Содержание
Правильно выбираем автоматический выключатель по нагрузке, качеству и цене
При сборке распределительного щитка возникает вопрос, как выбрать автоматические выключатели так, чтобы всей конструкцией было удобно пользоваться и при этом она оставалась максимально надежной долгое время. Решение такого вопроса в офисе или производственном помещении каждый раз – новая задача со своей уникальной спецификой. Для квартиры или жилого дома есть универсальное и простое решение. Соблюдая несколько нехитрых принципов методики выбора автомата по мощности нагрузки, вы соберете электросеть, которая прослужит не один десяток лет.
Разбить на контуры и группы
Каждая комната в вашем доме или квартире в распределительном щитке должна представлять отдельную группу автоматических выключателей, отвечающих за контуры:
- Розетки;
- Освещение.
Если в комнате присутствует кондиционер – это еще один автомат в группе, если есть водонагреватель, электропечь, электроплита, то под каждый прибор – дополнительно отдельный автомат.
Под отдельный автоматический выключатель подключаются лоджия и балкон (без разбивки на розетки и освещение)
Для кухни, ванной, туалета, сауны (комнаты, в которых присутствует вода) в группу дополнительно устанавливается УЗО (устройство защитного отключения), для защиты от удара электричеством при нарушении изоляции или в случае залива розетки/выключателя водой.
Если разбить на контуры таким образом, то при коротком замыкании, допустим, в розетке – отключается только контур розеток в комнате, а освещение остается работать. И наоборот, вышедшая из строя люстра не отключит телевизор и микроволновку.
Выбор автоматов по мощности
Задача автоматического выключателя – защита проводки от перегрева и возгорания, следовательно необходимо выбирать автомат вместе с проводкой:
- Для розеток, кондиционеров, лоджий, балконов – трехжильный кабель на 2,5 мм (по каждой жиле) – выбираем автоматический выключатель на 16 А.
- Для освещения – двухжильный кабель на 1,5 мм – подбираем автомат на 10 А.
- Для мощных приборов: водонагреватель, электропечь, электродуховка – трехжильный кабель не менее 4 мм – выбираем автоматический выключатель на 20 А.
Выбор автоматов приведен для двухфазного ввода в квартиру или дом. Если вы используете профессиональную коммерческую печь, например, на 10 кВт, то такой выбор вам не подойдет.
Выбор автоматических выключателей по производителю
На рынке РФ представлены как российские бренды (изготавливаемые в основном в Китае), так и европейские компании. Разница в цене на автоматические выключатели существенна, но и качество тоже отличается. Для примера рассмотрим стоимость автоматов на 10, 16 и 20 А от разных производителей:
Выбор автоматического выключателя по цене
Как видно из таблицы, стоимость автоматов ABB значительно выше конкурентов, тем не менее именно эти автоматы выбирают большинство профессиональных электриков для организации проводки в домах, квартирах и офисах.
Лицензия на приспособление объекта культурного наследия
Идеи для удачного ремонта с керамической плиткой в вашем доме!
Как выбрать шторы для гостиной
Как получить лицензию ФСБ?
Автоматы «В» — в каждый домашний щиток! | Публикации
Сейчас такие времена, что ценность человеческой жизни стала главным приоритетом, и в то же время бывают перегибы — безопасностью оправдывают многие ограничения и нововведения. Сегодня снова поговорим об электробезопасности, которую обеспечивает домашний электрощиток, через призму знаний о токе короткого замыкания. Да, я поднимаю эту тему не в первый раз. Но не спешите закрывать интернет-страницу! Тема касается каждого — ведь это тема безопасности! Спойлер: я докажу, что щитки, укомплектованные автоматами с характеристикой «В», гораздо более предпочтительны для наших домов и квартир.
За последние годы в электротехнической сфере введены некоторые ограничения и нововведения, которые служат, прежде всего, двум целям — сохранение жизни человека и сохранение жизни оборудования (от общего к частному — электросетей, электроустановок, нагрузки). Благо современные технологии и устройства позволяют обеспечить безопасность и людей, и проводов.
Вот неполный список защит в наших электрощитках, о которых я говорю:
- Автоматические выключатели (АВ), которые выключают питание при перегрузках и коротких замыканиях. Это — единственное устройство в наших электрощитках, установка которого строго обязательна в любом случае.
- Устройства защитного отключения (УЗО), или по-новомодному выключатели дифференциального тока (ВДТ), которые выключают питание при появлении опасного значения дифференциального тока (его появление означает, что на корпусах приборов может возникнуть опасный и даже смертельный потенциал для человека). Сюда же можно отнести и АВДТ (автоматические выключатели дифференциального тока), которые являются гибридами АВ и ВДТ.
- Реле напряжения, которые выключают питание и защищают таким образом оборудование от повышенного и пониженного напряжения;
- Устройства защиты от дугового пробоя (УЗДП) или устройства защиты от искрения (УЗИС), которые выключают питание при подозрении на искрение любого вида, даже при небольшом токе.
- Устройства защиты от импульсного перенапряжения (УЗИП) или ограничители перенапряжения (ОПН), купирующие по мере сил мощные кратковременные скачки напряжения, которые могут быть вызваны природными или техногенными причинами. В зависимости от конфигурации схемы, питание в этом случае тоже, как правило, отключается.
С одной стороны, народ стал побогаче, и сейчас многие могут себе позволить электронные «штуки», о которых раньше можно было только мечтать. С другой — эти «штуки» стали доступнее по цене и наличию.
Некоторые говорят, что это «развод клиента на деньги», но я с этим не согласен. Если клиент ценит свою жизнь, готов платить за это, и понимает, что это и для чего, — нужно ставить все возможные защиты.
Важно, что установка любой защиты должна быть оправдана, а ее характеристики тщательно просчитаны. Ведь никакая, даже самая нужная защита, не должна быть излишне сложной и портить нервы из-за ложных срабатываний.
Среди неграмотных электриков есть такой критерий выбора автомата — «Чтоб не выбивал».
В статье поговорим о том, как максимально эффективно защитить электроприборы и электропроводку от короткого замыкания (КЗ). Делается это благодаря нововведению, которое с большим трудом входит в нашу жизнь, несмотря на копеечные затраты. Виной тому — косность российского менталитета, его невежество и страхи. Которые я развею в этой статье.
Для полноты восприятия рекомендую ознакомиться с моими предыдущими статьями на эту тему — «Ток КЗ: размер имеет значение» и «Селективность в домашнем щите: как достичь невозможного».
Для начала, как обычно, немного вводной информации.
Береги кабель, Саня!
К вопросу об ограничениях стоит упомянуть о том, что ужесточились требования к тепловому режиму кабелей. Хотя я и не припомню изменений в нормативно-технической документации (НТД), из-за которых это могло произойти. Зато я прекрасно помню удивленно-возмущенные глаза старшего электрика Иваныча на одном из моих первых объектов, когда он мне говорил: «Какие 16? Всю жизнь на розетки ставили 25 ампер! Не умничай!» А сейчас ставить 16 А на розеточные линии с сечением по меди 2,5 мм2 — норма.
Считаю, это произошло по двум причинам:
- Раньше на одном автомате 25 А могло висеть полквартиры, а это — несколько розеток, плюс несколько лампочек накаливания. Это было по бедности — так можно сэкономить и на проводах, и на автоматах, которых на квартиру было обычно два или три. В этом случае ток на линии был сравнительно большим, и при номинале 16 А были бы сравнительно частые отключения из-за перегрузки. Поэтому нашли такой компромисс. Сейчас на одном автомате 16 А обычно «висят» максимум три розетки, а освещение подключают отдельно.
- Больше стало уделяться внимания живучести и надежности кабеля. Основное, от чего зависит срок его эксплуатации, — рабочая температура. Точнее, границы перепада температур и их периодичность. Чем чаще и больше перепады (чем чаще и больше нагревается жила), тем быстрее сохнет и теряет сопротивление изоляция, и быстрее ухудшаются контакты в местах соединений. Основной фактор, влияющий на нагрев жилы, — ток. Отсюда логичный вывод — ограничивая ток, мы ограничиваем возможный нагрев и увеличиваем срок службы кабеля. В этом смысле получается, что для защиты кабеля сечением 2,5 мм2 автомат с номиналом 16 А имеет приоритет перед 20 А и тем более 25 А.
Допустимая температура нагрева жил кабеля для большинства кабелей составляет 70 °С. Подробнее — в ГОСТ 31996-2012. О сечениях и сопротивлениях токопроводящих жил сказано в ГОСТ 22483-2012.
Кроме того, в новых нормах (СП 256.1325800.2016, изменение 3 от 2019 года, таблица 15.3) сказано, что кабель розеточной группы не может быть сечением менее 2,5 мм2. То есть на кабеле сэкономить теперь никак не получится, даже если на этой линии «висит» холодильник мощностью 200 Вт, а номинал автомата — 6 А. Если линия на розетки проложена кабелем с алюминиевыми жилами, его сечение должно быть не менее 4 мм2.
Алюминиевый кабель меняет свои свойства и скоро может официально появиться в наших жилищах. Читайте об этом в предыдущем номере журнала.
На примере кабеля можно сказать, что режимы работы многих компонентов электросетей стали более щадящими, а сами компоненты — лучше защищены.
Защита от короткого замыкания
Самый важный момент в этом вопросе — при таком грозном явлении, как КЗ, взоры всех обитателей квартиры с надеждой обращены к электромагнитному расцепителю, который является неотъемлемой частью каждого современного автоматического выключателя. Именно он спасает всех участников электроцепи — от места КЗ до клемм АВ.
Какие гарантии может предоставить нам автомат в случае КЗ? Для ответа на этот вопрос принципиально важно знать соотношение тока КЗ и «номинала» электромагнитного (ЭМ) расцепителя (кратность тока). Главное и единственное условие выключения цепи при таких инцидентах — ток срабатывания ЭМ расцепителя при любом раскладе должен быть меньше, чем ожидаемый ток КЗ.
Иначе за дело придется взяться тепловому расцепителю, а он работает неохотно, с ленцой — в отличие от своего электромагнитного напарника. В результате за несколько томительных секунд, пока тепловой расцепитель даст команду на размыкание, может произойти непоправимое. Например, выгорит скрутка алюминия с медью, которую сделал молодой плиточник, когда переносил розетку в ванной.
Зная ожидаемый ток КЗ и характеристику расцепления (в случае с домашним щитком это «В» или «С»), мы можем точно сказать, сможет ли автомат спасти ситуацию в случае короткого замыкания (мы говорили об этом в других статьях). Но ток КЗ в большинстве случаев мы знаем лишь приблизительно — ведь он может измениться непредсказуемо от многих факторов. Что же де-лать?
Мой ответ таков. Мы перестраховываемся с кабелем, занижая ожидаемый ток (ограничивая его) при помощи номинального тока АВ. Но номинал автомата понизить не всегда возможно — он «упирается» в номинальный ток, потребляемый нагрузкой. Значит, нужно занизить «номинал» ЭМ расцепителя. Но сделать это надо с умом — так, чтобы обеспечить разрыв цепи при экстремально низких токах КЗ, в то же время ни в чем не ограничивая нагрузку. Логичная перестраховка?
Иными словами, нужно «понизить букву» электромагнитного расцепителя с «С» на «В», чтобы получить больше гарантий отключения при КЗ. Как это сделать, обеспечив максимальную защиту, и в то же время исключив ложные срабатывания? Ответ будет в этой статье.
Представители автоматических выключателей семейств «В» и «С» с номинальным током 10 А
Отличия характеристик «В» и «С»
Зачем нужны разные защитные характеристики автоматов? Отличия на первый взгляд незначительные — лишь в порогах отключения электромагнитного расцепителя. При этом тепловые расцепители при том же номинальном токе не отличаются. В чем же разница?
Возьмем для сравнения два автоматических выключателя с одинаковым номинальным током 10 А. Видите разницу?
Время-токовые характеристики автоматических выключателей с типом мгновенного расцепления «В» и «С» с номинальным током 10 А
Давайте пристально посмотрим на время-токовые характеристики (ВТХ) этих двух экземпляров (данные можно взять в каталоге производителя или в ГОСТ IEC 60898-1-2020):
У ВТХ «В» (слева) электромагнитный расцепитель отключается (размыкает контакты), начиная от сверхтока в 3…5 раз больше номинального. Это означает, что в данном случае автомат может выключиться при сверхтоке более 30 А. А должен выключиться при токах 50 А и выше.
ВТХ «С» (справа) отличается лишь током, начиная с которого он может и должен выключиться — соответственно 50 и 100 А.
Время размыкания электромагнитного расцепителя, а значит, отключения цепи по короткому замыканию, должно быть менее 0,1 с. Что и показано на обоих графиках. Реальное время отключения АВ при КЗ на порядок меньше (около 0,01 с), а это только плюс. Ведь за полпериода напряжения в случае КЗ вряд ли что-то сможет повредиться или загореться. Фигурально выражаясь, ЭМ-расцепитель является самым слабым звеном в цепи, которое предназначено соответствовать пословице «Где тонко, там и рвется».
По какой причине срабатывает автомат?
Напоминаю, мы рассматриваем только электромагнитный расцепитель, к которому относятся понятия «В» и «С». Он может сработать от сверхтока в двух случаях:
- короткое замыкание;
- большой пусковой ток.
Автомату все равно, как образовался сверхток. Но давайте не будем автоматами, и рассмотрим каждый вариант подробнее.
Короткое замыкание
Как определить, из-за чего выключился автомат — из-за перегрузки или из-за короткого замыкания (КЗ)?
Под выключением в результате перегрузки обычно понимают любой сверхток, который привел к активации теплового расцепителя. А выключением автомата по КЗ можно считать случай, когда через автомат протекал такой сверхток, который привел в действие электромагнитный расцепитель.
Почему так важно, чтобы автомат выключался при КЗ как можно раньше? Ток КЗ — это, по сути, максимальная перегрузка, какая только может быть на данном участке цепи. Но ток короткого замыкания не бесконечен — он определяется сопротивлением цепи от подстанции до места замыкания.
Если сопротивление проводов и переходное сопротивление контактов велико (а в частном секторе это — сплошь и рядом!), ток при КЗ где-нибудь в переноске может быть всего лишь 100 А. Если наименьший автомат защиты установлен на 25 А с типом защитной характеристики «С», электромагнитная защита сработает (как повезет!) при токе от 125 до 250 А. То есть не сработает вообще! Выручит тепловой расцепитель, но время его реакции может быть от 2 до 10 с. А за это время от искр и пламени из злополучной переноски может загореться что угодно.
Пусковой ток
Ток, при котором срабатывает электромагнитный расцепитель, на практике может получиться не только в результате короткого замыкания. Кратковременное превышение тока в несколько раз может произойти при пуске различных инерционных устройств. Такой ток называют пусковым.
Как правило, пусковой ток электроприбора превышает номинальный, иногда в несколько раз. Численно пусковой (Iп) и номинальный (Iн) токи связаны через коэффициент кратности пускового тока Kп: Iп=Iн×Кп, где Кп >1.
Пусковой ток отличается от тока перегрузки тем, что он имеет очень небольшое время действия (от 0,01 до 0,1 с), за которое точно не успеет сработать тепловой расцепитель. За это время на него может отреагировать только ЭМ-расцепитель. В некоторых источниках указана длительность пускового тока в несколько секунд. Но там авторы лукавят — в конце этого времени ток сложно назвать пусковым, т. к. он почти равен номинальному.
Пусковые токи больше всего у нагрузок с электродвигателями, а также у устройств, имеющих в своих блоках питания конденсаторы фильтров помех и электролитические конденсаторы, а это практически вся электронная техника, начиная от светодиодных лампочек и заканчивая персональными компьютерами.
Пусковой ток — главный аргумент противников установки автоматов с типом мгновенного расцепления (характеристикой) «В». Хотите об этом поговорить? Пожалуйста!
Что делать, чтобы автомат не выключался от пускового тока?
У автоматического выключателя, как и у любого защитного устройства, суть работы заключается в том, чтобы в полной мере обеспечить защиту, но в то же время минимизировать вероятность ложного срабатывания. Поскольку пусковые токи — большие или малые — есть всегда, нужно для начала определить, чему они равны численно. Я составил таблицу, показывающую реальные пусковые токи различных бытовых устройств.
Таблица пусковых токов различных бытовых нагрузок
Для таблицы я взял нагрузки с мощностью больше средней и привел ориентировочные пусковые токи. Проанализируем.
Лампа накаливания
Обладают значительным пусковым током за счет физических свойств вольфрамовой спирали — в холодном состоянии ее сопротивление гораздо ниже, чем в горячем. Но что означают цифры в таблице? Представим, что у нас есть пятирожковая люстра с общей мощностью ламп накаливания 500 Вт, которые включаются одновременно. Пусковой ток будет достигать 25 А. Много ли это? Согласно ПУЭ-7 (таблица 7.1.1) и СП 256.1325800.2016 (таблица 15.3), минимальное сечение медных токопроводящих жил должно быть равно 1,5 мм2. Для надежной защиты такого кабеля нужен АВ с номиналом не более 10 А. Если установить АВ с характеристикой «В», он может выключиться при пусковых токах более 30 А. Нужен ли тут АВ «С»? Нет.
Светодиодные лампы
К ним также можно отнести и LED-прожекторы. Эти источники освещения устроены так, что в момент включения драйвер потребляет огромный ток. Производители стараются делать пуск таких ламп более плавным, но компромисс между пусковым током и КПД светодиодной лампы обычно выбирается на значении Кп=50…150. Спасает ситуацию низкий номинальный ток LED-ламп.
Если необходимо включить сразу много таких ламп, приходится идти на ухищрения и предварительные расчеты, на основе данных от производителя. Вот несколько способов, как уменьшить пусковой ток при включении большого количества светодиодных ламп:
- Разбить на группы, которые включаются через один автомат, но в разное время.
- Разбить на группы, которые включаются в одно время, но от разных автоматов.
- Использовать устройства, понижающие пусковой ток в момент включения. Например, реле ограничения пускового тока МРП.
Все нагрузки, которые я рассматриваю далее, подключаются к розеточным линиям с минимальным сечением жил в кабеле 2,5 мм2. А значит, несмотря на категоричное мнение Иваныча, максимальный автомат мы ставим на 16 А.
Холодильник
Несмотря на двигатель, имеет сравнительно небольшой пусковой ток, который даже при самом неблагоприятном раскладе не превысит 10 А.
Электроника
Как я уже говорил, обладает за счет входных конденсаторов большим пусковым током. Однако этот факт нивелируется тем, что большинство современной электроники при подаче питания работает в режиме ожидания (Standby. В нём потребление гораздо ниже номинала. Для уменьшения негатива нужно делать то же, что и со светодиодным освещением — разные приборы включать в разное время в разные розетки, которые питаются от разных автоматов.
Погружной насос
К этому пункту можно отнести и другую технику, где рабочий элемент закреплен непосредственно на валу двигателя. Эти устройства имеют самый высокий пусковой ток. Но что говорят цифры? Даже сравнительно мощный насос на 500 Вт при пуске потребляет ток не более 16 А. Значит, мы можем не только поставить автомат с характеристикой «В», но и понизить его номинал до 10 и даже 6 А! Это благотворно скажется на защите насоса — больше шансов, что автомат отключит питание при заклинивании крыльчатки (недавно мне рассказывали, что в насосе застряла крыса). Учтите также, что часто насос питается через кабель длиной десятки метров.
Стиральная машина и кондиционер
Эта крупная бытовая техника редко потребляет электрическую мощность больше 2000 Вт. Но даже при такой мощности пусковой ток у них небольшой, поскольку на электродвигатель приходится только часть потребления — питаются они не напрямую, а через схемы плавного пуска.
Мясорубка, кухонный комбайн, пылесос
Они также имеют электродвигатель, который потребляет значительный пусковой ток. Но самым большим этот ток будет только в крайнем случае — при включении на максимальной скорости в устройствах без редуктора. Только тогда пусковой ток с небольшой вероятностью будет обоснованием для отказа от характеристики «В» в пользу «С».
Пусковые токи уменьшаются
Большинство производителей знают о вреде и опасностях, которые несет пусковой ток. Вот что они делают, чтобы его уменьшить:
- На входе питания электронных устройств устанавливают NTC-термистор (терморезистор), который за счет своих физических свойств имеет большое сопротивление в холодном состоянии. Конечно, это не панацея, и есть ограничения по их использованию, связанные с понижением КПД устройства в целом.
- Инверторное питание для плавного пуска. Под этим я подразумеваю питание двигателей через полупроводниковые пускатели. Преобразователи частоты, устройства плавного пуска и гордая надпись Invertor — из этой оперы.
- Питание с задержкой через реле. В этом случае в начале подается часть питания, а через доли секунды — 100 %. Я писал об этом выше и приводил в пример реле МРП.
- Повышение cos φ и уменьшение гармоник и реактивной составляющей питающего тока также вносит вклад в общее дело.
К счастью, пусковые токи, в отличие от номинальных, в большинстве случаев не действуют одновременно. Если вы включаете питание в квартире, лучше не делайте это посредством главного (вводного) выключателя. Правило хорошего тона — подавать питание последовательно, включая групповые автоматы один за другим.
Что говорится в НТД?
Прямого нормативно-технического документа, запрещающего, обязывающего или ограничивающего применение автоматов с характеристикой «В», нет. Все основывается на измерениях и расчетах. Если позволяет петля «фаза-ноль» (ток КЗ), то можно устанавливать любую характеристику («В», «C», «D»).
Точнее говоря, характеристика «D» не разрешена к применению в жилых помещениях. В ГОСТ 32395-2020 «Щитки распределительные для жилых зданий» (а также более ранней его версии от 2013 г) говорится только про характеристики отключения «В» и «С». Характеристика «D» в быту не применяется еще и потому, что она просто-напросто бессмысленна — там нет и не может быть больших пусковых токов, превышающих номинальный в 10…20 раз.
Характеристика «D» упоминается (а значит, допускается) только в ГОСТ 32397-2020 «Щитки распределительные для производственных и общественных зданий».
Кстати, используя «В» в групповых линиях, проще всего расширить зону селективности в домашнем щитке и увеличить надежность домашней энергосистемы.
Также в ПУЭ-7 (п. 1.7.79, 7.1.72) есть требование к автоматическим выключателям — если ток короткого замыкания не обеспечивает отключение автомата за 0,4 секунды, то требуется установка УЗО. Не хочешь ставить УЗО — подбирай автоматы по номиналу и характеристике. Фактически — это требование, чтобы при КЗ срабатывал именно ЭМ-расцепитель. Ведь только он может обеспечить такое время отключения.
Для примера: ток КЗ в розеточной сети — 100 А. Автомат С16 не подойдет (16×10×1,1=176 А). Что можно сделать:
- Установить автомат меньшего номинала в ущерб мощности. Но в данном случае даже С10 подойдет с большой натяжкой: 10×10×1,1=110 А.
- Увеличить сечение кабеля. В данном случае — вместо 2,5 проложить 4 мм2. Думаю, не надо объяснять, как трудно это бывает реализовать на практике. Да и не факт, что это мероприятие приведет к желаемому результату.
- Установить автомат В16 (16×5×1,1=88 А). Бинго!
Когда какой автомат отключится?
Для удобства я составил таблицу токов отключения самых ходовых в быту номиналов, характеристик «В» и «С»:
Таблица токов отключения по КЗ для АВ разных номиналов и характеристик отключения
Есть два пути пользования этой таблицей — исходя из имеющегося автомата либо исходя из измеренного тока КЗ. Например, автомат С16 при сверхтоке 80 А (5In) отключится медленно и только по тепловому расцеплению. А при 160 А (10In) — отключится мгновенно (менее 0,1 с), что и требуется при КЗ.
И напоследок, поговорим о крайне важном пункте для всех.
Цена
Противники автоматов «В» утверждают, что цена электрощитков может взлететь до небес. Да и не найти такие девайсы в продаже. Их опасения легко разбиваются о факты. Вот сравнительная таблица для автоматов «В» и «С» двух противоположных по качеству брендов (по информации известного онлайн-магазина):
Сравнение цен автоматов «В» и «С»
Неужели разница в цене 5-10 % что-то решает?
Нет в наличии? Не знаю, как у вас, а в моей провинции нужное модульное оборудование — в самом широком ассортименте.
А как у них?
По неподтвержденной информации, в технологически-развитых странах давно и по умолчанию устанавливаются автоматы «В». Чтобы поставить «С», нужно расчетное обоснование. Посмотрите на фото, которое прислал мне друг из Германии:
Фото щитка, присланное из Германии другом Александра
Примерно такие щитки устанавливают там в бюджетных квартирах. Вводная коммутация и УЗО — на лестничной площадке.
Надеюсь, я доказал или дал пищу для ума, что на линии розеток и освещения целесообразно устанавливать автоматические выключатели с характеристикой «В». Ведь их установка в бытовых щитках при том же ампераже, что и «С» в большинстве случаев ведет к существенному повышению электро-, пожаробезопасности. Уверен, что придут времена, когда этот приоритет будет прописан в российской нормативно-технической документации.
Головки и держатели — Ace Hardware
Выберите 2 или более продуктов для параллельного сравнения характеристик.
Выберите 2 или более продуктов для сравнения характеристик.0006
Выбрать 2 или более продуктов для бок о бок по бок сравнение. Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения сравнение функций. Сравнить
Выбрать 2 или более продуктов для бок о бок по сравнению с функциями Comparision.compare
Выберите 2 или более продуктов для боковых объектов сравнение. Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
Выберите продукты для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций сравнение.Сравнить
Выбрать 2 или более продуктов для бок о бок по бок по сравнению с функциями.
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
204 Выберите 2 или более продукты для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения сравнение функций.Сравнить
Выбрать 2 или более продуктов для бок о бок по сравнению с функциями сравнения. Выберите 2 или более продуктов для параллельного сравнения функций. Сравнить
Показаны 30 из 150
Выбор разъема имеет решающее значение для управления освещением
Март/апрель 2021 г. | Том. 26 № 2
by Дэн Эванс , старший директор по управлению продуктами, Itron, Inc.
Г-н Эванс имеет более чем 25-летний опыт работы в сетевой и компьютерной отраслях, уделяя особое внимание услугам проводной и беспроводной передачи данных. /equipment, , включая новаторскую работу в области широкополосного доступа в Интернет и крупномасштабных сетей IPv6.
По мере того, как все больше и больше городов и коммунальных служб приступают к модернизации своей инфраструктуры освещения для перехода на светодиоды (LED), важным решением, которое легко упустить из виду, является тип розетки (или розетки), которую они определяют для управления освещением. Производители освещения предлагают множество вариантов, но какой из них лучше всего подходит для того, чтобы заложить прочную основу для перехода от простого управления освещением к электронным методам и датчикам (или «умному освещению»)? В каких из них лучше использовать информацию, полученную из этих данных, в качестве «умных городов» и не только? Эта статья поможет объяснить некоторые ключевые различия между двумя распространенными сокетами двух глобальных организаций по стандартизации: сокетом ANSI C136. 41 и сокетом Zhaga Book 18.
Базовая информация
В 1979 году был ратифицирован стандарт ANSI C136.10. Этот стандарт определяет трехконтактный физический интерфейс для управления поворотным замком для фотоконтроля, используемого в общественных и частных осветительных приборах. В 2013 году стандарт был расширен за счет включения четырех новых (низковольтных) контактов для управления диммированием и будущих услуг. Этот новый стандарт определен в стандарте ANSI C136.41. Учитывая роль NEMA в группах стандартов, в отрасли стали называть розетку ANSI C136.41 «семиконтактной розеткой NEMA». Затемнение было основным новым вариантом использования, и ему были выделены контакты четыре и пять; будущие службы, которые могут использовать контакты шесть и семь, в настоящее время находятся в стадии разработки в версии Standard.
В Европе традиционно не используются внешние контроллеры на отдельных светильниках (осветительных приборах). Вместо этого была комбинация контроллеров шкафа и внутренних контроллеров. В 2019 году консорциум Zhaga расширил Книгу 18, «чтобы создать совместимую систему наружного светильника и модулей датчиков / связи». Цель состояла в том, чтобы создать экосистему совместимых продуктов от поставщиков светильников и поставщиков датчиков. В отличие от стандарта ANSI, эта спецификация была основана на четырех низковольтных соединениях и питании от постоянного тока. Этот новый стандартный интерфейс был разработан для использования с датчиками, которые позволяют управлять освещением, а также с учетом датчиков подключенных городов.
Технические характеристики оборудования
ANSI C136.41
Имеется три контакта для питания от сети и четыре контакта для низковольтной сигнализации.
Примечание. Стандарт ANSI C136.41 в настоящее время пересматривается и включает в себя таблицу с несколькими вариантами использования.
ZHAGA BOOK 18
Четыре контакта для низковольтной сигнализации.
Варианты использования
ANSI C136.41
Розетка ANSI C136.41 в основном используется для управления включением и выключением наружного освещения. Это началось с оригинальной трехконтактной версии (ANSI C136.10) с подключенным простым датчиком фотоэлемента. При правильной вставке в розетку фотоэлемент будет использовать внутренний фотооптический датчик для измерения уровня окружающего освещения вокруг светильника. В сумерках/закате, когда окружающий свет падает ниже порога «темноты» в сумерках/закате, фотоэлемент замыкает бортовое реле, которое включает лампу. Точно так же на рассвете / восходе солнца фотоэлемент размыкает реле, как только окружающий свет превысит пороговое значение. Когда лампа была включена, она горела на полную яркость (для некоторых ламповых технологий на это уходило несколько минут).
Поскольку светодиодные светильники с плавной регулировкой яркости стали более экономичными, этот тип светильников привел к внедрению и внедрению пятиконтактной и семиконтактной версии розетки (ANSI C136. 41). В сочетании с «умным фотоэлементом», который получает сигнал и реагирует на него, светодиодная арматура (и внутренний драйвер светодиода) может поддерживать вариант использования для уменьшения яркости лампы до некоторого значения, меньшего, чем 100-процентная яркость. Эта функция затемнения была полезна в ситуациях, когда светодиодный светильник давал больше света, чем нужно, или в случаях, когда желательна дополнительная экономия энергии.
В настоящее время в большинстве случаев используется пять контактов: три контакта для питания от сети и два контакта для диммирования сигнализации на светодиодных светильниках. В связи с растущим интересом к умным городам и датчикам IoT два дополнительных контакта (шестой и седьмой) теперь рассматриваются как простой способ подключения датчиков (например, датчиков качества воздуха, датчиков мониторинга трафика). Благодаря новым возможностям, предоставляемым интеллектуальными фотоэлементами, может быть реализовано комплексное решение.
С момента появления семиконтактной розетки NEMA с ней были установлены десятки миллионов светодиодных светильников. В большинстве случаев дополнительные контакты (шесть и семь) не используются. На самом деле провода внутри светильника ни к чему не подключены. Эта большая установленная база дает возможность городам, коммунальным службам или другим владельцам устанавливать датчики и устройства, которые собирают определенные данные, которые считаются ценными для этого клиента.
Использование шестого и седьмого контактов разъема NEMA — это один из способов расширить возможности подключенного города за счет разработки сенсорных интерфейсов, отвечающих потребностям клиентов. Комитет ANSI C136 работает над стандартизацией интерфейсов и протоколов связи, поддерживаемых контактами шесть и семь. Однако многие производители внедрили решения, доступные на рынке сегодня.
ZHAGA BOOK 18
Все больше и больше проектов умного уличного освещения в Европе предусматривают розетку Zhaga на верхней части светильника. Контроллеры на основе Zhaga получают низковольтное питание от драйверов светодиодов, что снижает стоимость, уменьшает размер и обеспечивает надежность, поскольку в контроллере меньше электронных компонентов. Кроме того, добавив второй разъем Zhaga в нижней части светильника, можно установить датчик. Однако в некоторых случаях эти датчики должны потреблять очень мало энергии, поскольку существуют ограничения на количество вспомогательной энергии, доступной от драйвера светодиодов, используемого для питания контроллера. Розетка Жага применима только для схем проводки DALI.
Сравнение
ANSI C136.41
ПЛЮСЫ:
- Миллионы светодиодных светильников используются с этой функцией.
- можно добавить к любому уличному фонарю с небольшими изменениями проводки светильника.
- Многие приложения для подключенных городов (мониторинг трафика, качество воздуха, динамическое освещение) могут быть развернуты, что повышает гибкость использования, в том числе с более высокими требованиями к энергопотреблению.
Датчики
МИНУСЫ:
1. Кому-то может показаться непривлекательным с эстетической точки зрения, если устройства находятся наверху светильника.
Zhaga Book 18
ПЛЮСЫ:
- В некоторых случаях более низкая стоимость владения, поскольку контроллеры питаются от драйверов светодиодов в светильниках.
- Обеспечивает сигнализацию и питание маломощных датчиков.
- Некоторые низкопрофильные контроллеры могут улучшить внешний вид.
МИНУСЫ:
- Добавлена сложность для вариантов использования подключенного городского датчика с более высокими требованиями к энергопотреблению.
- Может включать оборудование с более высокой начальной стоимостью, зависящее от схем подключения DALI.
Таким образом, индустрия управления наружным освещением претерпевает значительные изменения, поскольку города и коммунальные службы по всему миру рассматривают свои варианты добавления интеллектуальных датчиков для поддержки растущего интереса к подключенным сообществам. Выбор физического интерфейса(ов) самого осветительного прибора является важным решением, которое может определить экосистему датчиков, которые можно рассмотреть.