Eng Ru
Отправить письмо

Тепловые конденсационные электрические станции (КЭС). Где сейчас используют тепловые конденсационные электрические станции


ТЕМА 4. ТЕПЛОВЫЕ КОНДЕНСАЦИОННЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ

Тепловые конденсационные электрические станции преобразовывают энергию органического топлива внача­ле в механическую, а затем в электрическую. Механиче­скую энергию упорядоченного вращения вала получают с помощью тепловых двигателей, преобразующих энер­гию неупорядоченного движения молекул пара или газа.

Все тепловые двигатели подразделяются:

по виду используемого рабочего тела — пар или газ;

по способу преобразования тепловой энергии в механическую — поршневой или ротор­ный (табл. 2.2). В поршневом способе для преобразова­ния используется потенциальная энергия рабочего тела, получаемая при его нагревании. В роторном способе используется кинетическая энергия движущихся с боль­шой скоростью частиц рабочего тела.

 

 

Таблица 2.2

Способ работы Рабочее тело
    пар газ
Поршневой   Роторный Паровая машина   Паровая турбина Двигатель внутрен­него сгорания Газовая турбина

 

Паровая машина была единственным двигателем, используемым в промышленности и на транспорте в XVIII и XIX вв. В настоящее время она практически не встречается, а широко применявшиеся в прошлом паро­возы и пароходы почти полностью сняты с производства.

В настоящее время наибольшее распространение получили двигатели внутреннего сгорания, используемые на автомобильном транспорте. В стационарной энергетике двигатели внутреннего сгорания находят ограниченное применение.

 

 

Рис. 2.3. Схема преобразования энергии на тепловых станциях

 

 

На современных мощных ТЭС устанавливают паро­вые турбины. Первая паровая турбина, предназначенная для вращения электрического трехфазного генератора, была установлена на Эльберфельдской электростанции в 1899 г. С тех пор началось развитие мощных паротур­бинных электростанций.

В качестве тепловых двигателей на электрических станциях используют также газовые турбины.

Для повышения эффективности работы тепловых двигателей стремятся максимально увеличить темпера­туру рабочего тела и его давление до значений, прием­лемых по условиям механической прочности конструк­ционных материалов.

В современных паровых установках, составляющих основу энергетики, используют пар при температуре около 600°С и давлении 30 МПа. Для охлаждения рабо­чего тела (пара) обычно применяют холодную воду, которая понижает его температуру до 30— 40°С. При этом давле­ние пара резко падает.

На рис. 2.3 схемати­чески показаны стадии преобразования пер­вичной энергии органи­ческого топлива в элек­трическую.

Основные процессы теплового цикла паро­вых установок, как бы­ло показано ранее, про­исходят в следующих элементах: в парогенераторах — подвод теплоты, в турбинах — расширение пара, в кон­денсаторах— отвод теплоты. С помощью насо­сов высокого давления производится сжатие, при кото­ром конденсат нагнетается в парогенератор.

Схема тепловой станции, более подробно показана на рис. 2.4 и 2.5. Работа стан­ции происходит следующим образом. Из бункера 1 (рис. 2.4) уголь поступает в дробильную установку 2, где он превращается в пыль. Угольная пыль вместе с воздухом из воздуходувки 3' подается в топку 3. Тепло­та, получаемая при сжигании угля, используется для преобразования воды в парв трубах 4. Вода по змееви­ку 5 накачивается насосом 14 в барабан котла 5'. Пар,нагретый потоком горячих газов, уходящих в трубу 6, при высокой температуре и высоком давлении поступает сначала в первую ступень турбины 7, а затем во вторую ступень 8. В турбине энергия пара преобразуется в ме­ханическую энергию вращения ротора генератора 9, вы­рабатывающего электрическую энергию. Отработанный в турбине пар поступает в конденсатор 13, превращается в воду, которая насосом 14 подается в котел, и затем цикл превращения воды повторяется. Охлаждение пара в конденсаторе производится с помощью воды, забирае­мой из водоема (пруда или реки), накачиваемой на­сосом 12 и вновь выбрасываемой в водоем. Продукты сгорания угля проходят через очистительные сооружения (не показанные на рис. 2.4), где выделяются зола, твер­дые частички несгоревшего угля и прочие примеси, а оставшиеся газы через трубу 6 выбрасываются в атмос­феру. Электрическая энергия, получаемая от статора генератора, отдается в электрическую систему через выводы 10.

На рис. 2.5 показана общая схема получения теплоты и преобразования ее в электрическую энергию.

 

Рис. 2.5. Схема технологического процесса конденсационной тепловой электростанции

 

 

Рассмотрим дополнительно работу одного из основ­ных элементов станции — парогенератора, в котором получают пар для питания станции. Современный паро­генератор представляет собой сложное техническое сооружение больших размеров, высота которого соизме­рима с высотой пятиэтажного дома. В топке парогенера­тора сжигается превращенный в мелкую пыль уголь, газ или распыленная нефть при температуре 1500—2000°С. Для наиболее полного сжигания топлива с помощью вентилятора в больших количествах подается подогре­тый воздух. Появляющаяся в процессе сгорания топлива теплота нагревает воду, превращает ее в пар и увеличи­вает его температуру и давление до расчетных значений. Использованные горячие газы дымососами вытягиваются из парогенератора и подаются в очистительные устройст­ва, а затем направляются в дымовую трубу. Вода, пода­ваемая в парогенератор, предварительно очищается от примесей, содержание которых допускается в меньшем количестве, чем в питьевой воде. Очистка воды произво­дится в специальных устройствах - питателях.

По конструктивному выполнению парогенераторы подразделяют на барабанные и прямоточные.

В барабанном парогенераторе (рис. 2.6) имеется стальной барабан 3, в нижней части которого находится вода, а в верхней части — пар. По циркуляци­онной трубе 2 вода поступает в трубки экрана 1, покры­вающие стенки топки 7. Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм сна­ружи и 32 мм внутри), для того чтобы они смогли вы­держать большое давление пара. В крупном парогенера­торе каждый час испаряются сотни тонн воды и поэтому трубки имеют общую длину до 50 км.

 

 

 

Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в эконо­майзере 5, а воздух перед подачей в топку подогревается горячими газами в воздухоподогревателе 6. Выходящий из барабана пар дополнительно нагревается в паропере­гревателе 4.

В барабанном парогенераторе происходит естествен­ная циркуляция воды и пароводяной смеси за счет их разных плотностей. С увеличением температуры и дав­ления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию.

В прямоточном парогенераторе барабана нет. Циркуляция воды и пара создается насосами (рис. 2.7). Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателе 4 происходит подо­грев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Кроме того, к питательной воде, используе­мой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты.

Прямоточные котлы получили широкое распростране­ние, так как они дешевле ба­рабанных. У барабанных пароге­нераторов при высоких давлени­ях (свыше 20 МПа) нарушается естественная циркуляция воды и пара.

Прямоточные парогенераторы стали применяться в нашей стра­не в 30-е годы по инициативе Л. Карамзина, который разрабо­тал ряд оригинальных конструк­ций котлов.

Турбины. Полученный в паро­генераторах перегретый пар при температуре ~600°С и давлении 30 МПа по паропроводам переда­ется в сопла. Сопла предназначе­ны для преобразования внутренней энергии пара в ки­нетическую энергию упорядоченного движения молекул.

 

 

Рис. 2.8. Схема работы активной турбины

 

Если перед входом в сопло пар имел некоторую на­чальную скорость с0 и начальное давление р1 (рис. 2.8), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения С1 и уменьшение давления до значения р2. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не про­исходит, следовательно, давление пара не меняется (рис. 2.8). Абсолютная скорость движения пара умень­шается от С1 до С2 вследствие вращения турбины со скоростью v.

Конструктивно обычно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток. Сопловые и рабочие лопатки закреплены на окружностях одинакового радиуса.

У реактивной турбины или ступени происхо­дит расширение пара, проходящего через каналы рабо­чих лопаток. В зависимости от показателей расширения пара в каналах турбины характе­ризуют ступенями реактивности. В настоящее время турбины выполняют многоступенчатыми, причем в одной и той же турбине могут быть как активные, так и реактивные (с различной степе­нью реактивности) ступени.

 

 

Рис. 2.9. Схема работы реактивной турбины

Изменение параметров пара в реактивной ступени турбины по­казано на рис. 2.9. В соплах тур­бины происходит частичное рас­ширение пара до промежуточного давления р1'. Дальнейшее расши­рение пара до давления р2 проис­ходит в каналах между лопатка­ми. Абсолютная скорость пара в

сопле увеличивается до значения с1', а в каналах между лопатками уменьшается из-за вращения лопаток до зна­чения с2.

Общий вид лопаток мощной паровой турбины пока­зан на рис. 2.10.

В реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные рас­ширением пара.

Появление реактивной силы можно показать на сле­дующем примере. Пусть в бак, установленный на тележке (рис. 2.11), подведен пар под давлением, который в положении 1 равномерно действует на все стенки ,если же убрать пробку, то равновесие бака сразу нарушится. На правую стенку будет действовать неизменная сила, а сила, действующая на левую стенку, резко уменьшится, так как давление окружающей среды меньше, чем давление в баке. Пар устремится из бака, а тележка под действием реактивной силы начнет двигаться вправо (положение //).

ъ

Рис. 2.11. Схема опыта, поясняющего возникновение реак­тивной силы

Пар, выходящий из турбины, направляют для охлаждения и конденсации в специальное устройство, называемое конденсатором. Конденсатор пред­ставляет собой цилиндрический корпус, внутри которого имеется большое число латунных трубок. По трубкам протекает охлаждающая вода, поступающая в конден­сатор обычно при температуре 10—15°С и выходящая из него при температуре 20—25°С. Пар обтекает трубки сверху вниз, конденсируется и снизу удаляется. Давле­ние в конденсаторе поддерживается в пределах 3— 4 кПа, что достигается охлаждением пара.

Расход охлаждающей воды составляет примерно 50—100 кг на 1 кг пара. На электростанции мощностью 1 ГВт или 1000 МВт расходуется 40 м3/с охлаждающей воды, что при­мерно равно расходу воды в Москве-реке.

 

Если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной. В случаях, когда воды в реке не хватает, сооружают пруд. С одной стороны пруда вода подается в конденса­тор, а с другой стороны пруда сбрасывается нагретая в конденсаторе вода.

В замкнутых системах водоснабжения для охлажде­ния воды, нагретой в конденсаторе, сооружают градир­ни, представляющие собой устройства высотой при­мерно 50 м. Вода вытека­ет струйками из отверстий лотков, разбрызгивается и, стекая вниз, охлажда­ется. Внизу расположен бассейн, в котором вода собирается и затем насо­сами подается в конден­сатор.

. На ТЭС происходят многократные преобразования энергии, сопровождающиеся поте­рями. Экономичность про­цесса преобразования хи­мической энергии топлива в электрическую и потери на различных стадиях производства можно выявить из ана­лиза теплового баланса электрической станции. Если за 100% принять химическую энергию, получаемую при сжигании угля в топках котлов, то в среднем только 25% этой энергии превращается в электрическую (рис. 2.12). Наибольшие потери теплоты происходят в конденсаторе. С охлаждающей водой конденсатора уносится 55% теп­лоты.

 

Похожие статьи:

poznayka.org

Конденсационные тепловые станции (КЭС)

Лекция 2

Конденсационные тепловые станции (КЭС)

Зарисуем принципиальную схему КЭС.

В котел Кт подается топливо (уголь, газ, торф, сланцы), подогретый воздух и питательная вода (ее потери компенсируют химически очищенной водой ХОВ). Подача воздуха осуществляется дутьевым вентилятором ДВ, питательной воды – питательным насосом ПН. Образующиеся при сгорании топлива газы отсасываются из котла дымососом Д и выбрасываются в атмосферу через дымовую трубу высотой 100-250 м. Острый пар из котла подается в паровую турбину Тб, где, проходя через ряд ступеней, он совершает механическую работу – вращает турбину и жестко связанный с ней ротор генератора. Отработанный пар конденсируется в конденсаторе К, благодаря пропуску через него значительного количества холодной (5÷25°С) циркуляционной воды (расход этой воды в 50- 80 раз больше расхода пара через конденсатор).

Источником холодной воды могут быть река, озеро, искусственное водохранилище, а также специальные установки с охлаждающими башнями (градирнями) или брызгательными бассейнами (на мелких станциях), из которых охлаждающая вода подается в К циркуляционными насосами ЦН. Воздух, попадающий в К через неплотности, удаляется с помощью эжектора Э. Конденсат, образующийся в К, с помощью конденсаторного насоса КН подается в деаэратор Др, который предназначен для удаления из питательной воды газов, и, в первую очередь, кислорода, вызывающего усиленную коррозию труб котла. В деаэратор также подается химически очищенная вода ХОВ. После Др питательная вода с помощью питательного насоса ПН подается в котел.

Особенности КЭС:

1. Строятся по возможности ближе к месторождениям топлива.

2. Подавляющая часть энергии отданы в электрические сети повышенных напряжений (110-750 кВ).

3. Работают по свободному (т.е. не связанному с тепловыми потребителями) графику выработки электроэнергии. Мощность их может меняться от расчетного максимума до технологического минимума.

4. Низкоманевренны: разворот турбин и набор нагрузки из холодного состояния требует примерно 3-10 час.

5. Имеют относительно низкий КПД (=3040%).

Теплокафиционные электростанции

В отличие от КЭС, на ТЭЦ имеются значительные отборы пара, частично отработанного в турбине, на производственные и коммунально-бытовые нужды.

Коммунально-бытовые потребители обычно получают тепловую энергию от сетевых подогревателей (бойлеров) СП.

При снижении электрической нагрузки ТЭЦ ниже мощности на тепловом потреблении необходимая для потребителей тепловая энергия может быть получена с помощью редукционно-охладительной установки РОУ, питающейся острым паром котла. Чем больше отбор пара из турбины для теплофикационных нужд, тем меньше тепловой энергии уходит с циркуляционной водой и тем выше КПД электростанции. Следует отметить, что во избежание перегрева хвостовой части турбины через нее должен быть обеспечен во всех режимах пропуск определенного количества пара.

Особенности ТЭЦ:

1. Строятся вблизи потребителей тепловой энергии.

2. Обычно работают на привозном топливе.

3. Большую часть вырабатываемой электроэнергии выдают потребителям ближайшего района.

4. Работают по частично вынужденному графику выработки электроэнергии (т.е. график зависит от теплового потребителя).

5. Низкоманеврены (как и КЭС).

6. Имеют более высокий КПД до 6070%

Гидроэлектростанции

Мощность ГЭС зависит от расхода воды через турбину Q и напора Н (перепада уровней воды).

В естественных условиях концентрированные в определенном месте напоры встречаются крайне редко. Их могут создавать лишь водопады. Равнинные реки имеют обычно уклон свободной поверхности воды 5-10 см/км, а горные – 5-10 м/км. Поэтому ГЭС строят по плотинной или деривационной схеме. Плотинная схема предусматривает сооружение плотины, перегораживающей в выбранном створе русло реки. В результате создается разность уровней воды по сторонам плотины: верхнего (УВБ) и нижнего (УНБ) бьефа. На горных реках с большими уклонами концентрация напора осуществляется по деривационной схеме. В выбранном створе реки возводится плотина, создающая небольшой подпор и сравнительно малое водохранилище. Из него через водоприемник вода направляется в искусственный водовод – деривацию в виде открытого канала, туннеля или трубопровода. Из деривации вода поступает по практически вертикальным водоводам к турбинам ГЭС. В этой схеме напор создан не плотиной, а деривацией.

Особенности ГЭС:

1. Строятся там, где есть гидроресурсы и условия для строительства, что обычно не совпадает с местоположением электрической нагрузки.

2. Большую часть энергии отдают в электрические сети повышенных напряжений.

3. Работают по свободному графику (при наличии водохранилищ).

4. Высокоманеврены (разворот и набор нагрузки составляет примерно 3-5 мин).

5. Имеют высокий КПД (≈85%).

ГЭС в отношении режимных параметров имеют ряд преимуществ перед ТЭЦ и КЭС. Однако, большие капиталовложения и время строительства, а также соображения экологии и охраны окружающей среды привели к тому, что в последние годы строились в основном ТЭЦ и АЭС.

Другие похожие работы, которые могут вас заинтересовать.вшм>

7134. Лекция Тепловые электростанции и теплофикация 28 KB
  Пиковые котлы подогреватели включаются в работу периодически при повышенной тепловой нагрузке в периоды стояния низкой tsт. когда температуру в подающей магистрали тепловой сети 23 требуется поддерживать выше 120С. Охлажденная вода возвращается из тепловой сети по трубопроводу 24 и проходит грязевик 25. Подпиточный насос включается автоматически с помощью регулятора подпитки 27 который включает насос как только давление в обратном трубопроводе тепловой сети становится ниже требуемого.
3750. Лабораторная работа Тепловые эффекты растворения веществ 21.92 KB
  Работа выполняется двумя студентами. Получить у преподавателя соль, энтальпию растворения которой нужно определить (при определении энтальпии растворения кислоты или основания необходимо соблюдать технику безопасности).
5057. Курсовая Годовая бухгалтерская отчетность Муниципального унитарного предприятия «Тепловые сети» 52.09 KB
  В рыночных условиях залогом выживаемости хозяйствующего субъекта является финансовая устойчивость. Достижение финансовой устойчивости возможно на основе повышения эффективности производства. Повышение эффективности производства достигается на основе эффективного использования всех видов ресурсов и снижения затрат.
20164. Реферат Газы и тепловые машины. Идеальные и неидеальные газы. Силы Ван-дер-Ваальса 78.04 KB
  Идеальный газ это газ в котором молекулы можно считать материальными точками а силами притяжения и отталкивания между молекулами можно пренебречь. Опыты показывают что если уменьшить объем заполненный определенным количеством газа то давление в нем будет возрастать при условии что температура остается неизменной. Примерно 300 лет назад Бойль обнаружил что для большинства газов измерение давления связано с изменением объема простым соотношением. Изохорическим процессом называется процесс протекающий при постоянном объёме V.
15921. Контрольная Электрические станции 4.08 MB
  Под энергосистемой понимают совокупность электростанций электрических и тепловых сетей соединенных между собой и связанных общностью режима в непрерывном процессе производства преобразования и распределения электрической энергии и тепла при общем управлении этим режимом...
17547. Дипломная Расчет Автозаправочной станции 2.69 MB
  Огромная территория Российской Федерации требует развития и укрепления транспортной сети дорог для наращивания транспортных потоков. Применение сжиженного углеводородного газа пропан-бутан в качестве моторного топлива позволяет улучшить экологические характеристики автомобильного транспорта что особенно важно для крупных городов. Основанием для фундамента служит щебень известняка.2 Исходные данные проекта Разделом технологической части проекта предусмотрено: построение генерального плана участка принципиальной схемы работы АЗС...
12401. Дипломная Оборудование станции устройствами БМРЦ 69.3 KB
  Построение и работа схемы угловых реле. Контрольно-секционные и сигнальные реле. Включение блока реле направлений и групповых схем. Схема угловых реле.
11483. Дипломная СОВЕРШЕНСТВОВАНИЕ РАБОТЫ ПАССАЖИРСКОЙ СТАНЦИИ НА НАПРАВЛЕНИИ 228.37 KB
  Если раньше частые нарушения расписания движения поездов были связаны с высоким уровнем заполнения пропускной способности железных дорог, то сейчас, это связано в основном с высокой степенью износа подвижного состава и технических устройств, недостатками запасных частей.
12601. Курсовая Обслуживание и ремонт оборудования компрессорной станции №14 «Приводино» 442.83 KB
  На основе особых климатических условий района, где находится компрессорная станция, и технических исследований были предложены методы обслуживания и ремонта этого технологического предприятия. В работе рассмотрены мероприятия, направленные на охрану окружающей среды, охрану труда, требования по соблюдению промышленной безопасности для рабочего персонала предприятия. Проведена оценка потенциально возможных источников техногенных воздействий на окружающую среду.
11473. Дипломная РАЗРАБОТКА ТЕХНИКО-РАСПОРЯДИТЕЛЬНОГО АКТА СТАНЦИИ ГРАНИТ 541.4 KB
  Мощность элементов технической вооруженности железной дороги определяется объемами перевозок и качеством их использования. Так, численность парка грузовых вагонов зависит от их грузоподъемности, скорости движения поездов, быстроты обработки вагонов на станциях

refleader.ru

Тепловые конденсационные электрические станции.

Количество просмотров публикации Тепловые конденсационные электрические станции. - 51

Общая энергетика.

Современные способы получения электрической энергии.

Тепловые конденсационные электрические станции.

Тепловые конденсационные электрические станции преобразовывают энергию органического топлива внача­ле в механическую, а затем в электрическую. Механиче­скую энергию упорядоченного вращения вала получают с помощью тепловых двигателœей, преобразующих энер­гию неупорядоченного движения молекул пара или газа.

Все тепловые двигатели подразделяются: по виду используемого рабочего тела - пар или газ;

по способу преобразования тепловой энергии в механическую— поршневой или ротор­ный (табл. 2.2). В поршневом способе для преобразова­ния используется потенциальная энергия рабочего тела,

Способ работы Рабочее тело
пар газ
Поршневой Паровая машина Двигатель внутреннего сгорания
Роторный Паровая турбина Газовая турбина

получаемая при его нагревании. В роторном способе используется кинœетическая энергия движущихся с боль­шой скоростью частиц рабочего тела.

Паровая машина была единственным двигателœем, используемым в промышленности и на транспорте в XVIII и XIX вв. Сегодня она практически не встречается, а широко применявшиеся в прошлом паро­возы и пароходы почти полностью сняты с производства.

Сегодня наибольшее распространение получили двигатели внутреннего сгорания, используемые на автомобильном транспорте. В стационарной энергетике двигатели внутреннего сгорания находят ограниченное применение.

На современных мощных ТЭС устанавливают паро­вые турбины,. Первая паровая турбина, предназначенная для вращения электрического трехфазного генератора, была установлена на Эльберфельдской электростанции в 1899 ᴦ. С тех пор началось развитие мощных паротур­бинных электростанций.

В качестве тепловых двигателœей на электрических станциях используют также газовые турбины.

Для повышения эффективности работы тепловых двигателœей стремятся максимально увеличить темпера­туру рабочего тела и его давление до значений, прием­лемых по условиям механической прочности конструк­ционных материалов.

В современных паровых установках, составляющих основу энергетики, используют пар при температуре— около 600°С и давлении 30 МПа. Для охлаждения рабо­чего тела (пара) обычно применяют холодную воду, которая понижает его температуру до 30— 40°С. При этом давле­ние пара резко падает.

На рис. 2.3 схемати­чески показаны стадии преобразования пер­вичной энергии органи­ческого топлива в элек­трическую.

Основные процессы теплового цикла паро­вых установок, как бы­ло показано ранее, про­исходят в следующих элементах: в парогенераторах — подвод теплоты, в турбинах — расширение пара, в кон­денсаторах— отвод теплоты, в турбинах — расширение пара, в конденсаторах — охлаждение. С помощью насо­сов высокого давления производится сжатие, при кото­ром конденсат нагнетается в парогенератор.

Схема тепловой станции, приведенная на рис. 2.1, более подробно показана на рис. 2.4 и 2.5 Работа стан­ции происходит следующим образом. Из бункера 1 (рис. 2.4) уголь поступает в дробильную установку 2, где он превращается в пыль. Угольная пыль вместе с

воздухом из воздуходувки 3' подается в топку S, Тепло­та͵ получаемая при сжигании угля, используется для преобразования воды в пар в трубах 4. Вода по змееви­ку 5 накачивается насосом 14 в барабан котла 5'. Пар, нагретый потоком горячих газов, уходящих в трубу 6, при высокой температуре и высоком давлении поступает сначала в первую ступень турбины 7, а затем во вторую ступень 8. В турбинœе энергия пара преобразуется в ме­ханическую энергию вращения ротора генератора 9, вы­рабатывающего электрическую энергию. Отработанный в турбинœе пар поступает в конденсатор 13, превращается в воду, которая насосом 14 подается в котел, и затем цикл превращения воды повторяется. Охлаждение пара в конденсаторе производится с помощью воды, забирае­мой из водоема (пруда или реки) 11, накачиваемой на­сосом 12 и вновь выбрасываемой в водоем. Продукты сгорания угля проходят через очистительные сооружения (не показанные на рис. 2.4), где выделяются зола, твер­дые частички несгоревшего угля и прочие примеси, а оставшиеся газы через трубу 6 выбрасываются в атмос­феру. Электрическая энергия, получаемая от статора генератора, отдается в электрическую систему через выводы 10.

На рис. 2.5 показана общая схема получения теплоты и преобразования ее в электрическую энергию.

Рассмотрим дополнительно работу одного из основ­ных элементов станции — парогенератора, в котором получают пар для питания станции. Современный паро­генератор представляет собой сложное техническое сооружение больших размеров, высота которого соизме­рима с высотой пятиэтажного дома. В топке парогенера­тора сжигается превращенный в мелкую пыль уголь, газ или распыленная нефть при температуре 1500—2000°С. Стоит сказать, что для наиболее полного сжигания топлива с помощью вентилятора в больших количествах подается подогре­тый воздух. Появляющаяся в процессе сгорания топлива теплота нагревает воду, превращает ее в пар и увеличи­вает его температуру и давление до расчетных значений. Использованные горячие газы дымососами вытягиваются из парогенератора и подаются в очистительные устройст­ва, а затем направляются в дымовую трубу. Вода, пода­ваемая в парогенератор, предварительно очищается от примесей, содержание которых допускается в меньшем количестве, чем в питьевой воде. Очистка воды произво­дится в специальных устройствах — питателях.

По конструктивному выполнению парогенераторы подразделяют на барабанные и прямоточные

В барабанном парогенераторе (рис. 2.6) имеется стальной барабан 3, в нижней части которого

находится вода, а в верхней части — пар. Размещено на реф.рфПо циркуляци­онной трубе 2 вода поступает в трубки экрана /, покры­вающие стенки топки 7.Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм сна­ружи и 32 мм внутри), для того чтобы они смогли вы­держать большое давление пара. В крупном парогенера­торе каждый час испаряются сотни тонн воды и в связи с этим трубки имеют общую длину до 50 км.

Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в эконо­майзере 5, а воздух перед подачей в топку подогревается горячими газами в воздухоподогревателœе 6. Выходящий из барабана пар дополнительно нагревается в паропере­гревателœе 4. _

В барабанном парогенераторе происходит естествен­ная циркуляция воды и пароводяной смеси за счёт их разных плотностей. С увеличением температуры и дав­ления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию.

В прямоточном парогенераторе барабана нет. Циркуляция воды и пара создается насосами (рис. 2.7). Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателœе 4 происходит подо­грев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Вместе с тем, к питательной воде, используе­мой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты.

Прямоточные котлы получили широкое распростране­ние, так как они дешевле ба­рабанных. У барабанных пароге­нераторов при высоких давлени­ях (свыше 20 МПа) нарушается естественная циркуляция воды и пара.

Прямоточные парогенераторы стали применяться в нашей стра­не в 30-е годы по инициативе Л. К. Рамзина, который разрабо­тал ряд оригинальных конструкций котлов.

Турбины. Полученный в паро­генераторах перегретый пар при температуре ~600°С и давлении 30 МПа по паропроводам переда­ется в сопла. Сопла предназначе­ны для преобразования внутренней энергии пара в ки­нетическую энергию упорядоченного движения молекул.

В случае если перед входом в сопло пар имел некоторую на­чальную скорость Со и начальное давление р1(рис. 2.8), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения с1и уменьшение давления до значения р2. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. В случае если турбина активная, то между ее рабочими лопатками расширения пара не про­исходит, следовательно, давление пара не меняется (рис. 2.8). Абсолютная скорость движения пара умень­шается от с1 до с2вследствие вращения турбины со скоростью υ.

Конструктивно обычно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток. Сопловые и рабочие лопатки закреплены на окружностях одинакового радиуса.

У реактивной турбины или ступени происхо­дит расширение пара, проходящего через каналы рабо­чих лопаток. Учитывая зависимость отпоказателœей расширения пара в каналах турбины характе­ризуют ступенями реактивности. Сегодня турбины выполняют многоступенчатыми, причем в одной и той же турбинœе бывают как активные, так и реактивные (с различной степе­нью реактивности) ступени.

Изменение параметров пара в реактивной ступени турбины по­казано на рис. 2.9. В соплах тур­бины происходит частичное рас­ширение пара до промежуточного давления р1. Дальнейшее расши­рение пара до давления p2 проис­ходит в каналах между лопатка­ми. Абсолютная скорость пара в сопле увеличивается до значения сi, а в каналах между лопатками уменьшается из-за вращения лопаток до зна­чения С2.

Общий вид лопаток мощной паровой турбины пока­зан на рис. 2.10.

В реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные рас­ширением пара.

Появление реактивной силы можно показать на сле­дующем примере. Пусть в бак, установленный на телœежке (рис. 2.11), подведен пар под давлением, который в положении I равномерно действует на всœе стенки. В случае если убрать пробку, то равновесие бака сразу же нарушится. На правую стенку будет действовать неизменная сила, а сила, действующая на левую стенку, резко уменьшится, так как давление окружающей среды меньше, чем давление в баке. Пар устремится из бака, а телœежка под действием реактивной силы начнет двигаться вправо (положение II).

(Конденсаторы. Пар, выходящий из турбины, направ­ляют для охлаждения и конденсации в специальное устройство называемое конденсатором. Конденсатор пред­ставляет собой цилиндрический корпус, внутри которого имеется большое число латунных трубок. По трубкам протекает охлаждающая вода, поступающая в конден­сатор обычно при температуре 10—15°С и выходящая из него при температуре 20—25°С. Пар обтекает трубки сверху вниз, конденсируется и снизу удаляется. Давле­ние в конденсаторе поддерживается в пределах 3— 4 кПа, что достигается охлаждением пара.

Расход охлаждающей воды составляет примерно 50—100 кг на 1 кг пара. На электростанции мощностью 1 ГВт расходуется 40 м3/с охлаждающей воды, что при­мерно равно расходу воды в Москве-реке.

В случае если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной. В случаях, когда воды в реке не хватает, сооружают пруд. С одной стороны пруда вода подается в конденса­тор, а с другой стороны пруда сбрасывается нагретая в конденсаторе вода.

В замкнутых системах водоснабжения для охлажде­ния воды, нагретой в конденсаторе, сооружают градир­ни, представляющие собой устройства высотой при­мерно 50 м. Вода вытека­ет струйками из отверстий лотков, разбрызгивается и, стекая вниз, охлажда­ется. Внизу расположен бассейн, в котором вода собирается и затем насо­сами подается в конден­сатор.

Тепловой баланс кон­денсационной электриче­ской станции. На ТЭС происходят многократные преобразования энергии, сопровождающиеся поте­рями. Экономичность про­цесса преобразования хи­мической энергии топлива в электрическую и потери на различных стадиях производства можно выявить из ана­лиза теплового баланса электрической станции. В случае если за 100% принять химическую энергию, получаемую при сжигании угля в топках котлов, то в среднем только 25% этой энергии превращается в электрическую (рис. 2.12). Наибольшие потери теплоты происходят в конденсаторе. С охлаждающей водой конденсатора уносится 55% теп­лоты.

referatwork.ru

Тепловые конденсационные электрические станции (КЭС) — КиберПедия

 

На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. В отечественной энергетике на долю КЭС приходится до 60 % выработки электроэнергии.

Основными особенностями КЭС являются: удаленность от потребителей электроэнергии, что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях, и блочный принцип построения электростанции. Мощность современных КЭС обычно такова, что каждая из них может обеспечить электроэнергией крупный район страны. Отсюда еще одно название электростанций этого типа — государственная районная электрическая станция (ГРЭС).

На рисунке 7.1 показан общий вид современной КЭС, а на рисунке 7.2 — упрощенная принципиальная технологическая схема энергоблока КЭС.

 

1 – главный корпус; 2 – вспомогательный корпус; 3 – открытое

распределительное устройство; 4 – склад топлива

Рисунок 7.1 - Общий вид современной КЭС

1 - склад топлива и система топливопередачи; 2 – система топливо- приготовления; 3 – котёл; 4 – турбина; 5 – конденсатор; 6 – циркуляционный насос; 7 – конденсатный насос; 8 – питательный насос; 9 – горелки котла; 10 – вентилятор; 11 – дымосос; 12 – воздухоподогреватель; 13 – водяной экономайзер; 14 – подогреватель низкого давления; 15 – деаэратор; 16 – подогреватель высокого давления

 

Рисунок 7.2 - Принципиальная технологическая схема КЭС

 

 

Энергоблок представляет собой как бы отдельную электростанцию со своим основным и вспомогательным оборудованием и центром управления — блочным щитом. Связей между соседними энергоблоками по технологическим линиям обычно не предусматривается.

Построение КЭС по блочному принципу дает определенные технико-экономические преимущества, которые заключаются в следующем:

• облегчается применение пара высоких и сверхвысоких параметров вследствие более простой системы паропроводов, что особенно важно для освоения агрегатов большой мощности;

• упрощается и становится более четкой технологическая схема электростанции, вследствие чего увеличивается надежность работы и облегчается эксплуатация;

• уменьшается, а в отдельных случаях может вообще отсутствовать резервное тепломеханическое оборудование;

• сокращается объем строительных и монтажных работ;

• уменьшаются капитальные затраты на сооружение электростанции;

• обеспечивается удобное расширение электростанции, причем новые энергоблоки при необходимости могут отличаться от предыдущих по своим параметрам.

Технологическая схема КЭС состоит из нескольких систем: топливоподачи; топливоприготовления; основного пароводяного контура вместе с парогенератором и турбиной; циркуляционного водоснабжения; водоподготовки; золоулавливания и золоудаления и, наконец, электрической части станции (рисунок 1.2).

Механизмы и установки, обеспечивающие нормальное функционирование всех этих элементов, входят в так называемую систему собственных нужд станции (энергоблока).

Наибольшие энергетические потери на КЭС имеют место в основном пароводяном контуре, а именно в конденсаторе, где отработавший пар, содержащий еще большое количество тепла, затраченного при парообразовании, отдает его циркуляционной воде. Тепло с циркуляционной водой уносится в водоемы, т. е. теряется. Эти потери в основном определяют КПД электростанции, составляющий даже для самых современных КЭС не более 40-42%.

Электроэнергия, вырабатываемая электростанцией, выдается на напряжении 110-750 кВ и лишь часть ее отбирается на собственные нужды через трансформатор собственных нужд, подключенный к выводам генератора.

Генераторы и повышающие трансформаторы соединяют в энергоблоки и подключают к распределительному устройству высокого напряжения, которое обычно выполняется открытым (ОРУ). Варианты расположения основных сооружений могут быть различными.

Современные тепловые электростанции оснащаются в основном энергоблоками 200 - 800 МВт. Применение крупных агрегатов позволяет обеспечить быстрое наращивание мощностей электростанций, приемлемые себестоимость электроэнергии и стоимость установленного киловатта мощности станции.

Наиболее крупные КЭС в настоящее время имеют мощность до 4 тыс. МВт. Сооружаются электростанции мощностью 4 - 6,4 тыс. МВт с энергоблоками 500 и 800 МВт. Предельная мощность КЭС определяется условиями водоснабжения и влиянием выбросов станции на окружающую среду.

cyberpedia.su

Тепловые конденсационные электрические станции — Мегаобучалка

Общая энергетика.

Современные способы получения электрической энергии.

Тепловые конденсационные электрические станции.

Тепловые конденсационные электрические станции преобразовывают энергию органического топлива внача­ле в механическую, а затем в электрическую. Механиче­скую энергию упорядоченного вращения вала получают с помощью тепловых двигателей, преобразующих энер­гию неупорядоченного движения молекул пара или газа.

Все тепловые двигатели подразделяются:по виду используемого рабочего тела - пар или газ;

по способу преобразования тепловой энергии в механическую— поршневой или ротор­ный (табл. 2.2). В поршневом способе для преобразова­ния используется потенциальная энергия рабочего тела,

Способ работы Рабочее тело
пар газ
Поршневой Паровая машина Двигатель внутреннего сгорания
Роторный Паровая турбина Газовая турбина

 

получаемая при его нагревании. В роторном способе используется кинетическая энергия движущихся с боль­шой скоростью частиц рабочего тела.

Паровая машина была единственным двигателем, используемым в промышленности и на транспорте в XVIII и XIX вв. В настоящее время она практически не встречается, а широко применявшиеся в прошлом паро­возы и пароходы почти полностью сняты с производства.

В настоящее время наибольшее распространение получили двигатели внутреннего сгорания, используемые на автомобильном транспорте. В стационарной энергетике двигатели внутреннего сгорания находят ограниченное применение.

На современных мощных ТЭС устанавливают паро­вые турбины,. Первая паровая турбина, предназначенная для вращения электрического трехфазного генератора, была установлена на Эльберфельдской электростанции в 1899 г. С тех пор началось развитие мощных паротур­бинных электростанций.

В качестве тепловых двигателей на электрических станциях используют также газовые турбины.

Для повышения эффективности работы тепловых двигателей стремятся максимально увеличить темпера­туру рабочего тела и его давление до значений, прием­лемых по условиям механической прочности конструк­ционных материалов.

В современных паровых установках, составляющих основу энергетики, используют пар при температуре— около 600°С и давлении 30 МПа. Для охлаждения рабо­чего тела (пара) обычно применяют холодную воду, которая понижает его температуру до 30— 40°С. При этом давле­ние пара резко падает.

На рис. 2.3 схемати­чески показаны стадии преобразования пер­вичной энергии органи­ческого топлива в элек­трическую.

Основные процессы теплового цикла паро­вых установок, как бы­ло показано ранее, про­исходят в следующих элементах: в парогенераторах — подвод теплоты, в турбинах — расширение пара, в кон­денсаторах— отвод теплоты, в турбинах — расширение пара, в конденсаторах — охлаждение. С помощью насо­сов высокого давления производится сжатие, при кото­ром конденсат нагнетается в парогенератор.

Схема тепловой станции, приведенная на рис. 2.1, более подробно показана на рис. 2.4 и 2.5 Работа стан­ции происходит следующим образом. Из бункера 1 (рис. 2.4) уголь поступает в дробильную установку 2, где он превращается в пыль. Угольная пыль вместе с

 

воздухом из воздуходувки 3' подается в топку S, Тепло­та, получаемая при сжигании угля, используется для преобразования воды в пар в трубах 4. Вода по змееви­ку 5 накачивается насосом 14 в барабан котла 5'. Пар, нагретый потоком горячих газов, уходящих в трубу 6, при высокой температуре и высоком давлении поступает сначала в первую ступень турбины 7, а затем во вторую ступень 8. В турбине энергия пара преобразуется в ме­ханическую энергию вращения ротора генератора 9, вы­рабатывающего электрическую энергию. Отработанный в турбине пар поступает в конденсатор 13, превращается в воду, которая насосом 14 подается в котел, и затем цикл превращения воды повторяется. Охлаждение пара в конденсаторе производится с помощью воды, забирае­мой из водоема (пруда или реки) 11, накачиваемой на­сосом 12 и вновь выбрасываемой в водоем. Продукты сгорания угля проходят через очистительные сооружения (не показанные на рис. 2.4), где выделяются зола, твер­дые частички несгоревшего угля и прочие примеси, а оставшиеся газы через трубу 6 выбрасываются в атмос­феру. Электрическая энергия, получаемая от статора генератора, отдается в электрическую систему через выводы 10.

На рис. 2.5 показана общая схема получения теплоты и преобразования ее в электрическую энергию.

 

Рассмотрим дополнительно работу одного из основ­ных элементов станции — парогенератора, в котором получают пар для питания станции. Современный паро­генератор представляет собой сложное техническое сооружение больших размеров, высота которого соизме­рима с высотой пятиэтажного дома. В топке парогенера­тора сжигается превращенный в мелкую пыль уголь, газ или распыленная нефть при температуре 1500—2000°С. Для наиболее полного сжигания топлива с помощью вентилятора в больших количествах подается подогре­тый воздух. Появляющаяся в процессе сгорания топлива теплота нагревает воду, превращает ее в пар и увеличи­вает его температуру и давление до расчетных значений. Использованные горячие газы дымососами вытягиваются из парогенератора и подаются в очистительные устройст­ва, а затем направляются в дымовую трубу. Вода, пода­ваемая в парогенератор, предварительно очищается от примесей, содержание которых допускается в меньшем количестве, чем в питьевой воде. Очистка воды произво­дится в специальных устройствах — питателях.

По конструктивному выполнению парогенераторы подразделяют на барабанные и прямоточные

В барабанном парогенераторе (рис. 2.6) имеется стальной барабан 3, в нижней части которого

находится вода, а в верхней части — пар. По циркуляци­онной трубе 2 вода поступает в трубки экрана /, покры­вающие стенки топки 7.Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм сна­ружи и 32 мм внутри), для того чтобы они смогли вы­держать большое давление пара. В крупном парогенера­торе каждый час испаряются сотни тонн воды и поэтому трубки имеют общую длину до 50 км.

Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в эконо­майзере 5, а воздух перед подачей в топку подогреваетсягорячими газами в воздухоподогревателе 6. Выходящийиз барабана пар дополнительно нагревается в паропере­гревателе 4. _

В барабанном парогенераторе происходит естествен­ная циркуляция воды и пароводяной смеси за счет их разных плотностей. С увеличением температуры и дав­ления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию.

В прямоточном парогенераторе барабана нет. Циркуляция воды и пара создается насосами (рис. 2.7). Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателе 4 происходит подо­грев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Кроме того, к питательной воде, используе­мой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты.

Прямоточные котлы получили широкое распростране­ние, так как они дешевле ба­рабанных. У барабанных пароге­нераторов при высоких давлени­ях (свыше 20 МПа) нарушается естественная циркуляция воды и пара.

Прямоточные парогенераторы стали применяться в нашей стра­не в 30-е годы по инициативе Л. К. Рамзина, который разрабо­тал ряд оригинальных конструкций котлов.

Турбины. Полученный в паро­генераторах перегретый пар при температуре ~600°С и давлении 30 МПа по паропроводам переда­ется в сопла. Сопла предназначе­ны для преобразования внутренней энергии пара в ки­нетическую энергию упорядоченного движения молекул.

Если перед входом в сопло пар имел некоторую на­чальную скорость Со и начальное давление р1(рис. 2.8), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения с1и уменьшение давления до значения р2. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не про­исходит, следовательно, давление пара не меняется (рис. 2.8). Абсолютная скорость движения пара умень­шается от с1 до с2вследствие вращения турбины со скоростью υ.

Конструктивно обычно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток. Сопловые и рабочие лопатки закреплены на окружностях одинакового радиуса.

У реактивной турбины или ступени происхо­дит расширение пара, проходящего через каналы рабо­чих лопаток. В зависимости от показателей расширения пара в каналах турбины характе­ризуют ступенями реактивности. В настоящее время турбины выполняют многоступенчатыми, причем в одной и той же турбине могут быть как активные, так и реактивные (с различной степе­нью реактивности) ступени.

Изменение параметров пара в реактивной ступени турбины по­казано на рис. 2.9. В соплах тур­бины происходит частичное рас­ширение пара до промежуточного давления р1. Дальнейшее расши­рение пара до давления p2 проис­ходит в каналах между лопатка­ми. Абсолютная скорость пара в сопле увеличивается до значения сi, а в каналах между лопатками уменьшается из-за вращения лопаток до зна­чения С2.

Общий вид лопаток мощной паровой турбины пока­зан на рис. 2.10.

В реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные рас­ширением пара.

Появление реактивной силы можно показать на сле­дующем примере. Пусть в бак, установленный на тележке (рис. 2.11), подведен пар под давлением, который в положении I равномерно действует на все стенки. Если убрать пробку, то равновесие бака сразу же нарушится. На правую стенку будет действовать неизменная сила, а сила, действующая на левую стенку, резко уменьшится, так как давление окружающей среды меньше, чем давление в баке. Пар устремится из бака, а тележка под действием реактивной силы начнет двигаться вправо (положение II).

(Конденсаторы. Пар, выходящий из турбины, направ­ляют для охлаждения и конденсации в специальное устройство называемое конденсатором. Конденсатор пред­ставляет собой цилиндрический корпус, внутри которого имеется большое число латунных трубок. По трубкам протекает охлаждающая вода, поступающая в конден­сатор обычно при температуре 10—15°С и выходящая из него при температуре 20—25°С. Пар обтекает трубки сверху вниз, конденсируется и снизу удаляется. Давле­ние в конденсаторе поддерживается в пределах 3— 4 кПа, что достигается охлаждением пара.

Расход охлаждающей воды составляет примерно 50—100 кг на 1 кг пара. На электростанции мощностью 1 ГВт расходуется 40 м3/с охлаждающей воды, что при­мерно равно расходу воды в Москве-реке.

Если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной. В случаях, когда воды в реке не хватает, сооружают пруд. С одной стороны пруда вода подается в конденса­тор, а с другой стороны пруда сбрасывается нагретая в конденсаторе вода.

В замкнутых системах водоснабжения для охлажде­ния воды, нагретой в конденсаторе, сооружают градир­ни, представляющие собой устройства высотой при­мерно 50 м. Вода вытека­ет струйками из отверстий лотков, разбрызгивается и, стекая вниз, охлажда­ется. Внизу расположен бассейн, в котором вода собирается и затем насо­сами подается в конден­сатор.

Тепловой баланс кон­денсационной электриче­ской станции. На ТЭС происходят многократные преобразования энергии, сопровождающиеся поте­рями. Экономичность про­цесса преобразования хи­мической энергии топлива в электрическую и потери на различных стадиях производства можно выявить из ана­лиза теплового баланса электрической станции. Если за 100% принять химическую энергию, получаемую при сжигании угля в топках котлов, то в среднем только 25% этой энергии превращается в электрическую (рис. 2.12). Наибольшие потери теплоты происходят в конденсаторе. С охлаждающей водой конденсатора уносится 55% теп­лоты.

 

 

ТЕПЛОЭЛЕКТРОЦЕНТРАЛИ.

Производство электрической энергии на ТЭС сопро­вождается большими потерями теплоты. В то же время многим отраслям промышленности таким, как химиче­ская, текстильная, пищевая, металлургическая, и ряду других теплота необходима для технологических целей. Для отопления жилых зданий требуется в значительном количестве горячая вода.

В нашей стране больше ½ всего добываемого топли­ва расходуется на тепловые нужды предприятий. Ориентировочное представление о потреблении теплоты в промышленности можно получить, рассмотрев потребно­сти в нем какого-либо конкретного предприятия. Напри­мер, на автомобилестроительном заводе приблизительно ¾ всей потребляемой теплоты идет на отопление, венти­ляцию и бытовые нужды и только ¼ расходуется на про­изводственные цели. Противоположная ситуация на азот­нотуковом комбинате — предприятии химической про­мышленности. Здесь примерно ¾ всей потребляемой теплоты расходуется на производственные цели. Удов­летворение потребностей в теплоте сооружением неболь­ших индивидуальных котельных, как правило, не эконо­мично, так как такие установки работают с небольшими КПД и технически менее совершенны, чем крупные ус­тановки современных мощных ТЭС.

В этих условиях естественно использовать пар, полу­чаемый в парогенераторах на тепловых станциях, как для выработки электроэнергии, так и для теплофикации потребителей. Электростанции, выполняющие такие функции, называются теплоэлектроцентралями.

Отработанный в турбинах конденсационных станций пар имеет температуру 25—30°С, поэтому он не пригоден для использования в технологических процессах на пред­приятиях.» Во многих производствах требуется пар, име­ющий давление 0,5—0,9 МПа, а иногда и до 2 МПа длят приведения в движение прессов, паровых молотов, тур­бин. Иногда требуется горячая вода, нагретая до темпе­ратуры 70—150°С.

Для получения пара с необходимыми для потребите­лей параметрами используют специальные турбины с промежуточными отборами пара. В таких турбинах, по­сле того как часть энергии пара израсходуется на при­ведение в движение турбины и параметры его понизят­ся, производится отбор некоторой доли пара для потре­бителей. Оставшаяся доля пара далее обычным способом используется в турбине и затем поступает в конденсатор. Поскольку для части пара перепад давления оказывает­ся меньшим, несколько возрастает расход топлива на выработку электроэнергии. Так, если при перепаде дав­ления от 9000 до 4 кПа на выработку 1 кВт-ч электро­энергии требуется 4 кг пара, то при увеличении давления отработанного пара до 120 кПа необходимое количество пара составляет 5,5 кг. Однако такое увеличение расхода пара на выработку электроэнергии на ТЭЦ и связанное с этим увеличение расхода топлива в конечном счете ока­зываются меньшими по сравнению с расходом топлива в случае раз­дельной выработки электроэнергии и выра­ботки ,теплоты на не­больших котельных ус­тановках.

Благодаря более полному использова­нию тепловой энергии КПД ТЭЦ достигает 60-65%, а КПД КЭС —не более 40%. На рис. 2.13 приведен примерный тепловой баланс ТЭЦ.

Горячая вода и пар под давлением, дости­гающем в отдельных случаях 3 МПа, доставляются потребителям по трубо­проводам. Совокупность трубопроводов, предназначен­ных для передачи теплоты, называется тепловой сетью. Экономия топлива связана с совершенствованием теп­ловой изоляции, поэтому повышение ее качества отно­сится к одной из важнейших задач теплофикации.

Эффективность работы системы теплоснабжения во многом зависит от рационального размещения ТЭЦ, которые стремятся по возможности приблизить к крупным потребителям теплоты и электрической энергии, так как передача теплоты в виде пара неэкономична на расстояниях свыше 5—7 км. На решение вопроса о целесо­образных местах расположения ТЭЦ в последнее время значительно влияет загрязнение ими окружающей среды.

Централизованное теплоснабжение на базе комбини­рованной выработки теплоты и электрической энергии имеет большие преимущества: обеспечивает основную долю потребности в теплоте промышленного и жилищно-коммунального хозяйства, уменьшает расходование топ­ливно-энергетических ресурсов, а также материальных, и трудовых затрат в системах теплоснабжения.

Однако при максимальной централизации теплоснаб­жения на ТЭЦ можно выработать только 25—30% требу­емой электроэнергии. Работа же конденсационных стан­ций определяется только условиями выработки электро­энергии, что делает весьма благоприятными концентра­цию больших электрических мощностей и позволяет быстро наращивать электроэнергетический потенциал страны. Поэтому в настоящее время и в будущем будут строиться конденсационные станции, несмотря на те преимущества, которые имеет выработка электроэнергии -на ТЭЦ. Развитию теплофикации в СССР придается большое значение. Так, уже в начале девятой пятилетки установленная электрическая мощность теплофикацион­ных агрегатов превысила 45 млн. кВт, что составило око­ло ⅓ установленной мощности всех ТЭС страны, работа­ющих на органическом топливе.

 

megaobuchalka.ru

Тепловые конденсационные электрические станции.

Количество просмотров публикации Тепловые конденсационные электрические станции. - 98

Общая энергетика.

Современные способы получения электрической энергии.

Тепловые конденсационные электрические станции.

Тепловые конденсационные электрические станции преобразовывают энергию органического топлива внача­ле в механическую, а затем в электрическую. Механиче­скую энергию упорядоченного вращения вала получают с помощью тепловых двигателœей, преобразующих энер­гию неупорядоченного движения молекул пара или газа.

Все тепловые двигатели подразделяются: по виду используемого рабочего тела - пар или газ;

по способу преобразования тепловой энергии в механическую— поршневой или ротор­ный (табл. 2.2). В поршневом способе для преобразова­ния используется потенциальная энергия рабочего тела,

Способ работы Рабочее тело
пар газ
Поршневой Паровая машина Двигатель внутреннего сгорания
Роторный Паровая турбина Газовая турбина

получаемая при его нагревании. В роторном способе используется кинœетическая энергия движущихся с боль­шой скоростью частиц рабочего тела.

Паровая машина была единственным двигателœем, используемым в промышленности и на транспорте в XVIII и XIX вв. Сегодня она практически не встречается, а широко применявшиеся в прошлом паро­возы и пароходы почти полностью сняты с производства.

Сегодня наибольшее распространение получили двигатели внутреннего сгорания, используемые на автомобильном транспорте. В стационарной энергетике двигатели внутреннего сгорания находят ограниченное применение.

На современных мощных ТЭС устанавливают паро­вые турбины,. Первая паровая турбина, предназначенная для вращения электрического трехфазного генератора, была установлена на Эльберфельдской электростанции в 1899 ᴦ. С тех пор началось развитие мощных паротур­бинных электростанций.

В качестве тепловых двигателœей на электрических станциях используют также газовые турбины.

Для повышения эффективности работы тепловых двигателœей стремятся максимально увеличить темпера­туру рабочего тела и его давление до значений, прием­лемых по условиям механической прочности конструк­ционных материалов.

В современных паровых установках, составляющих основу энергетики, используют пар при температуре— около 600°С и давлении 30 МПа. Для охлаждения рабо­чего тела (пара) обычно применяют холодную воду, которая понижает его температуру до 30— 40°С. При этом давле­ние пара резко падает.

На рис. 2.3 схемати­чески показаны стадии преобразования пер­вичной энергии органи­ческого топлива в элек­трическую.

Основные процессы теплового цикла паро­вых установок, как бы­ло показано ранее, про­исходят в следующих элементах: в парогенераторах — подвод теплоты, в турбинах — расширение пара, в кон­денсаторах— отвод теплоты, в турбинах — расширение пара, в конденсаторах — охлаждение. С помощью насо­сов высокого давления производится сжатие, при кото­ром конденсат нагнетается в парогенератор.

Схема тепловой станции, приведенная на рис. 2.1, более подробно показана на рис. 2.4 и 2.5 Работа стан­ции происходит следующим образом. Из бункера 1 (рис. 2.4) уголь поступает в дробильную установку 2, где он превращается в пыль. Угольная пыль вместе с

воздухом из воздуходувки 3' подается в топку S, Тепло­та͵ получаемая при сжигании угля, используется для преобразования воды в пар в трубах 4. Вода по змееви­ку 5 накачивается насосом 14 в барабан котла 5'. Пар, нагретый потоком горячих газов, уходящих в трубу 6, при высокой температуре и высоком давлении поступает сначала в первую ступень турбины 7, а затем во вторую ступень 8. В турбинœе энергия пара преобразуется в ме­ханическую энергию вращения ротора генератора 9, вы­рабатывающего электрическую энергию. Отработанный в турбинœе пар поступает в конденсатор 13, превращается в воду, которая насосом 14 подается в котел, и затем цикл превращения воды повторяется. Охлаждение пара в конденсаторе производится с помощью воды, забирае­мой из водоема (пруда или реки) 11, накачиваемой на­сосом 12 и вновь выбрасываемой в водоем. Продукты сгорания угля проходят через очистительные сооружения (не показанные на рис. 2.4), где выделяются зола, твер­дые частички несгоревшего угля и прочие примеси, а оставшиеся газы через трубу 6 выбрасываются в атмос­феру. Электрическая энергия, получаемая от статора генератора, отдается в электрическую систему через выводы 10.

На рис. 2.5 показана общая схема получения теплоты и преобразования ее в электрическую энергию.

Рассмотрим дополнительно работу одного из основ­ных элементов станции — парогенератора, в котором получают пар для питания станции. Современный паро­генератор представляет собой сложное техническое сооружение больших размеров, высота которого соизме­рима с высотой пятиэтажного дома. В топке парогенера­тора сжигается превращенный в мелкую пыль уголь, газ или распыленная нефть при температуре 1500—2000°С. Стоит сказать, что для наиболее полного сжигания топлива с помощью вентилятора в больших количествах подается подогре­тый воздух. Появляющаяся в процессе сгорания топлива теплота нагревает воду, превращает ее в пар и увеличи­вает его температуру и давление до расчетных значений. Использованные горячие газы дымососами вытягиваются из парогенератора и подаются в очистительные устройст­ва, а затем направляются в дымовую трубу. Вода, пода­ваемая в парогенератор, предварительно очищается от примесей, содержание которых допускается в меньшем количестве, чем в питьевой воде. Очистка воды произво­дится в специальных устройствах — питателях.

По конструктивному выполнению парогенераторы подразделяют на барабанные и прямоточные

В барабанном парогенераторе (рис. 2.6) имеется стальной барабан 3, в нижней части которого

находится вода, а в верхней части — пар. Размещено на реф.рфПо циркуляци­онной трубе 2 вода поступает в трубки экрана /, покры­вающие стенки топки 7.Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм сна­ружи и 32 мм внутри), для того чтобы они смогли вы­держать большое давление пара. В крупном парогенера­торе каждый час испаряются сотни тонн воды и в связи с этим трубки имеют общую длину до 50 км.

Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в эконо­майзере 5, а воздух перед подачей в топку подогревается горячими газами в воздухоподогревателœе 6. Выходящий из барабана пар дополнительно нагревается в паропере­гревателœе 4. _

В барабанном парогенераторе происходит естествен­ная циркуляция воды и пароводяной смеси за счёт их разных плотностей. С увеличением температуры и дав­ления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию.

В прямоточном парогенераторе барабана нет. Циркуляция воды и пара создается насосами (рис. 2.7). Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателœе 4 происходит подо­грев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Вместе с тем, к питательной воде, используе­мой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты.

Прямоточные котлы получили широкое распростране­ние, так как они дешевле ба­рабанных. У барабанных пароге­нераторов при высоких давлени­ях (свыше 20 МПа) нарушается естественная циркуляция воды и пара.

Прямоточные парогенераторы стали применяться в нашей стра­не в 30-е годы по инициативе Л. К. Рамзина, который разрабо­тал ряд оригинальных конструкций котлов.

Турбины. Полученный в паро­генераторах перегретый пар при температуре ~600°С и давлении 30 МПа по паропроводам переда­ется в сопла. Сопла предназначе­ны для преобразования внутренней энергии пара в ки­нетическую энергию упорядоченного движения молекул.

В случае если перед входом в сопло пар имел некоторую на­чальную скорость Со и начальное давление р1(рис. 2.8), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения с1и уменьшение давления до значения р2. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. В случае если турбина активная, то между ее рабочими лопатками расширения пара не про­исходит, следовательно, давление пара не меняется (рис. 2.8). Абсолютная скорость движения пара умень­шается от с1 до с2вследствие вращения турбины со скоростью υ.

Конструктивно обычно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток. Сопловые и рабочие лопатки закреплены на окружностях одинакового радиуса.

У реактивной турбины или ступени происхо­дит расширение пара, проходящего через каналы рабо­чих лопаток. Учитывая зависимость отпоказателœей расширения пара в каналах турбины характе­ризуют ступенями реактивности. Сегодня турбины выполняют многоступенчатыми, причем в одной и той же турбинœе бывают как активные, так и реактивные (с различной степе­нью реактивности) ступени.

Изменение параметров пара в реактивной ступени турбины по­казано на рис. 2.9. В соплах тур­бины происходит частичное рас­ширение пара до промежуточного давления р1. Дальнейшее расши­рение пара до давления p2 проис­ходит в каналах между лопатка­ми. Абсолютная скорость пара в сопле увеличивается до значения сi, а в каналах между лопатками уменьшается из-за вращения лопаток до зна­чения С2.

Общий вид лопаток мощной паровой турбины пока­зан на рис. 2.10.

В реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные рас­ширением пара.

Появление реактивной силы можно показать на сле­дующем примере. Пусть в бак, установленный на телœежке (рис. 2.11), подведен пар под давлением, который в положении I равномерно действует на всœе стенки. В случае если убрать пробку, то равновесие бака сразу же нарушится. На правую стенку будет действовать неизменная сила, а сила, действующая на левую стенку, резко уменьшится, так как давление окружающей среды меньше, чем давление в баке. Пар устремится из бака, а телœежка под действием реактивной силы начнет двигаться вправо (положение II).

(Конденсаторы. Пар, выходящий из турбины, направ­ляют для охлаждения и конденсации в специальное устройство называемое конденсатором. Конденсатор пред­ставляет собой цилиндрический корпус, внутри которого имеется большое число латунных трубок. По трубкам протекает охлаждающая вода, поступающая в конден­сатор обычно при температуре 10—15°С и выходящая из него при температуре 20—25°С. Пар обтекает трубки сверху вниз, конденсируется и снизу удаляется. Давле­ние в конденсаторе поддерживается в пределах 3— 4 кПа, что достигается охлаждением пара.

Расход охлаждающей воды составляет примерно 50—100 кг на 1 кг пара. На электростанции мощностью 1 ГВт расходуется 40 м3/с охлаждающей воды, что при­мерно равно расходу воды в Москве-реке.

В случае если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной. В случаях, когда воды в реке не хватает, сооружают пруд. С одной стороны пруда вода подается в конденса­тор, а с другой стороны пруда сбрасывается нагретая в конденсаторе вода.

В замкнутых системах водоснабжения для охлажде­ния воды, нагретой в конденсаторе, сооружают градир­ни, представляющие собой устройства высотой при­мерно 50 м. Вода вытека­ет струйками из отверстий лотков, разбрызгивается и, стекая вниз, охлажда­ется. Внизу расположен бассейн, в котором вода собирается и затем насо­сами подается в конден­сатор.

Тепловой баланс кон­денсационной электриче­ской станции. На ТЭС происходят многократные преобразования энергии, сопровождающиеся поте­рями. Экономичность про­цесса преобразования хи­мической энергии топлива в электрическую и потери на различных стадиях производства можно выявить из ана­лиза теплового баланса электрической станции. В случае если за 100% принять химическую энергию, получаемую при сжигании угля в топках котлов, то в среднем только 25% этой энергии превращается в электрическую (рис. 2.12). Наибольшие потери теплоты происходят в конденсаторе. С охлаждающей водой конденсатора уносится 55% теп­лоты.

referatwork.ru

Тепловые конденсационные электрические станции (КЭС)

 

На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. В отечественной энергетике на долю КЭС приходится до 60 % выработки электроэнергии.

Основными особенностями КЭС являются: удаленность от потребителей электроэнергии, что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях, и блочный принцип построения электростанции. Мощность современных КЭС обычно такова, что каждая из них может обеспечить электроэнергией крупный район страны. Отсюда еще одно название электростанций этого типа — государственная районная электрическая станция (ГРЭС).

На рисунке 7.1 показан общий вид современной КЭС, а на рисунке 7.2 — упрощенная принципиальная технологическая схема энергоблока КЭС.

 

1 – главный корпус; 2 – вспомогательный корпус; 3 – открытое

распределительное устройство; 4 – склад топлива

Рисунок 7.1 - Общий вид современной КЭС

1 - склад топлива и система топливопередачи; 2 – система топливо- приготовления; 3 – котёл; 4 – турбина; 5 – конденсатор; 6 – циркуляционный насос; 7 – конденсатный насос; 8 – питательный насос; 9 – горелки котла; 10 – вентилятор; 11 – дымосос; 12 – воздухоподогреватель; 13 – водяной экономайзер; 14 – подогреватель низкого давления; 15 – деаэратор; 16 – подогреватель высокого давления

 

Рисунок 7.2 - Принципиальная технологическая схема КЭС

 

 

Энергоблок представляет собой как бы отдельную электростанцию со своим основным и вспомогательным оборудованием и центром управления — блочным щитом. Связей между соседними энергоблоками по технологическим линиям обычно не предусматривается.

Построение КЭС по блочному принципу дает определенные технико-экономические преимущества, которые заключаются в следующем:

• облегчается применение пара высоких и сверхвысоких параметров вследствие более простой системы паропроводов, что особенно важно для освоения агрегатов большой мощности;

• упрощается и становится более четкой технологическая схема электростанции, вследствие чего увеличивается надежность работы и облегчается эксплуатация;

• уменьшается, а в отдельных случаях может вообще отсутствовать резервное тепломеханическое оборудование;

• сокращается объем строительных и монтажных работ;

• уменьшаются капитальные затраты на сооружение электростанции;

• обеспечивается удобное расширение электростанции, причем новые энергоблоки при необходимости могут отличаться от предыдущих по своим параметрам.

Технологическая схема КЭС состоит из нескольких систем: топливоподачи; топливоприготовления; основного пароводяного контура вместе с парогенератором и турбиной; циркуляционного водоснабжения; водоподготовки; золоулавливания и золоудаления и, наконец, электрической части станции (рисунок 7.2).

Механизмы и установки, обеспечивающие нормальное функционирование всех этих элементов, входят в так называемую систему собственных нужд станции (энергоблока).

Наибольшие энергетические потери на КЭС имеют место в основном пароводяном контуре, а именно в конденсаторе, где отработавший пар, содержащий еще большое количество тепла, затраченного при парообразовании, отдает его циркуляционной воде. Тепло с циркуляционной водой уносится в водоемы, т. е. теряется. Эти потери в основном определяют КПД электростанции, составляющий даже для самых современных КЭС не более 40-42%.

Электроэнергия, вырабатываемая электростанцией, выдается на напряжении 110-750 кВ и лишь часть ее отбирается на собственные нужды через трансформатор собственных нужд, подключенный к выводам генератора.

Генераторы и повышающие трансформаторы соединяют в энергоблоки и подключают к распределительному устройству высокого напряжения, которое обычно выполняется открытым (ОРУ). Варианты расположения основных сооружений могут быть различными.

Современные тепловые электростанции оснащаются в основном энергоблоками 200 - 800 МВт. Применение крупных агрегатов позволяет обеспечить быстрое наращивание мощностей электростанций, приемлемые себестоимость электроэнергии и стоимость установленного киловатта мощности станции.

Наиболее крупные КЭС в настоящее время имеют мощность до 4 тыс. МВт. Сооружаются электростанции мощностью 4 - 6,4 тыс. МВт с энергоблоками 500 и 800 МВт. Предельная мощность КЭС определяется условиями водоснабжения и влиянием выбросов станции на окружающую среду.

stydopedia.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта