Какой ток является опасным для человека: Какой ток опасный для человека – постоянный или переменный, и почему?

Содержание

Какой переменный ток безопасен для человека?

Содержание

  • Действие электрического тока на организм человека
  • Опасная, безопасная и смертельная сила тока для человека
  • Разница между двумя сравниваемыми вариантами
  • Опасные для человека значения
  • В чем опасность удара электрическим током
  • Опасные пути прохождения электрического тока через тело
  • Виды электрических травм
  • Сопротивление человека и от чего оно зависит
  • Какая величина тока считается смертельной для человека
  • Длительность протекания тока
    • Почему переменный ток опаснее постоянного

В быту и на производстве мы сталкиваемся с различными электроприборами, электроустановками. Соблюдая правила электробезопасности и обладая знаниями в данной сфере можно уменьшить вероятность попадания под опасное воздействие электрического тока и напряжения.

В данном вопросе объединяются знания инженерного и медицинского характера, применение которых в комплексе, увеличит результат по снижению уровня электротравм дома и на производстве.

Действие электрического тока на организм человека

Ток, в отличие от других опасных сред, не обладает цветом, запахом, невидим.

Электрический ток оказывает следующие виды воздействия на организм человека: термическое, электролитическое, биологическое. Рассмотрим каждое из этих воздействий более подробно.

Термическое воздействие заключается в ожогах участков тела, нагреве сосудов и нервных окончаний. Этот вид действия называют еще тепловым. Потому что тепловая энергия, полученная из электрической образует ожоги.

Электролитическое воздействие приводит к разложению крови и других жидкостей в организме посредством процесса электролиза, что вызывает нарушения в физико-химическом составе этих жидкостей. Суть повреждений сводится к молекулярному уровню – загустевание крови, изменение заряда белков, паро- и газообразование в организме.

Биологическое воздействие электротока на организм сопровождается раздражением и возбуждением органов. Это вызывает судороги, сокращения.

В случае с сердцем и легкими это воздействие может привести к летальному исходу по причине прекращения деятельности органов дыхания и сердца.

Биологическое воздействие вызывает механические повреждения органов, суставов человека. Также механические повреждения может вызвать падение человека с высоты из-за воздействия электрического тока.

Опасная, безопасная и смертельная сила тока для человека

Нельзя считать какую-либо величину тока безопасной для человека. Существует лишь более и менее опасная величина электротока. Каждый человек имеет внутреннее сопротивление, на величину которого влияет множество факторов (толщина кожи, влажность помещения и тела человека, путь протекания тока).

Самым опасным путем протекания тока является направление нога-голова, рука-голова, так как при этом путь идет через сердце, мозг, органы дыхания. А большая величина тока может вызвать остановку сердца и остановку дыхания. Именно эти причины являются наиболее вероятными причинами летальных исходов при протекании электротока.

Считается, что постоянный ток более безопасный, чем переменный в сетях до 500В. При напряжении выше 500 вольт опасность постоянного тока возрастает.

Частота сети влияет на степень тяжести электротравмы. Промышленная частота в 50 Гц является более опасной, чем частота в 500Гц. При высокой частоте наблюдается так называемый «скин-эффект», когда ток проходит не по всему проводнику, а лишь по его поверхности. А значит, внутренние органы напрямую не затрагиваются.

Также на степень опасности воздействия тока на человека влияет продолжительность нахождения человека под воздействием тока. Здесь зависимость линейная – чем дольше, тем больше разрушений и неблагоприятных последствий.

Приведем пороговые значения переменного и постоянного тока и возможные реакции организма на эти воздействия:

Проходя через человеческое тело, ток может создавать электрические травмы или электрические удары.

Электрический удар подразумевает, что ток возбуждает ткани организма, что вызывает их сокращение и судороги. Существует 4 группы электроударов: судороги, судороги с потерей сознания, потеря сознания с нарушением дыхания и работы сердца, клиническая смерть.

При электрической травме ток наносит прямые повреждения тканям и органам человека. Это могут быть электрические ожоги, металлизация кожи, электрические метки и механические повреждения.

Электрические ожоги бывают токовыми и дуговыми. Действие токового ожога связано с прохождением тока через тело человека. Дуговой ожог возникает между человеком и проводником электротока высокого напряжения, вследствие возникновения дуги между ними. Температура дуги может достигать тысяч градусов по Цельсию. Такой ожог гораздо опаснее и может плюс ко всему сопровождаться возгоранием одежды пострадавшего.

Металлизация кожи происходит, когда под действием тока в кожу попадают частицы металла, при этом проводимость кожи увеличивается, что повышает травмоопасность.

Электрические метки – это места, через которые ток входит и выходит из тела человека. Наиболее часто встречаются на ногах и руках.

В любом случае следует стараться избегать касания токоведущих частей проводящими предметами (ловить рыбу под ЛЭП, нести стремянку вблизи шин напряжения), не использовать провода и кабели с ослабленной изоляцией, соблюдать правила безопасности при нахождении и работе в электроустановках. Берегите здоровье себя и своих родных.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Сегодня мы расскажем читателям сайта Сам Электрик, какой электрический ток опаснее для человека: переменный или постоянный. Сразу же следует отметить, что на этот вопрос можно дать ответ только в индивидуальном порядке, если известны сила, частота, и что не менее важно – напряжение. Далее мы предоставим к Вашему вниманию основные значения, при которых опасность переменного и постоянного электрического тока будет наименьшей и, соответственно, небезопасной для жизни.

Разница между двумя сравниваемыми вариантами

Итак, первым делом вкратце объясним Вам, в чем отличие переменного тока от постоянного. Основное отличие заключается в том, что в первом случае направленное движение заряженных частиц будет проходить прямо, а во втором – в хаотичном направлении. На графике ниже наглядно показана разница между двумя сравниваемыми вариантами и в то же время предоставлено краткое описание о том, как протекает переменный и постоянный электроток в цепи.

Помимо этого следует добавить, что постоянный ток в домашних условиях чаще всего протекает в светильниках — к примеру, если в комнате предусмотрена скрытая подсветка светодиодной лентой. В то же время переменный протекает во всех розетках, распределительная коробках и щитке, поэтому его опасность для жизни человека более актуальна.

Опасные для человека значения

Как мы сказали ранее, опасность электротока для жизни человека зависит от того, какое значение напряжения и частоты колебания будет протекать в цепи. Чтобы корректно ответить на вопрос, какой ток более опасен, рассмотрим все возможные значения и их диапазоны.

  1. Частота колебаний. В бытовой электрической сети составляет 50 Гц. При частоте от 10 до 500 Гц переменный ток одинаково опасен для человека. В диапазоне от 500 до 1000 Гц опасность заметно возрастает. Переменный электрический ток с частотой колебаний свыше 1000 Гц менее опасен для жизни. Тут же следует отметить, что постоянный эл.ток примерно в 3-4 раза безопаснее переменного, если частота колебаний последнего составляет 50 Гц.
  2. Напряжение. Если напряжение в сети не превышает 400 Вольт, то в этом случае переменный электрический ток опаснее постоянного. В диапазоне 400-600 Вольт сравниваемые варианты примерно одинаково опасны для жизни человека. Если напряжение в сети на порядок выше 500 Вольт опасность постоянного электротока возрастает и в этом случае переменный считается не таким опасным.

Также следует отдельно обратить Ваше внимание на такую величину, как силу тока. Этот параметр считается безопасным, если при переменном токе не превышает 10 мА, а при постоянном 50 мА. Если сравнивать опасность по Амперам, то тут можно с уверенностью сказать, что при одинаковых значениях переменный будет опаснее для человека, нежели постоянный.

Вот и все, что хотелось рассказать Вам по поводу данного вопроса. Надеемся, что Вы осознаете всю опасность воздействия электричества и при электромонтажных работах максимально серьезно подходите к обеспечению электробезопасности! Так или иначе, для бытовых условий можно с уверенностью ответить на вопрос, какой электрический ток опаснее для человека. Если постоянный ток используется только в освещении, то он не такой опасный, как переменный (в розетках, распределительных коробках и щитке)! Рекомендуем также ознакомиться с не менее важной статьей — какие инструменты должны быть у домашнего электрика!

Современная жизнь очень тесно связана с электричеством. Постепенно арсенал домашних электроприборов все больше увеличивается. Некоторые решаются сами проводить установку оборудования, проводить электропроводку или ремонтировать электрооборудование.

Все это сопряжено с тесным контактом человека и тока. Незнание элементарных правил обращения с электричеством может привести к травме или даже смерти. Далее узнаем, какой смертельный ток для человека, что из себя представляет ток, какие травмы он может принести и некоторые другие вопросы.

В чем опасность удара электрическим током

Иногда важно знать не то, какая сила тока может убить человека, а реакцию человека и внешнюю обстановку. Как правило, для человека получение удара от электрического тока происходит неожиданно. В силу этого человек может делать непроизвольные движения и необдуманные поступки.

Например, стоя на стремянке и получив удар током, человек может потерять равновесие и упасть с высоты и получить серьезные травмы. Неслучайно в правилах по технике безопасности приводится множество правил, как правильно работать с электроприборами.

Смертельная сила тока для человека определяется продолжительностью воздействия, чем больше продолжительность, тем большие травмы наносятся телу.

Находясь под действием тока, человек может испытывать болезненные ощущения, что может привести к шоку. Могут обостриться хронические заболевания или появиться новые. При более серьезной травме возможна временная, длительная или постоянная потеря трудоспособности.

Действие тока опасно еще и тем, что он действует на работу сердца и легких, в тяжелых случаях полностью останавливая их работу. Какая сила тока смертельна для человека, определяется путями прохождения электрического тока.

Опасные пути прохождения электрического тока через тело

Если рассматривать статистику, то около 40% ток поражает человека через руки. При этом через сердце проходит 3,3% от общего тока. В этом случае смертельный ток для человека повышается, увеличивая его шанс к выживанию.

На втором месте идет поражение через правую руку в одну или обе ноги. Поскольку большинство людей правши, то показатель составляет 20%.
Процентное соотношение тока, проходящего через сердце, увеличивается более чем в два раза и достигает 6,7%. Значение смертельной силы тока для человека резко понижается, увеличивая шанс тяжелых травм или смерти.

Левшам, или людям, коснувшимся левой рукой находящейся под напряжением цепи, достается 17%. В этом случае через сердце проходит 3,7%, увеличивая их шанс на благополучный исход.

Самым безопасным является путь тока через ноги. Сердцу достается всего 0,4% от общего потока. Но такое поражение сравнительно редко, ему подвержены только 6% от общего числа всех пострадавших.

Самым тяжелым случаем является путь тока через голову. Если цепь соединяется через голову и ноги, то через сердечную мышцу проходит 6,8% всей силы тока. К счастью, таких случаев только 5%. Однако если цепь состоит из головы и рук, то на сердце обрушивается максимальный поток, составляющий 7%. Таких случаев зафиксировано 4%.

Виды электрических травм

Все травмы, полученные от поражения электрическим током, можно разделить на четыре вида:

  1. термические;
  2. электролитические;
  3. механические;
  4. биологические.

Термическое воздействие. Тело человека состоит примерно из 80% воды, в которой растворены соли и минералы или находятся во взвешенном состоянии другие элементы. Это делает воду электролитом, который довольно хорошо проводит электричество, а оно, в свою очередь, производит работу, то есть нагревает все тело. Это происходит при малых токах и длительном воздействии. При больших токах происходит выгорание тканей на пути прохода электричества.

Под электролитическим подразумевается распад жидкости (крови, лимфы), из-за чего она уже не может выполнять свои функции.

К механическим относятся: разрыв кровеносных сосудов из-за давления пара, обрыв сухожилий и перелом костей из-за сокращения мышц.

Биологические нарушения – это нарушение кровообращения, дыхания и других органов. Для того чтобы понять, ток какой силы смертельно опасен для человека, следует учесть сопротивление тела человека.

Сопротивление человека и от чего оно зависит

Сопротивление тела человека чисто индивидуально и может сильно отличаться между индивидуумами. Складывается оно из сопротивления эпидермиса – наружного покрова и внутренних органов.

Чтобы вывести таблицы и схемы это значение условно принимается за 1 000 Ом или 1 кОм. Однако, это правило справедливо при непосредственном контакте тела.

Если ток проходит через ноги, сопротивление складывается из сопротивления тела, одежды, обуви и поверхности, на которой стоит человек. Поэтому если в первом случае смертельный ток для человека имеет одно значение, то во втором оно будет совершенно другим.

Кроме того, на сопротивление человека влияет множество других факторов. Например, здоровые сильные люди обладают большим сопротивлением, чем больные и слабые.

Вспотевшее тело уменьшает сопротивление, это же происходит, если человек возбужден или находится в подавленном состоянии. Поэтому очень сложно определить, какой ток будет проходить при тех или иных условиях. Тем не менее теоретически определено, каким будет смертельный ток для человека в амперах.

Какая величина тока считается смертельной для человека

Сила тока в 1 А — очень большая величина, поэтому чтобы определить смертельный ток для человека, используют меньшую величину – миллиамперы, мА. В 1 А содержится 1 000 мА.

Стоит уточнить, что смертельным ток становится не только из-за действия на органы, но и неспособности человека самостоятельно освободиться от действия электричества.

Так, при переменном токе силой 10–15 мА человек уже не может самостоятельно разжать пальцы рук и, продолжая находиться под действием тока, он подвергается смертельной угрозе. Для постоянного тока это значение составляет 50–80 мА.

При этом отмечаются четыре последствия воздействия тока:

  • без потери сознания;
  • с потерей сознания;
  • клиническая смерть;
  • биологическая смерть.

Находясь в сознании, человек еще может рассуждать и позвать на помощь, что увеличивает его шанс на выживание и получение наименьшего ущерба.

При потере сознания риск умереть резко возрастает. Токи более 80–100 мА переменного и 300 мА постоянного напряжения вызывают фибрилляцию сердца и (или) прекращение работы легких. При этом наступает клиническая смерть, продолжающаяся 5–7 минут.

Величина электрического тока более 100 миллиАмпер считается смертельно опасной. Такой ток вызывает остановку дыхания и фибрилляцию сердца.

Если в течение этого времени удается оказать человеку первую помощь, он может выжить. Биологическая смерть начинается с отмирания клеток головного мозга, после чего человека уже невозможно вернуть к жизни.

Длительность протекания тока

Чем быстрее освобождают человека от действия электричества, тем больший ток он может выдержать. В приведенной ниже таблице видно, как продолжительность воздействия влияет на максимально допустимый переменный ток.

При малых токах порядка 1,1 мА частотой 50 Гц и 6 мА постоянного значения человек начинает чувствовать прохождение электричества.

В случае с переменным напряжением это будет сопровождаться слабым зудом и пощипыванием, а постоянный ток дает ощущение нагрева в месте соприкосновения с источником тока.

Если переменный ток до 5 А вызывает фибрилляцию – хаотичное сокращение сердечных мышц, то свыше 5 А сразу происходит остановка сердца. Но даже и в этом случае можно спасти человека, если действие тока было продолжительностью не более 1–2 секунды.

Почему переменный ток опаснее постоянного

Самым опасным является ток частотой 20-1 000 Гц. Он примерно в три раза опаснее постоянного напряжения. Однако при дальнейшем повышении частоты опасность переменного напряжения снижается.

Если частота превышает 500 кГц, они уже не являются смертельными, но это не значит, что человек совсем не может от них пострадать. Термическое поражение остается как от прохождения тока, так и от электрической дуги.

Остается подвести итог. На последствия от поражения электрическим током влияют: напряжение, его род, сила тока, частота переменного напряжения и сопротивление человека.

Особенно важны: в каком состоянии находится человек, его особенности, как проходит ток, и сколько времени он оказывает воздействие. Не стоит забывать и об окружающей среде, влажность и повышенная температура способствуют поражению.

Опасность поражения электрическим током | RadioUniverse

Электрический ток может явиться причиной тяжелых несчастных случаев, большая часть которых происходит из-за пренебрежения к опасности, которую представляет собой электрический ток.

Нередко можно наблюдать, как радиолюбитель проверяет пальцами наличие напряжения на зажимах той или иной электрической установки; недопустимую небрежность допускают радиолюбители и при испытании и эксплоатации своей аппаратуры (приемников, передатчиков, телевизоров). К этому надо добавить, что радиолюбительские конструкции часто выполняются без соблюдения элементарных правил техники безопасности. Среди радиолюбителей укоренилось мнение, что опасными напряжениями являются лишь напряжения 500 в и выше, а напряжения — 110, 220 в — якобы не могут причинить человеку вреда. Правильно ли такое деление напряжений на опасные и неопасные? Безусловно, неправильно. Совершенно неправильными и недопустимыми следует считать также разговоры о безопасности удара электрическим током от различных «маломощных» источников, как, например, маломощного силового трансформатора, заряженного конденсатора и др. Подобные высказывания можно иногда слышать не только от начинающих, но и от опытных радиолюбителей.

Как же действует на человека электрический ток? Насколько велика опасность поражения током и от чего она зависит?

Попытаемся ответить на все эти вопросы.

Действие электрического тока на человеческий организм зависит от целого ряда причин: от силы тока и его частоты, от времени прохождения тока через тело человека, от участка поражения, состояния организма в момент удара и пр. Рассмотрим подробнее эти причины.

Сила тока. Установлено, что электрический ток силой 100 ма и более, безусловно, смертелен для человека. Ток такой силы вызывает паралич дыхательного центра, поражает непосредственно сердце, которое перестает работать, или же вызывает сильное изменение состава крови. Токи силой 50—100 ма также опасны для жизни человека, так как почти всегда вызывают потерю сознания у пострадавшего, даже при кратковременном касании к находящимся под напряжением деталям. Токи силой меньше 50 ма могут считаться неопасными, хотя они и вызывают неприятные ощущения при прохождении через тело человека. Однако даже и такие слабые токи могут представлять некоторую угрозу, так как уже при 15—20 ма мышцы теряют способность произвольно сокращаться и человек бывает не в состоянии длительное время выпустить из рук инструмента или провода, по которому проходит ток. Таким образом, наивысший предел тока, который еще может считаться безопасным для человека, колеблется между 15—50 ма.

Необходимо заметить, что приведенные цифры ни в коем случае нельзя считать твердо установленными, так как действие электрического тока на организм человека в значительной степени зависит также и от состояния здоровья, усталости, нервного состояния и пр.

Сопротивление. При каких же обстоятельствах через тело человека может пройти опасный для его жизни ток? Как известно, сила тока в цепи зависит от приложенного напряжения и от сопротивления этой цепи. Сопротивление тела человека зависит от ряда причин и прежде всего от состояния кожи в точках прикосновения к полюсам источника тока, так как сопротивление других тканей человеческого тела очень мало по сравнению с сопротивлением поверхностного слоя кожи. Величина сопротивления тела колеблется в широких пределах: от сотен омов до сотен тысяч омов. Тело с грубой и сухой кожей имеет сопротивление порядка 100 000—200 000 ом; сопротивление тела, имеющего более тонкую и влажную кожу, равно 30 000—50 000 ом. Резкое уменьшение сопротивления тела происходит в том случае, когда увеличивается площадь его соприкосновения с токонесущими предметами, например, при работе с плоскогубцами или металлической отверткой, при касании к металлическим шасси или корпусам приборов или же когда человек стоит на сырой земле, а также на хорошо проводящем полу (влажный бетон, сырые доски). Во всех этих случаях сопротивление тела может упасть до 10 000 — 20 000 ом, а если при этом оно еще покрыто влагой, то и до еще меньшей величины — 1 000 — 2 000 ом и меньше.

С понижением сопротивления тела опасность поражения электрическим током увеличивается.

Опасное напряжение. Зная величину опасной силы тока и сопротивления тела человека, можно определить, какую величину напряжения нужно считать опасной.

Пусть, например, сопротивление тела человека между двумя точками прикосновения к полюсам источника электрическою тока равно 2 000 ом. В этом случае напряжение в 120 в уже является опасным для жизни человека, так как под действием этого напряжения через тело человека пройдет ток, равный:

$$I=\frac{U}{R}=\frac{120}{2000}=0.06а=60ма$$

Таким образом, опасность поражения человека током определяется не только напряжением, под которое он попал, но и условиями, при которых происходит прикосновение к токонесущим частям, и главным образом сопротивлением цепи, через которую прошел ток. Отсюда следует важный вывод: нельзя считать одни напряжения опасными, а другие — безусловно безопасными.

По существующим правилам напряжения делятся на высокие — более 250 в по отношению к земле и низкие — менее 250 в. Такое деление, однако, вовсе не означает, что напряжения низкие являются также и неопасными. В действительности весьма много несчастных случаев происходит именно с низкими напряжениями, которые шире распространены и опасностью которых часто пренебрегают. Деление напряжений на высокие и низкие, таким образом, ничего не говорит об их большей или меньшей опасности. Само собой разумеется, что при увеличении напряжения установки опасность ее для человека возрастает. Однако при невыполнении правил безопасности несчастные случаи могут произойти при напряжении 220, 120 и даже 50—60 в.

Частота тока. Все сказанное об опасности электрического тока относится как к постоянному, так и к переменному току промышленной частоты (50 гц). С увеличением частоты тока наблюдается уменьшение степени опасности. Токи высоких частот (более 10 000 гц) уже не вызывают раздражающего действия и в этом отношении не представляют такой опасности для организма человека. Однако считать эти токи совсем безопасными нельзя, так как при высоких частотах прохождение тока через тело вызывает очень сильные, иногда смертельные, ожоги. На частотах свыше 30 мггц, т. е. на волнах короче 10 м, наблюдается воздействие электромагнитных колебаний на организм человека, которое проявляется при длительной работе с УКВ генераторами большой мощности в виде повышения температуры тела, головных болей и утомляемости.

Путь прохождения тока. Тяжесть поражения током в значительной мере зависит от пути прохождения тока через тело человека. Наиболее опасны случаи, когда ток проходит через область сердца, дыхательных органов или через голову. Вот почему особенно опасно прикосновение к источнику тока двумя руками, а также любое прикосновение при работе на земле или заземленном полу. Чтобы устранить или уменьшить опасность удара током, рекомендуется при работе под напряжением опасаться заземленных предметов и действовать одной рукой, держа другую за спиной. Для изоляции тела от заземленного пола перед электрической аппаратурой всегда следует стелить резиновые коврики.

Время прохождения тока. Чем дольше проходит ток через тело, тем более тяжелы его последствия. При длительном прохождении через тело даже слабый ток может нанести организму человека тяжелые повреждения. Поэтому при несчастных случаях очень важно бывает быстро освободить пострадавшего от тока.

Состояние организма. При ударе током состояние организма также играет немаловажную роль на последствия удара: при напряженном внимании вредное действие тока ослабляется, а при неожиданном ударе действие тока бывает значительно более сильным.

Переменный ток или постоянный ток?

Что безопаснее; Переменный ток (AC) или постоянный ток (DC)?

При работе с электронными продуктами крайне важно понимать разницу между переменным током (AC) и постоянным током (DC). Эти знания не только позволят вам работать с этими продуктами с четким пониманием того, как они работают электрически, но также обеспечат вам жизненно важный уровень безопасности.

Электричество, в конце концов, является естественной формой энергии и может быть очень опасным, если с ним не обращаться осторожно или с уважением. Поэтому, чтобы помочь вам обезопасить себя и расширить ваше понимание электричества, мы рассмотрим как переменный, так и постоянный ток, прежде чем объяснять, какой из них безопаснее.

Разница между переменным и постоянным током

Переменный и постоянный ток, как следует из их названий, представляют собой оба типа электрических токов, и они различаются направлением потока, который принимает каждый из них. Чтобы понять их более подробно, мы углубимся в то, что они из себя представляют:

  • .

    Переменный ток:

    Эта форма электрического тока может изменять направление своего потока — отсюда и переменное название — и именно эта универсальность делает ее идеальной для подачи электроэнергии в дома и на предприятия. Например, если вы используете телевизор дома, он работает от сети переменного тока, а если вы используете копировальный аппарат на работе, то, опять же, он будет использовать сеть переменного тока.

 

  • Постоянный ток:

    Электрический заряд, который движется только в одном направлении, постоянный ток имеет тенденцию течь через проводники, полупроводники и изоляторы. Чаще всего постоянный ток используется в батареях в качестве источника питания для электронных устройств, но постоянный ток также используется на удаленных объектах генерации, где его можно использовать для передачи энергии в больших количествах.

Теперь вы знаете немного больше об этих двух электрических токах, пришло время исследовать опасности, которые они представляют, и какой из них безопаснее.

Аспекты безопасности переменного и постоянного тока

Независимо от того, с каким током вы работаете, как переменный, так и постоянный ток представляют собой очень опасные элементы для работы и могут причинить вам серьезный вред. Люди не научились справляться с воздействием электрического тока на тело, и это может привести к легким ударам электрическим током, которые заставят вас прыгать до сердечных приступов и смерти.

Хотя оба тока опасны, переменный ток считается более опасным для работы по следующим причинам:

  • Человеческое тело имеет более высокий импеданс к постоянному току, чем к переменному, поэтому это означает, что люди способны выдерживать последствия поражения электрическим током, возникающие при воздействии постоянного тока, гораздо лучше, чем при воздействии переменного тока.

 

  • Эксперименты показали, что легче отпустить токоведущие части цепи постоянного тока, чем в цепях переменного тока. Естественно, это значительно облегчает снижение воздействия электричества при работе с постоянным током по сравнению с переменным.

 

  • Поражение электрическим током может вызвать фибрилляцию желудочков, что может привести к сердечной недостаточности и смерти. Предпочтительно избегать любых форм поражения электрическим током, но постоянный ток считается более безопасным в этих обстоятельствах, поскольку порог человеческого организма для постоянного тока значительно выше, чем для переменного.

Безопасность, как всегда, имеет первостепенное значение при работе с электричеством, и хотя постоянный ток считается более безопасным, необходимо соблюдать все меры предосторожности, чтобы предотвратить серьезные травмы.

Электромагнитные поля и рак — NCI

  • Международное агентство по изучению рака. Неионизирующее излучение, Часть 2: Радиочастотные электромагнитные поля. Лион, Франция: IARC; 2013. Монографии IARC по оценке канцерогенных рисков для человека, том 102.

  • Альбом А., Грин А., Хейфец Л. и др. Эпидемиология воздействия радиочастотного облучения на здоровье. Перспективы гигиены окружающей среды 2004; 112 (17): 1741–1754.

    [Реферат PubMed]

  • Международная комиссия по защите от неионизирующего излучения. Рекомендации по ограничению воздействия изменяющихся во времени электрических и магнитных полей (от 1 Гц до 100 кГц). Физика здоровья 2010; 99(6):818–836. дои: 10.1097/HP.0b013e3181f06c86.

     

     

  • Schüz J, Mann S. Обсуждение показателей потенциального воздействия для использования в эпидемиологических исследованиях воздействия на человека радиоволн от базовых станций мобильных телефонов. Журнал анализа воздействия и эпидемиологии окружающей среды 2000; 10 (6 ч. 1): 600–605.

    [Реферат PubMed]

  • Birks LE, Struchen B, Eeftens M, et al. Пространственная и временная изменчивость индивидуального воздействия радиочастотных электромагнитных полей на детей в Европе. Environment International 2018; 117: 204–214.

    [Реферат PubMed]

  • Viel JF, Clerc S, Barrera C, et al. Воздействие радиочастотных полей от базовых станций мобильных телефонов и широковещательных передатчиков в жилых помещениях: опрос населения с использованием персонального измерителя. Медицина труда и окружающей среды 2009; 66 (8): 550–556.

    [Реферат PubMed]

  • Фостер К.Р., Молдер Дж.Э. Wi-Fi и здоровье: обзор текущего состояния исследований. Физика здоровья 2013; 105 (6): 561–575.

    [Реферат PubMed]

  • АГНИР. 2012. Воздействие на здоровье радиочастотных электромагнитных полей. Отчет Независимой консультативной группы по неионизирующему излучению. В документах Агентства по охране здоровья R, Химические и экологические опасности. RCE 20, Агентство по охране здоровья, Великобритания (ред.).

     

     

     

     

  • Фостер К.Р., Телль Р.А. Воздействие радиочастотной энергии от интеллектуального счетчика Trilliant. Физика здоровья 2013; 105 (2): 177–186.

    [Реферат PubMed]

  • Lagroye I, Percherancier Y, Juutilainen J, De Gannes FP, Veyret B. Магнитные поля ELF: исследования на животных, механизмы действия. Успехи биофизики и молекулярной биологии 2011; 107(3):369–373.

    [Реферат PubMed]

  • Бурман Г.А., Маккормик Д.Л., Финдли Дж.К. и др. Оценка хронической токсичности/онкогенности магнитных полей частотой 60 Гц (частота сети) у крыс F344/N. Токсикологическая патология 1999; 27(3):267–278.

    [Реферат PubMed]

  • McCormick DL, Boorman GA, Findlay JC, et al. Оценка хронической токсичности/онкогенности магнитных полей частотой 60 Гц (мощность) у мышей B6C3F1. Токсикологическая патология 1999;2 7(3):279–285.

    [Реферат PubMed]

  • Всемирная организация здравоохранения, Международное агентство по изучению рака. Неионизирующее излучение, Часть 1: Статические и крайне низкочастотные (КНЧ) электрические и магнитные поля. Монографии МАИР по оценке канцерогенных рисков для человека 2002; 80:1–395.

  • Альбом И.С., Кардис Э., Грин А. и др. Обзор эпидемиологической литературы по ЭМП и здоровью. Перспективы гигиены окружающей среды 2001; 109 Дополнение 6:911–933.

    [Реферат PubMed]

  • Schüz J. Воздействие крайне низкочастотных магнитных полей и риск развития рака у детей: обновление эпидемиологических данных. Успехи биофизики и молекулярной биологии 2011; 107(3):339–342.

    [Реферат PubMed]

  • Wertheimer N, Leeper E. Конфигурации электропроводки и детский рак. Американский журнал эпидемиологии 1979; 109(3):273–284.

    [Реферат PubMed]

  • Kleinerman RA, Kaune WT, Hatch EE, et al. Дети, живущие вблизи высоковольтных линий электропередач, подвержены повышенному риску острого лимфобластного лейкоза? Американский журнал эпидемиологии 2000; 151 (5): 512–515.

    [Реферат PubMed]

  • Кролл М.Э., Суонсон Дж., Винсент Т.Дж., Дрейпер Г.Дж. Детский рак и магнитные поля от высоковольтных линий электропередач в Англии и Уэльсе: исследование случай-контроль. Британский журнал рака 2010; 103 (7): 1122–1127.

    [Реферат PubMed]

  • Wünsch-Filho V, Pelissari DM, Barbieri FE, et al. Воздействие магнитных полей и острый лимфолейкоз у детей в Сан-Паулу, Бразилия. Эпидемиология рака 2011; 35(6):534–539.

    [Реферат PubMed]

  • Sermage-Faure C, Demory C, Rudant J, et al. Детский лейкоз вблизи высоковольтных линий электропередач — исследование Geocap, 2002–2007 гг. Британский журнал рака 2013 г.; 108 (9): 1899–1906.

    [Реферат PubMed]

  • Кабуто М., Нитта Х., Ямамото С. и др. Лейкемия у детей и магнитные поля в Японии: исследование случай-контроль детской лейкемии и магнитных полей промышленной частоты в жилых домах в Японии. Международный журнал рака 2006 г.; 119(3):643–650.

    [Реферат PubMed]

  • Linet MS, Hatch EE, Kleinerman RA, et al. Бытовое воздействие магнитных полей и острый лимфобластный лейкоз у детей. Медицинский журнал Новой Англии 1997; 337(1):1–7.

    [Реферат PubMed]

  • Хейфец Л., Альбом А., Креспи С.М. и др. Объединенный анализ крайне низкочастотных магнитных полей и опухолей головного мозга у детей. Американский журнал эпидемиологии 2010 г.; 172 (7): 752–761.

    [Реферат PubMed]

  • Мезей Г., Гадаллах М., Хейфец Л. Воздействие магнитного поля в жилых помещениях и рак головного мозга у детей: метаанализ. Эпидемиология 2008; 19(3):424–430.

    [Реферат PubMed]

  • Ли М., Скело Г., Метайер С. и др. Воздействие электрических контактных токов и риск детской лейкемии. Радиационные исследования 2011; 175 (3): 390–396.

    [Реферат PubMed]

  • Ahlbom A, Day N, Feychting M, et al. Объединенный анализ магнитных полей и детской лейкемии. Британский журнал рака 2000; 83 (5): 692–698.

    [Реферат PubMed]

  • Гренландия С., Шеппард А.Р., Кауне В.Т., Пул С., Келш М.А. Объединенный анализ магнитных полей, проводных кодов и детской лейкемии. Исследовательская группа по детской лейкемии-ЭМП. Эпидемиология 2000; 11(6):624–634.

    [Реферат PubMed]

  • Хейфец Л., Альбом А., Креспи С.М. и др. Объединенный анализ недавних исследований магнитных полей и детской лейкемии. Британский журнал рака 2010; 103 (7): 1128–1135.

    [Реферат PubMed]

  • Hatch EE, Linet MS, Kleinerman RA, et al. Связь острого лимфобластного лейкоза у детей с использованием электроприборов во время беременности и в детстве. Эпидемиология 1998; 9(3):234–245.

    [Реферат PubMed]

  • Финдли Р.П., Димбилоу П.Дж. SAR в воксельном фантоме ребенка от воздействия беспроводных компьютерных сетей (Wi-Fi). Физика в медицине и биологии 2010; 55(15):N405-11.

    [Реферат PubMed]

  • Пейман А., Халид М., Кальдерон С. и др. Оценка воздействия электромагнитных полей от беспроводных компьютерных сетей (wi-fi) в школах; Результаты лабораторных измерений. Физика здоровья 2011; 100 (6): 594–612.

    [Реферат PubMed]

  • Общественное здравоохранение Англии. Беспроводные сети (wi-fi): радиоволны и здоровье. Руководство. Опубликовано 1 ноября 2013 г. Доступно по адресу https://www.gov.uk/government/publications/wireless-networks-wi-fi-radio-waves-and-health/wi-fi-radio-waves-and-health. (по состоянию на 4 марта 2016 г.)

  • Ха М., Им Х., Ли М. и др. Воздействие радиочастотного излучения от АМ-радиопередатчиков, детская лейкемия и рак головного мозга. Американский журнал эпидемиологии 2007 г.; 166 (3): 270–279.

    [Реферат PubMed]

  • Мерцених Х. , Шмидель С., Беннак С. и др. Детский лейкоз в связи с радиочастотными электромагнитными полями в непосредственной близости от передатчиков теле- и радиовещания. Американский журнал эпидемиологии 2008 г.; 168 (10): 1169–1178.

    [Реферат PubMed]

  • Эллиотт П., Толедано М.Б., Беннет Дж. и др. Базовые станции мобильных телефонов и рак в раннем детстве: исследование «случай-контроль». Британский медицинский журнал 2010 г.; 340:с3077.

    [Реферат PubMed]

  • Инфанте-Ривард С., Мертвец Дж. Э. Профессиональное воздействие магнитных полей крайне низкой частоты на мать во время беременности и детской лейкемии. Эпидемиология 2003; 14(4):437–441.

    [Реферат PubMed]

  • Hug K, Grize L, Seidler A, Kaatsch P, Schüz J. Родительское профессиональное воздействие крайне низкочастотных магнитных полей и детский рак: немецкое исследование случай-контроль. Американский журнал эпидемиологии 2010 г.; 171 (1): 27–35.

    [Реферат PubMed]

  • Свендсен А.Л., Вайхкопф Т., Каатш П., Шюц Дж. Воздействие магнитных полей и выживаемость после постановки диагноза детской лейкемии: немецкое когортное исследование. Эпидемиология рака, биомаркеры и профилактика 2007; 16(6):1167–1171.

    [Реферат PubMed]

  • Foliart DE, Pollock BH, Mezei G, et al. Воздействие магнитного поля и долгосрочная выживаемость среди детей с лейкемией. British Journal of Cancer 2006; 94(1):161–164.

    [Реферат PubMed]

  • Foliart DE, Mezei G, Iriye R, et al. Воздействие магнитного поля и прогностические факторы при детской лейкемии. Биоэлектромагнетизм 2007; 28(1):69–71.

    [Реферат PubMed]

  • Schüz J, Grell K, Kinsey S, et al. Чрезвычайно низкочастотные магнитные поля и выживаемость при остром лимфобластном лейкозе у детей: международное последующее исследование. Журнал рака крови 2012; 2:e98.

    [Реферат PubMed]

  • Schoenfeld ER, O’Leary ES, Henderson K, et al. Электромагнитные поля и рак молочной железы на Лонг-Айленде: исследование случай-контроль. Американский журнал эпидемиологии 2003; 158 (1): 47–58.

    [Реферат PubMed]

  • Лондон С.Дж., Погода Дж.М., Хванг К.Л. и др. Воздействие магнитного поля в жилых помещениях и риск рака молочной железы: вложенное исследование случай-контроль в многоэтнической когорте в округе Лос-Анджелес, Калифорния. Американский журнал эпидемиологии 2003; 158 (10): 969–980.

    [Реферат PubMed]

  • Дэвис С., Мирик Д.К., Стивенс Р.Г. Жилые магнитные поля и риск рака молочной железы. Американский журнал эпидемиологии 2002; 155 (5): 446–454.

    [Реферат PubMed]

  • Kabat GC, O’Leary ES, Schoenfeld ER, et al. Использование электрического одеяла и рак молочной железы на Лонг-Айленде. Эпидемиология 2003; 14(5):514–520.

    [Реферат PubMed]

  • Клюкине Дж., Тайнс Т., Андерсен А. Бытовое и профессиональное воздействие магнитных полей частотой 50 Гц и рак молочной железы у женщин: популяционное исследование. Американский журнал эпидемиологии 2004; 159 (9): 852–861.

    [Реферат PubMed]

  • Tynes T, Haldorsen T. Бытовое и профессиональное воздействие магнитных полей частотой 50 Гц и гематологические раковые заболевания в Норвегии. Причины рака и борьба с ним 2003; 14(8):715–720.

    [Реферат PubMed]

  • Лабреш Ф., Голдберг М.С., Валуа М.Ф. и др. Профессиональное воздействие магнитных полей крайне низкой частоты и постменопаузальный рак молочной железы. Американский журнал промышленной медицины 2003; 44(6):643–652.

    [Реферат PubMed]

  • Willett EV, McKinney PA, Fear NT, Cartwright RA, Roman E. Профессиональное воздействие электромагнитных полей и острая лейкемия: анализ исследования случай-контроль. Медицина труда и окружающей среды 2003; 60 (8): 577–583.

    [Реферат PubMed]

  • Coble JB, Dosemeci M, Stewart PA, et al. Профессиональное воздействие магнитных полей и риск опухолей головного мозга. Нейроонкология 2009; 11(3):242–249.

    [Реферат PubMed]

  • Ли В., Рэй Р.М., Томас Д.Б. и др. Профессиональное воздействие магнитных полей и рак молочной железы среди работниц текстильной промышленности в Шанхае, Китай. Американский журнал эпидемиологии 2013 г.; 178 (7): 1038–1045.

    [Реферат PubMed]

  • Groves FD, Page WF, Gridley G, et al. Рак у военно-морских техников Корейской войны: исследование смертности через 40 лет. Американский журнал эпидемиологии 2002; 155 (9): 810–818.

    [Реферат PubMed]

  • Грейсон Дж.К. Радиационное воздействие, социально-экономический статус и риск опухоли головного мозга в ВВС США: вложенное исследование случай-контроль. Американский журнал эпидемиологии 1996 г .; 143(5):480–486.

    [Реферат PubMed]

  • Томас Т.Л., Столли П.Д., Стемхаген А. и др. Риск смертности от опухоли головного мозга среди мужчин, работающих в сфере электротехники и электроники: исследование случай-контроль. Журнал Национального института рака 1987 г .; 79(2): 233–238.

    [Реферат PubMed]

  • Армстронг Б., Терио Г., Генель П. и др. Связь между воздействием импульсных электромагнитных полей и раком у работников электроэнергетики в Квебеке, Канаде и Франции. Американский журнал эпидемиологии, 1994 г.; 140 (9): 805–820.

    [Реферат PubMed]

  • Морган Р.

    Какой ток является опасным для человека: Какой ток опасный для человека – постоянный или переменный, и почему?