Коэффициент мощности нагрузки: Коэффициент мощности

Коэффициент мощности | Электроснабжение, электрические сети | Архивы

Страница 23 из 52

ГЛАВА IX
КОЭФФИЦИЕНТ МОЩНОСТИ И СПОСОБЫ ЕГО ПОВЫШЕНИЯ

§ 9.1. Технико-экономическое значение коэффициента мощности

Как известно, в электрической цепи переменного тока, имеющей чисто активную нагрузку, ток совпадает по фазе с приложенным напряжением.
Если в цепь включены электроприемники, обладающие активным и индуктивным сопротивлениями (например, асинхронные электродвигатели, сварочные и силовые трансформаторы и т. п.), то ток будет отставать от напряжения на некоторый угол φ, называемый углом сдвига фаз. Косинус этого угла (cosφ) называется коэффициентом мощности. Величина коэффициента мощности характеризует степень использования активной мощности источника электроэнергии. Чем выше коэффициент мощности электроприемников, тем лучше используются генераторы электрических станций и их первичные двигатели (турбины и др.), трансформаторы подстанции и электрические сети.

Наоборот, чем ниже cosφ, тем хуже используется электрооборудование электростанций и всех других элементов электроснабжения. Низкие значения cosφ при тех же величинах активной мощности приводят к дополнительным затратам на сооружение более мощных станций, подстанций и сетей, а также к дополнительным эксплуатационным расходам.
Отсюда становится ясным большое народнохозяйственное значение повышения коэффициента мощности в электрических установках.

ПУЭ (1-2-47) установлена минимальная величина cosφ = 0,92—0,95, обязательная для предприятий.
Чтобы создать заинтересованность предприятий в увеличении коэффициента мощности, существует шкала скидок и надбавок к стоимости электроэнергии в зависимости от величины его среднего значения в электрохозяйстве предприятия.

§ 9.2. Определение коэффициента мощности

Действительная мощность электроприемников предприятия непрерывно изменяется с течением времени. Это объясняется тем, что работа отдельных участков или цехов предприятий не совпадает во времени. Кроме того, часть оборудования может работать с неполной загрузкой или даже находиться в состоянии холостого хода.

Изменение активной и реактивной мощностей электроприемников влечет за собой и соответствующие изменения cosφ. Различают следующие понятия коэффициента мощности.
Мгновенный коэффициент мощности — это величина cosφ в данный момент времени.

Значение мгновенного коэффициента мощности можно определить по фазометру или по одновременным указаниям измерительных приборов — амперметра, вольтметра и киловаттметра из выражения

На предприятиях принято средневзвешенный коэффициент мощности определять за месяц.

Энергоснабжающие организации при расчетах с абонентами различают два вида средневзвешенного коэффициента мощности: естественный и общий.
Естественный средневзвешенный коэффициент мощности характеризует электрическую установку без компенсирующих устройств.

Общий средневзвешенный коэффициент мощности определяется с учетом действия компенсирующих устройств.

§ 9.3. Причины, вызывающие снижение коэффициента мощности

Основными потребителями реактивной энергии являются асинхронные электродвигатели, трансформаторы и индуктивные печи, сварочные аппараты, газоразрядные лампы и т. д.
Асинхронный электродвигатель, работающий с нагрузкой, близкой к номинальной, имеет наибольшее значение cosφ. При снижении нагрузки электродвигателя коэффициент мощности уменьшается. Это объясняется тем, что активная мощность на зажимах электродвигателя изменяется пропорционально его загрузке, в то время как реактивная мощность вследствие незначительного изменения намагничивающего тока практически остается постоянной.

При холостом ходе cosφ имеет наименьшую величину, которая в зависимости от типа электродвигателя, мощности и скорости вращения находится в пределах 0,14-0,3.
Силовые трансформаторы, как и асинхронные электродвигатели, при загрузке меньше чем на 75% имеют пониженное значение коэффициента мощности.

Перегруженные асинхронные электродвигатели тоже имеют низкий cosφ, что объясняется увеличением по токов магнитного рассеяния.
Электродвигатели открытого типа, обладающие лучшими условиями охлаждения по сравнению с закрытыми электродвигателями, могут нести большую нагрузку (активную мощность) и будут иметь, следовательно, более высокий cosφ. Электродвигатели с короткозамкнутым ротором вследствие меньших значений индуктивного сопротивления рассеяния имеют cosφ выше, чем электродвигатели с фазным ротором. Значение cosφ у машин одного и того же типа возрастет с ростом номинальной мощности и скорости вращения ротора, так как при этом уменьшается относительная величина намагничивающего тока.

Увеличение напряжения на вторичной стороне силовых трансформаторов вследствие снижения нагрузки (например, во время ночных смен и в часы обеденных перерывов) ведет к повышению напряжения по сравнению с номинальным на зажимах работающих электродвигателей. Это в свою очередь приводит к увеличению намагничивающего тока и реактивной мощности электродвигателей, что влечет за собой уменьшив коэффициента мощности.
Обточка ротора, которую производят при износе подшипников, чтобы ротор не задевал статор, приводит к увеличению воздушного зазора между статором и ротором, что вызывает увеличение намагничивающего тока и понижение cosφ. Уменьшение числа проводников в пазу статора при перемотке вызывает увеличение намагничивающего тока и снижение cosφ асинхронного двигателя.

Применение газоразрядных ламп (ДРЛ и люминесцентных), имеющих в цепи индуктивное сопротивление (дроссель) при отсутствии компенсирующих устройств, также снижает коэффициент мощности электроустановок.

  • Назад
  • Вперед

Как правильно подобрать мощность вашего ИБП. Разбираем на примере Eaton / Хабр

Надёжная защита компьютеров, работоспособность и долгий срок службы источников бесперебойного питания (ИБП) зависят от правильно подобранной мощности ИБП по отношению к нагрузке. В этом посте мы рассмотрим простые правила подбора ИБП по мощности — они помогут и сэкономить бюджет, и остаться уверенным, что эти устройства обеспечат защиту в случае внезапного сбоя или отключения электроснабжения.

Расчёт нагрузки при выборе мощности ИБП


При подборе ИБП оперируют тремя величинами:

  1. мощность нагрузки,
  2. номинальная мощность ИБП,
  3. требуемое время автономной работы ИБП от батареи.


Это основные параметры, но есть ещё нюансы, и об этом мы тоже расскажем ниже.

С определением мощности нагрузки всё относительно просто — суммируется мощность всех устройств, которые планируется подсоединить к одному ИБП (обычно это группа устройств, расположенных рядом друг с другом). Затем полученные цифры суммируются по всем ИБП, обслуживающих такие группы устройств. Мощность, потребляемую мониторами, принтером, колонками, роутером, внешним дисководом и т.д., можно найти на этикетках устройств. Для ПК или сервера берётся мощность указанная на блоке питания.

Знатоки скажут, что это весьма приблизительный подсчёт нагрузки, поскольку в разных режимах потребляемая мощность каждого устройства может существенно отличаться от той, что указана на этикетках или в спецификациях на блоки питания. Это будет абсолютной правдой, но они же согласятся, что таким образом определяется мощность «по верхнему пределу потребления». Если реальная мощность нагрузки в результате окажется ниже рассчитанной, то ничего плохого не случится.

Дальше идёт первый нюанс — он связан с номинальной мощностью ИБП: обычно она указывается в вольт-амперах (В·А) и выносится в виде цифр в название модели ИБП. Например, модель ИБП Eaton 5P 850 имеет номинальную мощность 850 В·А. При этом мощность нагрузки подсчитывается в ваттах (Вт), так как именно в ваттах маркируются блоки питания компьютеров, мониторов и других ИТ-устройств. Удобные онлайн-калькуляторы пересчёта «В·А в Вт» есть в интернете. Если же вы хотите пересчитать самостоятельно, можно воспользоваться следующей формулой:

Активная мощность (ватты) = Полная мощность (вольт-амперы) × Коэффициент мощности (Cos φ)


Второй нюанс состоит в том, что неизвестной величиной в этой формуле будет коэффициент мощности (Cos φ). И, кстати, в онлайн-калькуляторе тоже потребуется указать значение этого параметра. Для измерения «косинуса фи» для конкретного устройства существуют специальные приборы, называемые фазометрами. Но в малом бизнесе столь точные расчеты Cos φ обычно никто не проводит. Как правило, пользуются оценочными значениями Cos φ, характерными для данного типа устройств.

Так, для типового ПК эта величина составляет 0,7, и именно с этим коэффициентом указана мощность ИБП в ваттах в каталогах Eaton.

А какой Cos φ у современных серверов, систем хранения данных и сетевого оборудования (коммутаторов, маршрутизаторов и прочего)? В них используются блоки питания с коррекцией коэффициента мощности, поэтому его значение приближается к единице (1,0). Принято считать, что такое оборудование является нагрузкой с небольшой ёмкостной составляющей, и коэффициент мощности принимают равным 0,95.

Отдельным вопросом является использование таких блоков питания с ИБП – при их использовании требуется выбрать ИБП бОльшей мощности, особенно, если ИБП выдает не чистую синусоиду напряжения на выходе, а меандр.Также могут возникнуть дополнительные требования к ИБП, связанные с принципом работы таких источников. Тема требует отдельной статьи, и таких статей уже написано множество.

Следующий параметр, значение которого следует знать перед выбором мощности ИБП — это желаемое время работы ИБП в режиме «от батарей». В каталоге для каждой модели ИБП приводится оценочное время автономной работы при нагрузке 50% и 70% от номинальной мощности.

Узнать мощность нагрузки можно с помощью самого ИБП. Источник: Eaton

Обычно для корректного завершения работы операционной системы на компьютерах достаточно 5 минут, особенно если автоматизировать этот процесс посредством программного обеспечения мониторинга и управления ИБП — стороннего или от производителя ИБП (например, Eaton Intelligent Power Manager). Однако если требуется значительно большее время на поддержание работы компьютеров, то следует выбирать более мощные модели ИБП или даже докупать и устанавливать дополнительные внешние батареи. Такие внешние батареи доступны для моделей ИБП, работающих в корпоративном секторе.

Давайте выполним пример расчёта мощности ИБП для защиты электропитания двух современных серверов, позиционируемых как «серверы для малого бизнеса» с блоками питания по 200 Вт (то есть общая мощность двух серверов — 400 Вт). Низкая мощность блоков питания объясняется тем, что в таких серверах нет никаких движущихся частей, кроме вентиляторов охлаждения. Дисковая память реализована на SSD и нет CD-дисковода. Да, и ещё предполагается, что мощных видеокарт тоже нет.

При коэффициенте мощности 0,95 и ориентации на 70-процентную нагрузку от номинальной мощности получим, что требуется ИБП не менее, чем на 600 В·А: (400 ÷ 0,95) ÷ 0,7. Таким требованиям удовлетворит, скажем, ИБП Eaton 5P 650 в корпусе «башня» или «для стойки, 1U». Согласно каталогу, время автономной работы такого источника будет порядка 6 минут. Однако если вы не уверены, что точно знаете коэффициент мощности БП вашего сервера, то лучше ориентироваться на стандартное значение 0,7, а не на близкое к идеальному 0,95. Тогда наш расчёт (400 ÷ 0,7) ÷ 0,7 даст требуемую мощность ИБП 816 В·А. Следовательно, следует выбрать следующую по мощности модель ИБП Eaton 5P 850. Всегда лучше выбирать ИБП с запасом, т.к. время автономной работы в каталогах указано приблизительно и может варьироваться в зависимости от реальной нагрузки, возраста батареи и уровня её заряда, температуры окружающей среды.

Заметим тут же, что ИБП, как и любой компонент системы электропитания (к примеру, трансформатор), должен быть рассчитан на полную мощность нагрузки. Поэтому в нормальном режиме линейно-интерактивный ИБП работает через автотрансформатор и приведенная выше методика справедлива. Но при работе от батареи преобразуется только активная составляющая, поэтому необходимо учитывать номинальную активную мощность ИБП. Для ИБП Eaton 5-й серии это значение обычно подсчитывается как S·0,6 (0,7). Для класса онлайн-ИБП в любом режиме (кроме байпаса) необходимо учитывать и активную мощность, и полную, и разрешенный диапазон коэффициента мощности нагрузки.

Мониторинг и управление шатдауном нагрузок


После того, как расчёты сделаны, ИБП куплен и нагрузка подключена, в процессе эксплуатации желательно контролировать реальный уровень нагрузки. Это можно делать, используя служебный дисплей ИБП или с помощью ПО удалённого мониторинга. На основании этих наблюдений, сделанных при разных режимах работы нагрузок, можно окончательно определить, правильно ли подобрана мощность ИБП для защищаемых устройств.

Скриншот ПО управления ИБП. Источник: Eaton

Для удалённого мониторинга нагрузок Eaton предлагает компаниям фирменное ПО управления системой бесперебойного электроснабжения Intelligent Power Manager (IPM).

Базовая версия на десять ИБП доступна бесплатно, для контроля большего числа источников потребуется платная лицензия. IPM обеспечивает удалённый контроль корпоративной инфраструктуры гарантированного энергоснабжения с любого компьютера с использованием веб-интерфейса. Кроме физических серверов, IPM поддерживает управление питанием виртуальных машин — можно автоматически завершать работу гипервизоров VMware, HyperV, RedHat KVM и Xen.

Что подразумевается под коэффициентом мощности?

Низкий коэффициент мощности снижает пропускную способность электрической системы за счет увеличения протекающего тока. Поэтому иметь низкий коэффициент мощности неэффективно и дорого. Но что такое коэффициент мощности и что на него влияет?

Типичная распределительная система ограничена по величине тока, которую она может нести; коэффициент мощности, выраженный в процентах, является показателем величины полного тока, который может быть использован для создания работы (активной мощности). Чем ближе коэффициент мощности к 1,00 (100%), тем меньше ток, необходимый для выполнения указанной работы.

Например, нагрузка с коэффициентом мощности 0,80 означает, что только 80% мощности эффективно используется для выполнения работы. В идеальном мире вся мощность, получаемая из энергосистемы, должна быть преобразована в полезную работу, но в реальном мире это не так. Для полного описания коэффициента мощности необходимы сложные уравнения. Однако для более простого понимания Министерство энергетики США использует простую аналогию с мощностью, необходимой лошади, чтобы тянуть тележку по рельсам.

В идеале лошадь должна быть размещена перед вагоном, чтобы обеспечить наиболее эффективное тяговое усилие; однако это не всегда возможно. Угол буксировки отражает изменение коэффициента мощности: чем меньше угол, тем лучше коэффициент мощности, чем больше угол, тем ниже коэффициент мощности (рис. 1).

1. Углы влияют на полезную работу. Показанная здесь аналогия обеспечивает визуализацию, помогающую понять коэффициент мощности. Коэффициент мощности определяется как отношение реальной (рабочей) мощности к полной (полной) мощности. Если лошадь вести ближе к центру следа, угол бокового увода уменьшается, и реальная мощность приближается к значению кажущейся мощности. Источник: Министерство энергетики США

Полная энергия, необходимая для тяги вагона, равна полной мощности. Фактическая энергия, движущая вагон, является реальной силой. Энергия, не используемая из-за угла тяги лошади, является реактивной мощностью. Другими словами, реальная мощность, также называемая рабочей мощностью (кВт), выполняет фактическую работу движения, тепла и света. Реактивная мощность или нерабочая мощность (кВар) поддерживает магнитное поле реактивной нагрузки (обычно индуктивной). Ток, используемый для создания реактивной мощности, не используется для создания работы; однако этот ток ложится бременем на систему распределения, поставщика электроэнергии и счета за электроэнергию объекта.

Векторная сумма рабочей мощности и нерабочей мощности равна общей мощности (полная мощность):

Полная мощность = √ (активная мощность 2 + реактивная мощность 2 )

, которая используется для расчета коэффициента мощности:

Коэффициент мощности = Активная мощность / Полная мощность = косинус угла (ϕ)

Основы напряжения и тока

Чтобы понять коэффициент мощности, мы должны сначала понять некоторые основы теории переменного тока (AC) и связанные с ней формы сигналов. Напряжение в системе переменного тока чередуется между положительным и отрицательным (в синусоидальной форме) и заставляет ток вести себя аналогичным образом. Это происходит 60 раз в секунду (в системе с частотой 60 Гц) в диапазоне от 0 до 360 градусов. В отличие от систем переменного тока, напряжение в системе постоянного постоянного тока (DC) не изменяется.

Поскольку мгновенное значение напряжения переменного тока постоянно изменяется, наука определила другую меру для величин переменного тока, а именно среднеквадратичное значение. Среднеквадратичное значение сигнала переменного тока дает тот же эффект нагрева, что и сигнал постоянного тока того же значения.

Среднеквадратичное значение представляет собой квадратный корень из среднего арифметического квадратов набора мгновенных значений за период (цикл). Когда напряжение и ток являются чисто синусоидальными, среднеквадратичное значение напряжения и тока можно найти по пиковому (pk) напряжению и току:

V RMS = V pk / √2

119.5 V RMS = 169 V pk / 1.414

Similarly,

I RMS = I pk / √2

75 A RMS = 106 A pk / 1,414

Вы можете спросить себя, какое отношение это имеет к коэффициенту мощности? Для расчета мощности переменного тока требуется знание среднеквадратичного значения напряжения, среднеквадратичного значения тока и синусоидального фазового соотношения. Итак, резюмируя, среднеквадратичное значение — это мера нагревательного эффекта, рассчитанная по форме волны, которая позволяет сравнивать переменный ток с постоянным. Любой фазовый сдвиг от чистой синусоидальной формы сигнала указывает на коэффициент мощности.

Ниже приведено сравнение того, как коэффициент мощности влияет на выходную мощность кВА при двух разных однофазных нагрузках.

Для электронагревателя мощностью 9 кВт (120 В перем. тока, 75 А) с входным коэффициентом мощности (PF) 1,0:

P = √1ϕ x 120 В перем. тока x 75 A x 1,0 PF = 9 кВт

кВА = √1ϕ x 120 В переменного тока x 75 A = 9 кВА

Для зарядного устройства мощностью 9 кВт (120 В переменного тока, 75 A) с входным коэффициентом мощности 0,866:

P = √1ϕ x 120 В переменного тока x 86,6 A x 0,866 PF = 9 кВт

кВА = √1ϕ x 120 В переменного тока x 86,6 A = 10,392 кВА

Хотя каждая нагрузка потребляет 9 кВт мощности, входной коэффициент мощности зарядного устройства составляет 0,866. Более низкий коэффициент мощности требует для работы дополнительных 11,6 А, которые в конечном итоге предоставляются энергетической компанией. Необходимо не только приобрести дополнительный реактивный ток, но и увеличить размер распределительной системы, чтобы справиться с дополнительным током.

Что влияет на коэффициент мощности?

Коэффициент мощности относится к соотношению между активной (полезной мощностью) и полной (полной) мощностью. Это отношение является мерой того, насколько эффективно используется электроэнергия.

Линейные резистивные нагрузки. В системе переменного тока нагрузки классифицируются по способу потребления тока. Линейная резистивная нагрузка — это чисто резистивная нагрузка, не содержащая ни индуктивных, ни емкостных компонентов, таких как электрические обогреватели и лампы накаливания. Кривые напряжения и тока пересекают нулевую координату в одной и той же точке.

Кривая мощности (P) на рис. 2 рассчитана по напряжению (V) и току (I), показанным в положительной области графика. В этом примере напряжение и ток составляют 120 ВСКЗ и 75 АСКЗ соответственно. Произведение двух равно 9кВА или 9 кВт. Напряжение и ток находятся «в фазе», и 100% мощности (рабочей мощности) эффективно используются для выполнения полезной работы. Коэффициент мощности для этого типа нагрузки равен 1,0.

2. Линейные активные нагрузки. Напряжение и ток совпадают по фазе с коэффициентом мощности, равным 1,0 для чисто резистивных нагрузок. Предоставлено Ametek Solidstate Controls

Линейные нерезистивные/реактивные нагрузки. Необычно найти чисто активные нагрузки; большинство нагрузок имеют дополнительную реактивную составляющую. Эти нерезистивные/реактивные нагрузки составляют большой процент всех нагрузок. Форма волны тока смещена от формы волны напряжения так, что она находится «в противофазе». Если нагрузка индуктивная, ток отстает от напряжения; если нагрузка емкостная, ток опережает.

Промышленные объекты, как правило, имеют отстающие нагрузки коэффициента мощности (индуктивные нагрузки). Этими типами нагрузок могут быть асинхронные двигатели, дроссели и трансформаторы. Нагрузки с опережающим коэффициентом мощности (емкостные нагрузки) менее распространены и обычно представляют собой подземные кабели или некоторые импульсные источники питания.

На рис. 3 та же нагрузка, что и на рис. 2, теперь имеет кривые напряжения и тока, сдвинутые по фазе на 30 градусов. Поскольку это индуктивная форма волны, ток теперь отстает.

3. Индуктивные нагрузки. Напряжение и ток не совпадают по фазе для линейных нерезистивных/реактивных нагрузок. В этом примере с индуктивной нагрузкой ток отстает от напряжения на 30 градусов при коэффициенте мощности 0,866. Предоставлено Ametek Solidstate Controls

Нелинейные нагрузки — гармоники. Современные промышленные установки имеют не только активные, индуктивные и емкостные нагрузки, но многие из них также включают полупроводниковое оборудование, такое как импульсные источники питания, приводы постоянного тока, частотно-регулируемые приводы (ЧРП), электронные балласты, аппараты для дуговой сварки и датчики температуры. -управляемые печи. Это все нелинейные нагрузки или нагрузки, для которых ток несинусоидален, даже когда напряжение синусоидально. Несинусоидальный характер этих сигналов выражается с помощью гармоник.

Гармоники — это сигналы различной амплитуды на частотах, кратных основной частоте напряжения (50 Гц или 60 Гц). Они накладываются на синусоидальную форму волны тока для создания общей формы волны тока. Рисунок 4 является примером такой формы волны тока.

4. Нелинейные нагрузки. На этом графике показаны формы сигналов напряжения и тока нелинейного источника питания с гармониками. Для наглядности он показан без 30-градусного фазового сдвига тока. Предоставлено Ametek Solidstate Controls

Среднеквадратичное значение всего тока находится путем суммирования среднеквадратичного значения каждой гармоники тока. При частоте сигнала 60 Гц это означает, что частота 2-й гармоники будет равна 120 Гц (60 Гц x 2 = 120 Гц), а частоты 3-й, 4-й и 5-й гармоник будут равны 180 Гц, 240 Гц и 300 Гц соответственно. Гармоники, кратные основной частоте, могут быть выражены как 2f, 3f, 4f и т. д.

Текущее общее гармоническое искажение (THD) представляет собой сумму всех гармонических составляющих формы тока по сравнению с основной составляющей волны тока. . Как показано ниже, это отношение среднеквадратичного значения гармоник тока к среднеквадратичному значению основного тока.

I THD = среднеквадратичные гармоники тока / среднеквадратичные среды фундаментального тока = √ (I 2 2 + I 3 2 + I 4 2 +…) / I 1 2 + … / I 1 2 2 +… / I 1 2 +… / I 1 2 + … / I 4 2 +. x 100%

Для чисто синусоидальных сигналов фазовый сдвиг между напряжением и током достаточен для количественного определения коэффициента мощности (PF). Для сигналов, которые не являются синусоидальными, термин «коэффициент мощности смещения» (DpPF) используется для количественной оценки фазового сдвига между основными частотами двух сигналов (составляющими 50 Гц или 60 Гц). Для тех же несинусоидальных сигналов определен термин для количественной оценки влияния гармоник на коэффициент мощности. Этот термин называется коэффициентом мощности искажения (DF).

DF = 1 / √(1 + THD 2 )

Чтобы найти общий коэффициент мощности (PF T ), используется следующее уравнение:

Корреляция коэффициента мощности

Для линейных нагрузок треугольник мощности представляет собой прямоугольный треугольник, показывающий соотношение между рабочей, реактивной и полной мощностью. Соотношение между рабочей и полной мощностью – это PF. Значение может варьироваться от 0,0 до 1,0.

Рабочая мощность, также называемая истинной мощностью, реальной мощностью или активной мощностью, выполняет фактическую работу движения/обогрева/освещения и т. д. и измеряется в ваттах (Вт). Реактивная мощность поддерживает магнитное или электрическое поле в устройствах, таких как соленоидные катушки, обмотки двигателей, обмотки трансформаторов, конденсаторы и балласты, не выполняя реальной работы. Эта дополнительная энергия измеряется в реактивных вольт-амперах (ВАР) и иногда называется «безваттной» мощностью. Полная мощность объединяет рабочую мощность и реактивную мощность и измеряется в вольт-амперах (ВА).

Фазовый угол (ϕ) в градусах представляет «неэффективность» нагрузки и соответствует общему реактивному сопротивлению (Z) току, протекающему в нагрузке. Чем больше фазовый угол, тем больше реактивная мощность. Нелинейные нагрузки добавляют дополнительный элемент к общей (кажущейся) мощности, не добавляя к активной мощности, что еще больше снижает коэффициент мощности. ■

Дэвид Маккиннон — старший инженер по приложениям Ametek Solidstate Controls. Отдельное спасибо Богдан Прока, доктор философии и Дуг Кинг за их вклад.

Что такое коэффициент нагрузки и почему он важен?

ЧТО ТАКОЕ КОЭФФИЦИЕНТ НАГРУЗКИ?
Коэффициент нагрузки — это показатель эффективности использования электроэнергии в вашем домашнем хозяйстве. Он рассчитывается путем деления общего объема электроэнергии (кВтч), использованного в месяц, на ваш пиковый спрос (кВт), умножения на количество дней в расчетном цикле и общее количество часов в сутках. Результатом является соотношение между нулем и единицей, и чем выше это соотношение или процент, тем эффективнее ваше домашнее хозяйство использует электроэнергию.

                                                                                                                                                             

Теперь, когда мы печатаем максимальное месячное потребление в счете за электроэнергию, вы можете легко рассчитать месячный коэффициент нагрузки. Найдите следующие позиции в счете за электроэнергию:

  • Количество использованных кВтч
  • Максимальное значение Фактическое потребление кВт
  • Количество Дней в расчетном периоде

900 числа, используемые для нашего примера расчета коэффициента загрузки:

  • Ежемесячное потребление энергии — 1531 кВтч
  • Ежемесячное пиковое потребление электроэнергии — 9,245 кВт
  • Дней в месяце — 30 дней
  • Часов в сутках — 24 часа

Коэффициент нагрузки 0 Расчет = 0002

В этом примере коэффициент нагрузки составляет 23 процента, показывая, что в среднем пиковое потребление полностью использовалось в среднем всего 5-1/2 часа в день в течение 30 дней, а это означает, что это домохозяйство использует электроэнергию неэффективно.

Пример № 1 –  Этот участник-владелец использовал 1531 кВт·ч, а пиковое потребление составляло 90,245 кВт на общую сумму 228 долларов.

Пример № 2 –  Если бы этот участник-владелец использовал то же количество электроэнергии 1 531 кВт·ч и распределил их потребление, пиковая потребность в 3,52 кВт привела бы к   60-процентному коэффициенту нагрузки и общему счету в размере 222 долларов США.

ПОЧЕМУ ВАЖЕН КОЭФФИЦИЕНТ НАГРУЗКИ
Структура уровня спроса автоматически вознаграждает владельцев-членов за улучшение коэффициента загрузки. В прошлом вы могли сэкономить деньги, выключив свет или воспользовавшись программами энергоэффективности вашего кооператива. В будущем вы также можете снизить свой счет, скоординировав количество устройств, которыми вы управляете одновременно. Пошаговое использование основных бытовых приборов окажет наибольшее влияние на ваши будущие счета за электроэнергию, а также на то, в какое время дня вы используете энергию в своем доме.

Счет за оптовую электроэнергию вашего кооператива содержит плату за потребление, которая составляет почти половину наших затрат, понесенных в нашем ежемесячном счете за оптовую электроэнергию. Текущий уровень оптового спроса составляет более 20 долларов США за кВт, что является одним из самых высоких уровней спроса в стране. Ниже плата за спрос в размере 20 долларов США используется для иллюстрации существенной разницы, которую это оказывает на стоимость электроэнергии вашего Кооператива.

                                           

КАК МЫ МОЖЕМ УЛУЧШИТЬ КОЭФФИЦИЕНТ НАГРУЗКИ?
Снижайте пиковую нагрузку, откладывая или распределяя использование, вместо одновременного запуска всех устройств в периоды пиковой нагрузки. Чтобы просмотреть историю использования и отслеживать ее в будущем, зайдите на наш веб-сайт, зарегистрируйтесь в SmartHub и просматривайте свое ежедневное использование, чтобы определить часы, в которые ваша семья потребляет больше всего энергии.

Коэффициент мощности нагрузки: Коэффициент мощности