противоположной по направлению первоначальной. Уппенборн нашел поляризацию анода и дуги равною 32,5, дуги и катода 5,5 и всего а=38 вольт. Для получения и поддержания В. дуги достаточной силы необходимо иметь в распоряжении электровозбудительную силу в 40-50 вольт при силе тока не менее 5-10 ампер. Допускают и другие причины явления, не подтверждающие объяснения Эдлунда, а именно: принимают особое сопротивление при переходе тока из углей в пары и обратно. В настоящее время для питания Вольтовой дуги током употребляются исключительно динамо-машины и аккумуляторы. Вольтова дуга может получаться и при непрерывном изменении знака разности потенциалов между углями, т. е. от действия динамо-машины, дающей переменный ток. В этом случае, понятно, тот и другой стержень попеременно делаются положительным и отрицательным. Необходимая разность потенциалов в этом случае меньше, чем при употреблении тока постоянного направления. На практике, для электрического освещения, употребляются для образования вольтовой дуги стержни из кокса, получающегося в ретортах после добывания светильного газа из каменного угля, или же в настоящее время по преимуществу употребляются искусственные стержни, приготовляемые прессованием порошка костяного угля, графита или сажи вместе с другими, связывающими массу веществами. Подобные искусственные угли получаются более однородные и дают лучший свет. Для обыкновенных целей освещения употребляются положительные (анод) стержни диаметром от 8 до 18 мм. Отрицательные (катод) стержни берутся тоньше. Положительный стержень располагается вверху, отрицательный внизу — для того, чтобы можно было удобнее пользоваться лучами света, исходящими из углубления в положительном угле. Длина дуги, т. е. расстояние между углями, поддерживаемое постоянным действием особых механизмов в лампах (см. Лампы электрические и Регуляторы), обыкновенно не превышает 5 мм. Сила тока, проходящего через В. дугу, изменяется в зависимости от диаметра стержней. Для положительных стержней от 8 до 12 мм диаметром она колеблется между 4 и 25 амперами. Обыкновенные уличные лампы, в которых толщина положительного стержня около 10 мм, требуют 8 ампер и 42 вольт разности потенциалов. Для маяков и военных целей употребляются стержни более толстые; в этом случае и длина дуги берется большая и, следовательно, требуется большая разность потенциалов.

    В металлургии в недавнее время воспользовались высокой температурой В. дуги для плавки металлов с целью сварки отдельных частей, паяния, заливания трещин и раковин, отливки и приготовления сплавов (см. Паяние электрическое). Как сильный источник света, весьма богатый химическими лучами большой преломляемости, вольтова дуга служит весьма ценным средством во многих научных работах. Этот самый могущественный из всех искусственных источников света и тепла обладает еще и живительной силой. Опыты В. Сименса показали, что электрический свет способствует всхожести и образованию хлорофилла в листьях растений и таким образом до некоторой степени заменяет для них солнце.

    Мнение, распространенное в научной литературе, приписывает честь открытия Вольтовой дуги сэру Гумфри Дэви и относит это событие к 1809 году. В русской литературе существует очень редкое и мало кому известное сочинение под заглавием: "Известие о гальвани-вольтовских опытах посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков". Автор его, первый преподаватель физики в военно-медицинской академии, впоследствии заслуженный ординарный профессор и академик Василий Владимирович Петров, подробно описывает свой опыт, произведенный в 1802 г. Соединив с полюсами своего вольтова столба куски древесного угля, он наблюдал В. дугу до 7 миллиметров длиной в виде яркого, ослепительного белого огня с расходящимися лучами.

    dic.academic.ru

    Возникновение - дуговой разряд - Большая Энциклопедия Нефти и Газа, статья, страница 1

    Возникновение - дуговой разряд

    Cтраница 1

    Возникновение дугового разряда в газотроне становится возможным благодаря наличию термоэлектронной эмиссии катода. Необходимую для ионизации газа энергию эмиттированные электроны получают за счет поля анода. Таким образом, газотрон обладает вентильными свойствами. Следует заметить, что обратное зажигание газотрона зависит от целого ряда технологических и эксплуатационных факторов. Обратному зажиганию способствуют загрязнение поверхности анода легко испаряющимися веществами, наличие посторонних газов в приборе, нагрев анода свыше 500 - 600 С.  [2]

    После возникновения дугового разряда катодное ПЕТИО непрерывно поддерживается потоком положительных ионов, движущихся от анода к катоду, которые создают вблизи катода условия, обеспечивающие возникновение автоэлектронной и термоэлектронной эмиссии.  [4]

    Для возникновения дугового разряда необходимо, чтобы воздух, являющийся в обычных условиях непроводником электричества, стал бы проводником.  [5]

    Для возникновения дугового разряда необходимо обеспечитъ эмиссию ( излучение) электронов с катода и придать им энергию, достаточную для ионизации молекул и атомов газов и паров, находящихся в дуговом промежутке.  [7]

    Для возникновения дугового разряда на поверхности ртути должно быть светлое % так называемое катодное пятно с температурой порядка 200 С, которое является источником излучения электронного, потока. Температура остальной массы ртути колеблется в зависимости от условий охлаждения от 60 до 100 С.  [9]

    После возникновения дугового разряда сеточное напряжение перестает влиять на величину анодного тока, так как возникшие в процессе ионизации положительные ионы газа окружают сетку, образуя вокруг нее положительный пространственный заряд, компенсирующий своим полем поле сетки.  [10]

    После возникновения дугового разряда сетка в тиратроне теряет свои управляющие свойства. Объясняется это тем, что сетка с ее отрицательным зарядом как бы обволакивается оболочкой из положительных ионов, которые нейтрализуют ее действие.  [11]

    С возникновением дугового разряда напряжение на электродах лампы и параллельно соединенных с ними электродах стартера снижается настолько, что оказывается недостаточным для возникновения тлеющего разряда между электродами стартера.  [13]

    При возникновении дугового разряда температура катодного и анодного пятен дуги достигает точки плавления материалов. Высокая температура контактов приводит к их интенсивному окислению, распылению материала контактов в окружающем пространстве, переносу материала с одного электрода на другой и образованию пленок. Все это влечет за собою износ контактов.  [14]

    Предотвращение возможности возникновения дугового разряда в пушке достигается глубоким вакуумом порядка 133 10 - 4 Па, создаваемым насосной системой сварочной установки.  [15]

    Страницы:      1    2    3    4

    www.ngpedia.ru


    © ЗАО Институт «Севзапэнергомонтажпроект»
    Разработка сайта