Содержание
Электрическое напряжение: объяснение простыми словами
Электрическим напряжением обозначается физическая величина, равная разности потенциалов между двумя точками электрического поля при перемещении единичного заряда. Для простых пользователь такое обозначение не всегда понятно. Поэтому в этой статье мы попытаемся простым, доступным языком рассказать, что собой представляет электрическое напряжение, как оно измеряется и для чего это нужно.
Что такое разность потенциалов?
Для начала проанализируем рисунок:
В первой бутылке вода находится на уровне 300 мм, а во второй – на отметке 150 мм. Разница между уровнями воды в обоих емкостях составляет 150 мм. Если рассматривать это с точки зрения науки об электричестве, это и есть разность потенциалов.
Однако, что будет, если соединить обе бутылки шлангом, а внутрь поместить обычный пластиковый шарик?
Из школьного урока физики о принципе соединяющихся сосудах знаем, что из бутылки, где уровень воды больше, жидкость постепенно перетечет в бутылку с более низким уровнем. Под воздействием потока воды шарик внутри соединяющего шланга будет перемещаться. Процесс перетекания завершится после того, как в обоих бутылках уровень жидкости уравновесится, станет одинаковым.
Иными словами, в ситуации, когда в соединенных между собой емкостях уровень жидкости станет одинаковым, результатом разности потенциалов станет ноль. Шарик останется на месте за счет электродвижущей силы, которая, по итогам эксперимента, равна нулю.
Что такое электродвижущая сила?
Аналогично напряжению, единицей измерения электродвижущей силы (ЭДС) является Вольт.
Для проведения следующего эксперимента понадобится вольтметр (прибор, измеряющий вольты) и обычная батарейка.
При исходном замере прибор покажет 1.5 В (Вольта). Однако это не является напряжением – значение указывает на величину электродвижущей силы.
На следующем этапе эксперимента к батарейке подключаются две лампочки. А напряжение измеряется в разных участках электроцепи.
Внимание следует уделить следующим показателям: напряжение для одной лампочки составляет 1 Вольт, для другой же это значение 0. 3 Вольта.
Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах.
Мощность=Напряжение*ток (Р=U*I)
Из этого следует, что чем больше будет значение мощности лампы, тем большее напряжение будет на ней.
Однако, как же получается: если мощность батарейки 1.5 Вольта, к которой подключены лампочки, разделена на 1 Вольт и 0.3 Вольта, куда направились еще 0.2 Вольта? Дело в том, что каждая батарейка наделена своим внутренним сопротивлением, поэтому недостающие 0.2 Вольта были направлены именно сюда.
Резюме
Электродвижущей силой определена физическая величина, характеризующая в источниках тока работу сторонних силовых ресурсов. Посредством электродвижущей силы мы можем определять, как переносится заряд от источника тока по всей электрической цепи. Напряжение показывает этот процесс лишь на отдельном участке этой цепи. Если проще: напряжение – это внешнее силовое воздействие, способствующее перемещению шарика в шланге, соединяющим сосуды из выше приведенного примера. В электричестве напряжение обозначено силой, которая обеспечивает перемещение электронов между атомами.
Рассмотрим еще один пример
Представьте, что вам по силам будет поднять камень, вес которого составляет 40 кг. Это означает, что вы обладаете подъемной силой, равной 40 кг – в электричестве это обозначается как электродвижущая сила. Вы следуете и на своем пути вам попадается камень весом 20 кг. Вы его также берете и переносите на расстояние 10 метров. Для осуществления этого действия вам понадобилось определенное количество энергии, что в электричестве представляется как напряжение. Далее вам попадается камень весом в 30 кг. Следовательно, для его переноса из одного места в другое вам понадобится больше энергии, чем для камня, масса которого не превышала 20 кг. Однако подъемная сила (в электричестве ЭДС), независимо от веса переносимого вами камня, остается всегда одинаковой. При этом, вес камня определяет количество энергии, которая тратится на проведение этого действия (в электричестве это обозначено напряжением). Таким образом, на каждом отрезке вашего пути вы будете испытывать разное напряжение в зависимости от веса камня, который вы намерены перенести.
Ток зависит от напряжения
Закон Ома:
Исходя из приведенной формулы следует: ток является прямо пропорциональным напряжению и обратно пропорциональным сопротивлению. Иными словами, чем больше величина электрического тока, тем больше напряжение, и наоборот.
Ток, напряжение, сопротивление
электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)
Электрический ток ( I ) — это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики — движение электронов. Безусловно.
Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах.
Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.
Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира.
Условиями возникновения и существования электрического тока являются:
- Наличие свободных носителей заряда
- Наличие электрического поля, создающего и поддерживающего ток.
Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно.
Электрическое поле — это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы «одноименные заряды отталкиваются, а разноименные притягиваются» можно представить электрическое поле как нечто это воздействие передающее.
Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика — напряженность электрического поля.
Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву:
E=Δφ.
Здесь:
- E — напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
- Δφ=φ1-φ2 — разность потенциалов (рисунок 1).
Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.
Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них — хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε.
Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.
Напряжение ( U ).
Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε.
Это не совсем корректно, но на практике вполне достаточно.
Сопротивление ( R ) — название говорит само за себя — физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривется на отдельной странице этого раздела.
Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.
Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять
R=ρ*L/S.
Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление.
Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:
Ток — Ампер (А)
Напряжение — Вольт (В)
Сопротивление — Ом (Ом).
Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.
© 2012-2022 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Что такое напряжение? | Hioki
Что такое напряжение? Эта страница предлагает простое для понимания объяснение того, чем напряжение отличается от тока, единицы измерения, в которых оно измеряется, и другую информацию.
Обзор
Прежде чем приступить к работе с электронными устройствами, вам необходимо получить хорошее представление о силе тока, сопротивлении, напряжении и связанных с ними темах. Если вы похожи на большинство людей, вы знакомы со словами, но вам не хватает детального понимания лежащих в их основе понятий. На этой странице представлено простое для понимания введение, в котором рассказывается, как определяются напряжение и другие термины, чем отличаются ток и электрический потенциал и как можно измерить напряжение.
Что такое напряжение?
Напряжение описывает «давление», которое толкает электричество. Величина напряжения обозначается единицей измерения, известной как вольт (В), а более высокое напряжение приводит к тому, что к электронному устройству поступает больше электричества. Однако электронные устройства предназначены для работы при определенных напряжениях; чрезмерное напряжение может повредить их схемы.
Напротив, слишком низкое напряжение также может вызвать проблемы, препятствуя работе цепей и делая устройства, построенные вокруг них, бесполезными. Понимание напряжения и того, как устранять связанные с этим проблемы, необходимо для надлежащего обращения с электронными устройствами и выявления основных проблем при их возникновении.
Разница между напряжением и током
Как было сказано выше, простым описанием напряжения будет «способность вызывать ток». Если вы похожи на большинство людей, вам трудно представить себе, что такое напряжение, поскольку вы не можете видеть его непосредственно глазами. Чтобы понять напряжение, вы должны сначала понять электричество.
Электричество течет как ток. Вы можете представить это как поток воды, как в реке. Вода в реках течет от гор вверх по течению к океану вниз по течению. Другими словами, вода течет из мест с большой высотой воды в места с низкой высотой воды. Точно так же действует электричество: концепция высоты воды аналогична электрическому потенциалу, и электричество течет из мест с высоким электрическим потенциалом в места с низким электрическим потенциалом.
Электричество похоже на поток воды.
Разность потенциалов между двумя точками может быть выражена как напряжение. Напряжение — это, так сказать, «давление», которое заставляет электричество течь. В физике напряжение можно рассчитать с помощью закона Ома, который говорит нам, что напряжение равно сопротивлению, умноженному на ток.
Сопротивление указывает на трудности, с которыми течет электричество. Представьте себе водопровод. По мере того, как труба становится меньше, сопротивление увеличивается, и воде становится труднее течь; при этом сила течения увеличивается. Напротив, по мере того, как труба становится больше, вода течет с большей готовностью, но сила потока уменьшается. Аналогичная ситуация и с током. Сопротивление и ток пропорциональны напряжению, а это означает, что по мере увеличения любого из них будет увеличиваться и напряжение.
Метод измерения напряжения
Мультиметры (мультитестеры) применяются для измерения напряжения. В дополнение к напряжению мультиметры могут выполнять проверку непрерывности и измерять такие параметры, как ток, сопротивление, температура и емкость. Мультиметры бывают как аналоговые, так и цифровые, но цифровые модели проще всего использовать без ошибочного считывания значений, поскольку они отображают значения напрямую.
Для измерения напряжения с помощью мультиметра необходимо подключить положительный и отрицательный измерительные провода и выбрать диапазон измерения напряжения. Затем вы размещаете провода в контакте с обоими концами цепи, которую хотите измерить. При использовании аналогового тестера вы начинаете с самого большого диапазона измерения напряжения.
Если прибор не отвечает, попробуйте постепенно уменьшать диапазоны измерения, пока не достигнете диапазона, в котором можно измерить напряжение цепи. При использовании цифрового тестера многие модели упрощают процесс измерения, автоматически настраивая диапазон измерения.
Разница между постоянным и переменным током
Возможно, вы знаете, что существует два вида тока: постоянный, или постоянный, и переменный, или переменный. Постоянный ток течет без каких-либо изменений в направлении или величине тока или в величине напряжения. Знакомым примером этого типа тока может быть батарея. Батареи производят напряжение и ток в одном направлении.
Если вы подключите миниатюрную лампочку к батарее, лампочка будет генерировать равномерное количество света, пока в батарее остается заряд, а это характеристика постоянного тока. Постоянный ток течет в виде плоской или пульсирующей волны.
Переменный ток, напротив, характеризуется напряжением и током, направление и величина которых периодически изменяются относительно нулевого положения. Типичным примером может служить ток, подаваемый от бытовых электрических розеток. Напряжение и ток изменяются с заданным ритмом в виде синусоидальной, треугольной или пульсовой волны.
Цепь постоянного тока должна быть правильно подключена к положительной и отрицательной клеммам аккумулятора. Некоторые схемы не будут работать должным образом, если батарея подключена наоборот.
Но с бытовой электрической розеткой электричество будет течь, даже если вы перепутаете левый и правый штыри вилки. Поскольку электричество в переменном токе течет в обоих направлениях, величина электричества меняется от момента к моменту. Эти значения известны как мгновенные значения, и они могут быть описаны такими значениями, как максимальное значение, минимальное значение, среднее значение, значение размаха и среднеквадратичное значение.
Используйте мультиметр, если вам нужно измерить напряжение.
Напряжение — показатель способности перемещать электричество. Это понятие тесно связано с другими понятиями, такими как разность потенциалов, ток и сопротивление, поэтому важно получить общее представление о предмете. Для измерения напряжения вам понадобится мультиметр. Мультиметры просты в использовании, поэтому обязательно используйте их, когда вам нужно измерить напряжение.
Как использовать
Сопутствующие товары
- Цифровой мультиметровый DT4282
- Precision DC Voltmeter DM7276
- HITESTER 3246-60
- HELSESTER 3244-60
- COMPACT DIGLATE MULTIMETER DT4224
- ОБУЧЕНИЕ
Как пользоваться цифровым мультиметром Как пользоваться цифровым мультиметром. Обзор преимуществ и недостатков
- Напряжение является мерой энергии, переносимой зарядом .
Строго: напряжение — это «энергия на единицу заряда». - Правильное название напряжения разность потенциалов или p.d. коротко,
но этот термин редко используется в электронике. - Напряжение обеспечивается аккумулятором (или блоком питания).
- Напряжение используется в компонентах , но не в проводах.
- Мы говорим напряжение на компоненте .
- Напряжение измеряется в вольт , вольт .
- Напряжение измеряется вольтметром , включенным параллельно .
- Символ В используется для обозначения напряжения в уравнениях.
- Ток скорость потока заряда .
- Текущий не используется , то, что втекает в компонент, должно вытекать.
- Мы говорим ток через компонент.
- Ток измеряется в амперах (амперах) , А .
- Ток измеряется амперметром , включенным в ряд .
Для последовательного соединения необходимо разорвать цепь и поставить амперметр
через зазор, как показано на схеме. - Символ I используется для тока в уравнениях.
Почему буква I используется для текущего? … см. FAQ. - Напряжения составляют для компонентов, соединенных последовательно.
- Токи одинаковые для всех компонентов, соединенных последовательно.
- Напряжения одинаковые для всех компонентов, соединенных параллельно.
- Токи в сумме составляют для компонентов, соединенных параллельно.
- . измерено? Напряжение легко измерить с помощью тестера.
Напряжение и ток | Клуб электроники
Напряжение и ток | Клуб электроники
Следующая страница: Счетчики
См. также: Мультиметры | Закон Ома
Напряжение и ток жизненно важны для понимания электроники, но их довольно сложно понять, потому что мы не можем видеть их напрямую.
Напряжение — причина, ток — следствие
Напряжение пытается создать ток, и ток будет течь, если цепь замкнута.
Напряжение иногда называют «толчком» или «силой» электричества.
на самом деле это не сила, но это может помочь вам представить, что происходит.
Можно иметь напряжение без тока, но ток не может течь без напряжения.
Напряжение и ток
Переключатель замкнут, что делает
замкнутой цепью, поэтому
ток может течь.
Напряжение, но нет тока
Переключатель разомкнут, поэтому
цепь разорвана и
ток не течет.
Без напряжения и без тока
Без элемента
нет источника напряжения, поэтому
ток не может течь.
Напряжение, В
Параллельное подключение вольтметра
Напряжение в точке и 0В (ноль вольт)
Напряжение — это разница между двумя точками , но в электронике мы часто ссылаемся на
напряжение в точке означает разницу напряжений между этой точкой и контрольной точкой 0 В (ноль вольт).
Нуль вольт может быть в любой точке цепи, но, чтобы быть последовательным, это обычно
минусовая клемма аккумулятора или блока питания . Вы часто будете видеть принципиальные схемы
помечен 0V в качестве напоминания.
Вам может быть полезно думать о напряжении как о высоте в географии. Контрольная точка
нулевой высоты является средним (средним) уровнем моря, и все высоты отсчитываются от этой точки.
Нуль вольт в электронной цепи подобен среднему уровню моря в географии.
Нулевое напряжение для цепей с двойным питанием
Для некоторых цепей требуется двойное питание с тремя соединениями питания , как показано на
диаграмма. Для этих цепей эталонной точкой нулевого напряжения является средняя клемма между
две части поставки.
На сложных принципиальных схемах с двойным источником питания символ заземления часто используется для обозначения
подключение к 0В, это помогает уменьшить количество проводов на схеме.
Диаграмма показывает ±9Двойное питание V, средняя клемма 0 В.
Ток, I
1А (1 ампер) — довольно большой ток для электроники, поэтому часто используется мА (миллиампер).
m (милли) означает «тысячная»:
1 мА = 0,001 А или 1000 мА = 1 А
для использования на паяных цепях. Большинство испытаний в электронике выполняется с помощью вольтметров, которые могут
быть легко подключены без нарушения цепей.
Последовательное подключение амперметра
Напряжение и ток для компонентов серии
В этой схеме 4 В на резисторе и 2 В на светодиоде складываются.
к напряжению батареи: 2В + 4В = 6В.
Ток через все части (аккумулятор, резистор и светодиод) составляет 20 мА.
Напряжение и ток для компонентов, включенных параллельно
В этой схеме батарея, резистор и лампа имеют напряжение 6 В.