Принцип работы биполярного транзистора. Принцип работы транзистораПоймем вместе принципы работы транзистора :: SYL.ruТранзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей. Биполярные транзисторыТак называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве. Различные биполярные транзисторы показаны на фото ниже. Маломощные приборы расположены в небольших пластиковых прямоугольных или металлический цилиндрических корпусах. Они имеют три вывода: для базы (Б), эмиттер (Э) и коллектор (К). Каждый из них подключен к одному из трех слоев кремния с проводимостью либо n- (ток образуют свободные электроны), либо p-типа (ток образуют так называемые положительно заряженные «дырки»), из которых и состоит структура транзистора. Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже. Как видим, он содержит три слоя: два с проводимостью n-типа и один – p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление. Принципы работы транзистораЛучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи. Она использует силовой транзистор для управления свечением лампочки. Вам также понадобится батарейка, небольшаю лампочка от фонарика примерно 4,5 В/0,3 А, потенциометр в виде переменного резистора (5К) и резистор 470 Ом. Эти компоненты должны быть соединены, как показано на рисунке справа от схемы. Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (UBE = 0). Лампа не светится, что означает отсутствие тока через транзистор. Если теперь поворачивать рукоятку от ее нижней позиции, то UBE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение UBE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко. А если измерить токи транзистора?Если мы включим амперметр между коллектором (C) и лампой (для измерения IC), другой амперметр между базой (B) и потенциометром (для измерения IB), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, UBE равно 0 В, также как и токи IC и IB. Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: UBE = 0.6 В, IB = 0,8 мА и IC = 36 мА. В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор - эмиттер. Что происходит при включении питания транзистораВо время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер. Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже. Какова роль тока базы?Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток IBE. Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу. Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока. Типы полевых транзисторовПо английски они обозначаются FETs - Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа: 1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET. 2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET. Внешне они очень похожи на биполярные, что подтверждает фото ниже. Устройство полевого транзистораВсе полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу – либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей. Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» – аналогами эмиттера и коллектора или, точнее ,катода и анода вакуумного триода. Третий вывод – затвор (аналог сетки триода) – присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже. Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока. www.syl.ru Как работает транзистор: схемыДля усиления электрических импульсов используются полупроводниковые триоды. Так как работает транзистор за счет изменения напряжения в сети, он может регулировать силу тока в определенном электрическом устройстве. Виды транзисторовТранзистор – это полупроводниковый активный радиоэлемент, который необходим для генерирования, преобразования и усиления электрического сигнала (его частоты и силы). Его еще называют полупроводниковым триодом. Этот элемент схемы необходим для работы практически всех известных электрических устройств (коммутатор зажигания, диодный мост, блок питания, переключатель нагрузки, датчик и т. д.). Он был запатентован в начале 20-го века при участии известного ученого-физика Юлия Эдгара Лилиенфельда, но его совершенствование произошло только на базе уже существующего биполярного в 60-х. Только спустя 20 лет Шокли, Бардином и Браттейном были созданы первые биполярные триоды. Конструктивно транзистор состоит из трех электродов: база, эмиттер, коллектор. Здесь эмиттером и коллектором представлены основные детали устройства, база выполняет функции управления сетью, усиления тока и его преобразования. Схема с этим электрическим элементом обозначается в виде трех электродных отводов, заключенных в круг. Стрелка указывает направление тока в эмиттере. Существует два типа транзисторов: полевой и биполярный, они отличаются друг от друга принципом работы и областью использования. Полевой элемент управляется входящим напряжение сети, в то время, как биполярный – током. Рассмотрим их работу более подробно. Фото – структураПолевой транзистор – это однопереходный элемент, т. к. в нем протекает заряд только с одним знаком (+ или -). Поэтому они называются униполярными. Эти детали классифицируются по типу управления:
Изолированный элемент практически ничем не отличается от неизолированного, за исключением дополнительного слоя диэлектрика между затвором и каналом. Его называют МОП-транзистором из-за конструкции: металл-оксид-полупроводник. Биполярный транзистор известен своим свойством пропускать заряды с разным знаком через одну базу. В этом элементе ток продвигается через базу на коллектор. Бывает таких исполнений:
npn – это транзисторы с обратной проводимостью. pnp – с прямой. Одним из подвидов обратного полупроводникового триода является оптотрон, который открывается не за счет тока, а при распознавании света. Элемент в таком режиме работы используется в разных датчиках освещенности, выключателях и т. д. Помимо этого, данные элементы могут разниться по мощности, размеру, используемому материалу для базы. Мощность транзисторов находится в пределах от 100 мВт до 1 Вт и более, современная электроника использует все виды, в зависимости от назначения и конструктивных особенностей прибора. Ранее биполярные транзисторы имели относительно большой размер, сравнительно с современными деталями. Сейчас электроника использует даже так называемые «острова» – это элементы, которые представлены на схеме в виде точки. Они практически незаметны постороннему глаз, но позволяют пропускать и контролировать сильные импульсы. У каждого типа транзисторов есть определенные достоинства и недостатки:
Принцип работы для начинающихПолевой триод управляется воздействием на носители тока электрического поля, а не током входной базовой цепи. Основа этого элемента – кремниево-фосфорная пластина типа n, которая от смеси кремния и бора отличается большим количеством свободных электродов. На этой пластине находится затвор с каналом – он называется p-областью. Этот канал имеет два окончания – сток и исток, которые также имеют область p, но только с увеличенным количеством электронов. Благодаря этому, между каналом и затвором создается p-n переход. Фото – принцип работыКонтактные выводы соединяют между собой затвор, исток и сток. Если к истоку подключен плюс, а к стоку минус от источника питания, то система канала начнет получать ток. Он будет создаваться за счет движения электронов между проводниками цепи. Это называется ток стока. Обратите внимание на то, что когда к истоку подключен положительный вывод, область обеднения расширяется, а канал сужается, за счет чего значительно увеличивается сопротивление стока. Соответственно, если область обеднения будет сужаться, то ток стока увеличиваться. Так работает полевой транзистор. Фото – разница между триодамиБиполярный обратный npn работает за счет цепи эмиттер-коллектор. Когда к схеме подключается ток, то транзистор открывается. Если изменить напряжение тока, поступающего на базу, то можно будет управлять током в цепи. Этот принцип работы используется в большинстве моделей современной электроники. Главным образом электротехника применяет транзисторы полярного и униполярного типа для усиления сигналов разнообразных датчиков или регулирования тока сети питания. Примечательной особенностью этих элементов является то, что на них можно собирать разные логические микросхемы, выступающие в роли логического умножителя, отрицателя и т. д. Видео: объяснение работы транзистораhttps://www.youtube.com/watch?v=37V3gDGvhPQ Работа в схемеТранзисторы – это одни из самых популярных и необходимых элементов схем в электронике. Рассмотрим, как эти элементы используются на триггере и регенераторе. Импульсный триггер Шмиттта – это генератор, в котором все входящее напряжение делится компаратором на три диапазона. Он состоит из транзисторов, которые соединены между собой гальванической связью и резистором, резисторов нагрузки и конденсатора. Фото – работа транзистора в триггере ШмиттаКогда триггер подключается к источнику питания, то один его МОП-транзистор открывается, а второй закрывается. После этого в цепи появляется некоторое напряжение, уровень которого зависит от обвязки элементов схемы. Использование полупроводниковых триодов в регенераторе необходимо для упрощения регулирования частоты тока. Главным достоинством использования транзисторной схемы здесь является то, что образующийся каскад может контролировать волны любой величины, начиная от ультразвука. Фото – схема регенератораСостоит такой регенератор из двух биполярных транзисторов 0,5 В, катушки и резистора. Такую схему можно подключить как автогенератор, тогда большая часть катушки уйдет в коллекторный отвод, а меньшая – в базовый. Напряжение к транзисторам подается через резисторы, с их помощью можно изменять напряжение и сопротивление сигнала между эмиттером и базой. www.asutpp.ru Принципы работы транзистораТранзистор - прибор, работающий на полупроводниках с электронной начинкой. Он предназначен для превращения и усиления электрических сигналов. Различают два вида приборов: биполярный транзистор и униполярный транзистор, или полевой.
Если в транзисторе одновременно работают два вида носителей заряда - дырки и электроны, то он называется биполярным. Если в транзисторе работает только один тип заряда, то он является униполярным.
Представьте себе работу обыкновенного водяного крана. Повернули задвижку - поток воды усилился, повернули в другую сторону - поток уменьшился или прекратился. Практически в этом и заключаются принципы работы транзистора. Только вместо воды через него течет поток электронов. Принцип действия транзистора биполярного типа характерен тем, что через этот электронный прибор идут два вида тока. Они подразделяются на большой, или основной и маленький, или управляющий. Причем мощность управляющего тока влияет на мощность основного. Рассмотрим полевой транзистор. Принцип работы его отличается от других. В нем проходит лишь один ток, мощность которого зависит от окружающего электромагнитного поля.
Биполярный транзистор делают из 3-х слоев полупроводника, а также, самое главное, из двух PN-переходов. Следует отличать PNP и NPN переходы, а, значит, и транзисторы. В этих полупроводниках идет чередование электронной и дырочной проводимости. Биполярный транзистор имеет три контакта. Это база, контакт, выходящий из центрального слоя, и два электрода по краям - эмиттер и коллектор. По сравнению с этими крайними электродами прослойка базы очень тонкая. По краям транзистора область полупроводников не является симметричной. Для правильной работы данного прибора полупроводниковый слой, расположенный со стороны коллектора, должен быть пусть немного, но толще по сравнению со стороной эмиттера.
Принципы работы транзистора основаны на физических процессах. Поработаем с моделью PNP. Работа модели NPN будет подобной, за исключением полярности напряжения между такими основными элементами, как коллектор и эмиттер. Она будет направлена в противоположную сторону. Вещество Р-типа содержит дырки или же положительно заряженные ионы. Вещество N-типа состоит из отрицательно заряженных электронов. В рассматриваемом нами транзисторе количество дырок в области Р намного больше количества электронов в области N.
При подключении источника напряжения между такими частями, как эмиттер и коллектор принципы работы транзистора основаны на том, что дырки начинают притягиваться к полюсу и собираться возле эмиттера. Но ток не идет. Электрическое поле от источника напряжения не доходит до коллектора из-за толстой прослойки полупроводника эмиттера и прослойки полупроводника базы.Тогда подключим источник напряжения уже с другой комбинацией элементов, а именно между базой и эмиттером. Теперь дырки направляются к базе и начинают взаимодействовать с электронами. Центральная часть базы насыщается дырками. В результате образуется два тока. Большой - от эмиттера к коллектору, маленький - от базы к эмиттеру.
При увеличении напряжения в базе в прослойке N будет еще больше дырок, увеличится ток базы, немного усилится ток эмиттера. Значит, при малом изменении тока базы достаточно серьезно усиливается ток эмиттера. В результате мы получаем рост сигнала в биполярном транзисторе. Рассмотрим принципы работы транзистора в зависимости от режимов его работы. Различают нормальный активный режим, инверсный активный режим, режим насыщения, режим отсечки.При активном режиме работы эмиттерный переход открыт, а коллекторный переход закрыт. В инверсионном режиме все происходит наоборот. fb.ru Принцип работы биполярного транзистораВ свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.
Биполярный транзистор представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода. Поэтому транзистор можно представить в виде двух встречно включенных диода. В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.
База – слой полупроводника, который является основой конструкции транзистора. Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы. Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой. Как правило, эмиттер содержит намного большее количество основных зарядов, чем база. Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы. Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси. Базу делают как можно более тонкой. Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора. Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.
Принцип работы транзистораРассмотрим на примере p-n-p транзистора.
В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины. Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном. Это будет соответствовать активному режиму работы транзистора. Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом к эмиттеру, а отрицательным к базе. Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ < Uк. Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении. Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его. Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими. Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы. Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции. Коэффициент инжекции стараются приблизить к 1. Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода. Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу. Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем. Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6. А так как дырки поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр. Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы. Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы. Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1. Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора. Обратный ток коллектора возникает в результате обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током. От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее. Коллекторный ток связан с эмиттерным коэффициентом передачи тока. Токи в транзисторе можно представить следующим образом
Основное соотношение для токов транзистора Ток коллектора можно выразить как Из вышесказанного можно сделать вывод, что изменяя ток в цепи база – эмиттер, мы можем управлять выходным током коллектора. Причем незначительное изменение тока базы, вызывает значительное изменение тока коллектора.
electroandi.ru
electric-220.ru Биполярный транзистор: принцип работы | joyta.ruВ этой статье постараемся описать принцип работы самого распространенного типа транзистора - биполярного. Биполярный транзистор является одним из главных активных элементов радиоэлектронных устройств. Предназначение его – работа по усилению мощности электрического сигнал поступающего на его вход. Усиление мощности осуществляется посредством внешнего источника энергии. Транзистор - это радиоэлектронный компонент, обладающий тремя выводами
Конструкционная особенность биполярного транзистораДля производства биполярного транзистора нужен полупроводник дырочного или электронного типа проводимости, который получают методом диффузии либо сплавления акцепторными примесями. В результате этого с обоих сторон базы образуются области с полярными видами проводимостей. Биполярные транзисторы по проводимости бывают двух видов: n-p-n и p-n-p. Правила работы, которым подчинен биполярный транзистор, имеющий n-p-n проводимость (для p-n-p необходимо поменять полярность приложенного напряжения):
Для разных биполярных транзисторов одной серии показатель hэ21 может принципиально разниться от 50 до 250. Его величина так же зависит от протекающего тока коллектора, напряжения между эмиттером и коллектором, и от температуры окружающей среды.
Изучим правило №3. Из него вытекает, что напряжение, приложенное между эмиттером и базой не следует значительно увеличивать, поскольку, если напряжение базы будет больше эмиттера на 0,6…0,8 В (прямое напряжение диода), то появится крайне большой ток. Таким образом, в работающем транзисторе напряжения на эмиттере и базе взаимосвязаны по формуле: Uб =Uэ + 0,6В (Uб=Uэ+Uбэ) Еще раз напомним, что все указанные моменты относятся к транзисторам, имеющим n-p-n проводимость. Для типа p-n-p все следует изменить на противоположное. Еще следует обратить внимание на то, что ток коллектора не имеет связи с проводимостью диода, поскольку, как правило, к диоду коллектор - база поступает обратное напряжение. В добавок , ток протекающий через коллектор весьма мало зависит от потенциала на коллекторе (данный диод аналогичен малому источнику тока) Биполярный транзистор принцип работыПри включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.
Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу. Таки образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера. Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными. В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток. Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов. www.joyta.ru Биполярный транзисторБиполярный транзистор. Биполярный транзистор - электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного(полевого) транзистора, в работе которого участвует только один тип носителей заряда. Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока - основной "большой" ток, и управляющий "маленький" ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора. Устройство биполярного транзистора. Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот. У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector иemitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора. Работа биполярного транзистора. Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной. Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы - дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P. Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы. Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE - 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет "дотянуться" своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере. В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы. В итоге мы получаем два тока: маленький - от базы к эмиттеру IBE, и большой - от коллектора к эмиттеру ICE. Если увеличить напряжение на базе, то в прослойке P собереться еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом,при небольшом изменении тока базы IB, сильно меняеться ток коллектора IС. Так и происходитусиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IBназывается коэффициентом усиления по току. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзистором. β = IC / IB Простейший усилитель на биполярном транзисторе Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер. 1.Описание основных элементов цепи Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью. 2. Расчет входного тока базы Ib Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно - Ibmax и Ibmin. Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить - около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V). Посчитаем Ibmax и Ibmin с помощью закона Ома: 2. Расчет выходного тока коллектора IС Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin). 3. Расчет выходного напряжения Vout Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи - это напряжение на коллекторе VC. Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения: 4. Анализ результатов Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз - далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет. Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора. Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями. Режимы работы биполярного транзистора В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:
Режим отсечки Когда напряжение база-эмиттер ниже, чем 0.6V - 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки. Активный режим В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления. Режим насыщения Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы. В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен». Инверсный режим В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют. Основные параметры биполярного транзистора. Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначаетсяβ, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов. β - величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий - в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно. Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше - тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность. Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом). Выходная проводимость - проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности. Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)). Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал. studfiles.net |