Содержание
Однофазный асинхронный электродвигатель
Дмитрий Левкин
- Однофазный электродвигатель с пусковой обмоткой
- Конструкция однофазного асинхронного двигателя
- Принцип работы однофазного двигателя
- Пуск однофазного двигателя
- Подключение однофазного двигателя
- Однофазный электродвигатель с экранированными полюсами
- Электродвигатель с асимметричным магнитопроводом статора
Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой
Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.
Основные части однофазного двигателя: ротор и статор
Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.
Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.
Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.
Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга
Принцип работы однофазного асинхронного двигателя
Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.
Проанализируем случай с двумя обмотками имеющими по оному витку
Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.
Остановить
Пульсирующее магнитное поле
Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.
Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:
,
- где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
- nобр – частота вращения магнитного поля в обратном направлении, об/мин,
- f1 – частота тока статора, Гц,
- p – количество пар полюсов,
- n1 – скорость вращения магнитного потока, об/мин
Остановить
Разложение пульсирующего магнитного потока на два вращающихся
Действие пульсирующего поля на вращающийся ротор
Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.
Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:
,
- где sпр – скольжение ротора относительно прямого магнитного потока,
- n2 – частота вращения ротора, об/мин,
- s – скольжение асинхронного двигателя
Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока
Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр
,
- где sобр – скольжение ротора относительно обратного магнитного потока
Запустить
Остановить
Вращающееся магнитное поле пронизывающее ротор
Ток индуцируемый в роторе переменным магнитным полем
Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:
,
- где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц
,
- где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц
Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.
Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,
скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц
Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент
,
- где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
- сM — постоянный коэффициент, определяемый конструкцией двигателя
Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:
,
- где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м
Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,
,
Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.
Тормозящее действие обратного поля
При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.
,
- где r2 — активное сопротивление стержней ротора, Ом,
- x2обр — реактивное сопротивление стержней ротора, Ом.
Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.
С помощью одной фазы нельзя запустить ротор
Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором
Действие пульсирующего поля на неподвижный ротор
При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .
Пуск однофазного двигателя. Как создать начальное вращение?
Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].
После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.
Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.
Подключение однофазного двигателя
С пусковым сопротивлением
Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].
Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.
Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки
Разное сопротивление и индуктивность обмоток
Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.
Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.
Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.
С конденсаторным пуском
Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.
Ёмкостной сдвиг фаз с пусковым конденсатором
Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.
Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.
Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.
Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.
Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.
При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.
Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.
Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.
Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».
Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.
Основные параметры электродвигателя
Общие параметры для всех электродвигателей
- Момент электродвигателя
- Мощность электродвигателя
- Коэффициент полезного действия
- Номинальная частота вращения
- Момент инерции ротора
- Номинальное напряжение
- Электрическая постоянная времени
- М. М.Кацман. Электрические машины и электропривод автоматических устройств: Учебник для электротехнических специальностей техникумов.- М.: Высш. шк., 1987.
- ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
Библиографический список
Определение начала и конца обмоток электродвигателя: обзор методик
Часто возникают затруднения при подключении электродвигателя после ремонта. Далеко не все ремонтные организации маркируют начало и конец обмоток 3-х фазного двигателя. Завод изготовитель в клеммной колодке маркирует контакты буквами С1- С6. Эта маркировка принята в нашей стране. По международному стандарту используются буквы латинского алфавита. Отсутствие маркировки может спровоцировать выход из строя двигателя при включении в сеть. Чтобы этого не произошло, необходимо знать, как определить начало и конец обмоток электродвигателя. Об этом мы сейчас и расскажем читателям сайта Сам Электрик.
Следует отметить, что в данном случае электродвигатель можно представить как трансформатор. А это значит, что неважно, с какой стороны начало или конец обмотки. Главное, они не должны включаться встречно.
Существует несколько методов распознавания. Для этого необходимы приборы:
- мультиметр или тестер;
- понижающий трансформатор;
- контрольная лампочка.
- Метод определения с помощью тестера
- Метод развернутого треугольника
- Соединение звездой
- Определение с помощью батарейки
- Определение рабочей и пусковой обмоток двигателя на 220 Вольт
- Двигатели постоянного тока
Метод определения с помощью тестера
Прежде чем начать работу, необходимо подготовить рабочее место. Соблюсти все правила электробезопасности и не забывать, что работа с электричеством требует предельной концентрации внимания и аккуратности. Выполним работу способом трансформации.
Работы выполняются в следующей последовательности:
- С помощью тестера находим выводы обмоток и помечаем их кембриками, подписав, например, первая обмотка помечается С1-С4, вторая С2-С5, третья С3-С6.
- Соединяем две обмотки последовательно. На них подается пониженное напряжение с трансформатора.
- На третьей произведем замеры напряжения. При согласованном включении, тестер будет показывать некоторое напряжение. Величина зависит от уровня напряжения, поступающего с трансформатора. При встречном включении, тестер будет показывать минимальное значение напряжения.
- Маркируем соответствующими образом обе обмотки.
- Разбираем схему и соединяем третью обмотку с любой другой. Подаем напряжение от трансформатора и производим замеры. Схема показана на рисунке снизу. Однако, на схеме подается опасное напряжение 220 вольт. В нашем случае мы подаем пониженное напряжение с трансформатора.
- По аналогии с предыдущими измерениями определяем начало и конец третьей обмотки. Маркируем.
- После определения и маркировки проводов, можно соединять двигатель звездой или треугольником и подключать к сети. При этом двигатель не должен издавать повышенный шум и нагреваться. Если это происходит, вы ошиблись в определении начала и конца обмоток. Если все правильно подключено, двигатель работает ровно и не нагревается.
Понижающий трансформатор нужен для ограничения тока в обмотках. Можно обойтись без него, но для ограничения тока, последовательно катушкам включают контрольную лампочку небольшой мощности.
Не стоит рисковать, подавая 220 вольт на обмотки без ограничения тока. В этом случае велика вероятность выхода двигателя из строя. Проще говоря, можно «сжечь» обмотки.
Метод развернутого треугольника
Существует более простой метод определения обмоток при отсутствии маркировки. При подключении треугольником. Это так называемый метод развернутого треугольника. Для определения понадобятся приспособления, применяемые в первом случае.
Работу выполняют в следующей последовательности:
- Мультиметром находят обмотки.
- Маркируют в произвольном порядке.
- Соединяют все три катушки последовательно.
- Подают пониженное напряжение.
- Производят замеры напряжения на обмотках. При правильном соединении, напряжение на обмотках должны совпадать. Т.е. U1=U2=U Если на одной из них значение отличается, концы этой обмотки следует поменять местами.
- На этом проверка заканчивается. Двигатель можно монтировать на рабочее место.
На рисунке показана схема измерений методом треугольника.
Если отсутствует мультиметр, проверить напряжение можно с помощью лампы. Уровень свечения должен быть во всех случаях одинаков. Если на одной из обмоток он отличается, то провода катушки меняют местами.
Соединение звездой
Этот метод применяется в исключительных случаях. После того, как обмотки будут найдены, их соединяют звездой и кратковременно подключают к сети. Если провода соединены неправильно, двигатель начинает гудеть и греться.
После отключения переключают одну из обмоток и опять подключают к сети. Таких переключений может быть не более трех. Следует запомнить, включают двигатель кратковременно, не более 2 секунд. Если оставить включенным на большее время, двигатель наверняка выйдет из строя.
Определение с помощью батарейки
Для этого метода потребуется тестер и батарейка. Это наиболее простой способ. Методика поиска с помощью батарейки заключается в следующем:
- С помощью тестера находим катушки на асинхронном двигателе.
- К одной из них подключается прибор.
- К выводам другой подключаем кратковременно несколько раз батарейку. Если в момент подачи напряжения тестер показывает отрицательное значение, это говорит о встречном включении обмоток.
- Проверяем поочередно все катушки и маркируем их соответствующим образом.
Схема измерений показана на рисунке снизу.
Аналогичным образом можно проверить с помощью аккумулятора. Разница заключается в том, что вместо батарейки применяется аккумулятор.
Определение рабочей и пусковой обмоток двигателя на 220 Вольт
Часто возникает необходимость определения рабочей и пусковой обмотки в однофазном двигателе. Это происходит по причине утраты надписи или после ремонта.
У двигателя имеются четыре провода. Методика проверки заключается в следующем:
- Визуально осматриваем провода. Если провода имеют разное сечение, то с меньшим сечением будет пусковая;
- Однако, стоит перепроверить. Замеряем сопротивление. Обмотка, имеющая меньшее значение будет рабочей, а вторая пусковая.
- Производим маркировку проводников.
Схема замеров показана на рисунке снизу.
При наличии обмоток с одинаковым сопротивлением, любую обмотку можно использовать как рабочую или пусковую. Направление вращение меняют заменой местами обмоток.
Часто встречаются однофазные электродвигатели с тремя проводами. В этом случае тестером замеряют сопротивления. Получаем значения, например, 52 Ом, 18 Ом и 34 Ома. Это значит, что обмотка, имеющая меньшее значение (18 Ом) является рабочей, а вторая 34 Ома – пусковая. 52 Ома — суммарное сопротивление обеих катушек.
На рисунке снизу представлена схема двигателя с тремя выводами:
Двигатели постоянного тока
У двигателей постоянного тока обычно бывает два провода. Поэтому при подаче напряжения он начинает вращаться в определенную сторону. Если вращение не совпадает, в этом случае меняют полярность.
Аналогичным образом можно подключить шаговый двигатель. Например, имеются четыре вывода. Катушки у такого двигателя имеют одинаковое сопротивление, а провода, как правило, имеют цветные.
Подключаем к драйверу в произвольном порядке, смотрим, в какую сторону происходит вращение. Если необходимо поменять направление вращения, провода меняют местами.
Например, подключили — белый, синий, красный, черный. Для смены направления соединим – черный, красный, синий, белый.
Вот мы и рассмотрели, как определить начало и конец обмоток электродвигателя. Если остались вопросы по этой теме, задавайте их в комментариях под статьей!
[Решено] Сопротивление основной и вспомогательной обмотки 50-Гц, емкость
Этот вопрос ранее задавался в
SSC JE EE Предыдущий документ 11 (состоялся: 24 марта 2021 г., утро)
Просмотреть все документы SSC JE EE >
- 225 мкф
- 22,5 мкл
- 318 мкф
- 31,8 мкл
Вариант 3: 318 мкл
Бесплатный
SSC JE: общий интеллект и разум.
29 тыс. пользователей
20 вопросов
20 баллов
12 минут
Концепция:
- Двигатель с конденсаторным пуском – это однофазный асинхронный двигатель, в цепи вспомогательной обмотки которого используется конденсатор для создания большей разности фаз между током в основной и вспомогательной обмотках.
- На рисунке ниже показана схема подключения двигателя с конденсаторным пуском.
- Двигатель конденсаторного пуска имеет короткозамкнутый ротор и две обмотки на статоре. Они известны как основная обмотка и вспомогательная или пусковая обмотка. Две обмотки расположены 90 градусов друг от друга.
- Конденсатор CS включен последовательно с пусковой обмоткой. В цепь также включен центробежный переключатель SC.
- Векторная диаграмма двигателя с конденсаторным пуском показана ниже:
- IM — это ток в основной обмотке, который отстает от вспомогательного тока IA на 90 градусов, как показано на векторной диаграмме выше. Вспомогательный ток IA опережает напряжение.
- Когда скорость двигателя приближается к номинальной, вспомогательная обмотка и пусковой конденсатор автоматически отключаются центробежным выключателем, расположенным на валу двигателя. 9{ — 1}}\left( {\frac{{3 — {X_c}}}{{7}}} \right) = 135\\ \Стрелка вправо \frac{{3 — {X_c}}}{{7} } = — 1 \end{массив}\)
⇒ Xc = 10
\(\Rightarrow \frac{1}{{2{\rm{\pi fC}}}} = 10 \Rightarrow {\rm{ C}} =318 {\rm{\;\mu F}}\)
Скачать решение PDF
Поделиться в WhatsApp
Последние обновления SSC JE EE
Последнее обновление: 22 сентября 2022 г.
Комиссия по отбору персонала объявила дату экзамена по Документу I экзамена SSC JE EE 2022. Согласно уведомлению, документ I SSC JE будет проводиться с 14 ноября 2022 г. по 16 ноября 2022 г. Комиссия по отбору персонала (SSC) вскоре выпустит допуск к экзамену SSC JE EE Paper I. Кандидаты, успешно сдавшие экзамен, получат заработную плату в диапазоне от рупий до 35 400 / — до рупий. 1,12,400/-. Чтобы пройти успешный отбор, кандидаты могут обратиться к документам SSC JE EE за предыдущий год, чтобы оценить уровень и важные вопросы для экзамена.
мощность — Пусковой ток асинхронного двигателя
спросил
Изменено
1 год, 7 месяцев назадПросмотрено
79 тысяч раз\$\начало группы\$
Как рассчитать пусковой ток асинхронного двигателя, если у меня есть мощность в киловаттах и напряжение? Я искал формулы, но я запутался.
Я рассчитал ток полной нагрузки, разделив мощность на напряжение (p=VI). Я также не уверен в расчете тока полной нагрузки.
Также я знаю, что ток пускового двигателя выше, чем ток полной нагрузки, это правильно?
- мощность
- ток
- двигатель
- асинхронный двигатель
\$\конечная группа\$
5
\$\начало группы\$
Невозможно рассчитать пусковой ток или ток блокировки ротора (LRA) без дополнительной информации!
Однофазный или трехфазный? Конструкция двигателя NEMA B, C или D?
Что значит академическое образование? Напряжение 15В при мощности 132кВт для асинхронного двигателя бессмысленно. Вы просто не умеете составлять числа. Вы также используете \$P = V\I\$, то есть мощность постоянного тока.
Вам лучше поискать табличку двигателя и исходить оттуда.
Возьмем трехфазный асинхронный двигатель мощностью 150 л.с., 1789 об/мин, 460 В, конструкция B, код G. Таким образом, номинальный ток составляет 163 А с коэффициентом мощности 0,897 и КПД 96,2%.
Код G дает вам кВА с заблокированным ротором на основе л.с. КВА с заблокированным ротором позволит вам рассчитать LRA. Код G = 5.6 до 6.3, но не включая его. Худший случай = 6,3.
$$150л.с. \x 6,3 = 945 кВА$$
$$ S = \sqrt {3}\ V_{Line}\ I_{Line} $$
$$ I_{Line} = \frac {S} {\sqrt {3}\ V_{Line}} = \frac {945 кВА} {\sqrt {3} \times 460V} = 1,186A $$LRA будет между 1102 А и < 1186 А против 163 А или от 676% до 728% от тока полной нагрузки.
\$\конечная группа\$
\$\начало группы\$
Вам необходимо проверить спецификацию двигателя. Номер, который вы ищете, называется Locked Rotor Amps (LRA).
Этот номер обычно указан на заводской табличке, прикрепленной к двигателю, вместе с напряжением, частотой и рабочим током.
Как бы то ни было, ток LRA часто НЕ связан напрямую с рабочим током. Два разных двигателя с одинаковыми характеристиками могут иметь совершенно разные пусковые токи.
\$\конечная группа\$
1
\$\начало группы\$
Пусковой ток зависит от типа пуска двигателя.
- Прямое подключение к сети от 5 до 9 раз больше тока двигателя.
- S D звезда треугольник 4 раза
- устройство плавного пуска от 2 до 4
- Регулятор частоты вращения от 0 до I
\$\конечная группа\$
1
\$\начало группы\$
Если у вас нет спецификаций для фактического двигателя, лучший способ оценить пусковой ток и ток при полной нагрузке — просмотреть опубликованные спецификации аналогичного двигателя.
Как определить рабочую и пусковую обмотку: Поиск рабочей и пусковой катушки однофазного асинхронного электродвигателя | Полезные статьи