Расстояние от здания до контура заземления: Расстояние от контура заземления до фундамента здания по ПУЭ

Молниезащита объекта III категории, скатная кровля, cтержневой, контур заземления




  • Граундтех


    /

  • Статьи


    /

 Стержневой молниеприемник
Контур заземления

 Общие данные

 

Тип объекта – загородный жилой дом

 

Устройство молниезащиты предназначено для обеспечения защиты от прямых ударов молнии (ПУМ).

Здание относится к III категории молниезащиты зоне Б согласно пп.5, таблицы 1 Инструкции по устройству молниезащиты зданий и сооружений РД 34.21.122-87.

Таблица 1




№ пп.

Здания и сооружения

Местоположение

Тип зоны защиты при использова­нии стержне­вых и тросо­вых молние­отводов

Катего­рия молние­защиты

1

2

3

4

5

14

Расположенные в сельской местности небольшие строения III-IV степеней огнестойкости, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа

В местностях со средней про­должительностью гроз 20 ч в год и более при N<0,02

III

Зона защиты типа Б — 95 % и выше.

В соответствии с требованиями «Инструкции по устройству молниезащиты зданий, сооружении и промышленных коммуникации» проектируемое здание по устройству молниезащиты относится к обычному объекту.

При наличии возвышающейся над всеми элементами кровли дымовой трубы над ней следует установить стержневой молниеприемник высотой не менее 0,2м, проложить по кровле и стене строения токоотвод и присоединить его к заземлителю, п.п. 2.30 (в) РД 34.21.122-87.

На нашем здании будет использоваться стержневой молниеприемник алюминиевый длиной 1,5 м диаметром 16мм (M10202),

который будет крепиться к дымоходной трубе за счет мачтового кронштейна 150 мм (K10220).За счет развернутой угловой пластины на 180°, молниеприемник будет будет надежно закреплен в кронштейне.

 

Ниже, на краю молниеприемника крепится зажим для подключения (K10228) через который к молниеприемнику подключается токоотвод. Токоотвод выполнить из стальной оцинкованной проволоки 8 мм согласно Таблице 3.1. (S10301).

По скатам крыши и токоотвод крепится на Держателе проводника на мостовой опоре ДПК-М100 (D10135). Клемма для соединения проволоки весьма удобна, это обусловлено, тем, что не надо варить оцинкованную проволоку, нет необходимости перемещать сварочный аппарат по площади кровли, увеличивается скорость крепления узлов проволоки. Кроме того, при сварочном соединении нарушается изначальный слой цинка.

Вдоль конька токоотвод проложен на держателях проводника на конек ДПК-К100 (D10143).

Чтобы спустить токоотвод на фасад используется держатель проводника для желоба водостока из оцинкованной стали (D10111).

Расположение токоотвода от молниеприемной сетки до заземляющего устройства должно быть минимальным. Необходимо установить несколько токоотводов для равного стекания тока молнии и снижения его величины на проволоке. Токоотводы должны располагаться равномерно по периметру объекта. Среднее расстояние между токоотводами должно быть 20 м. (Таблица 3.3 СО 153-34.21.122-2003).

Токоотвод выполнить из стальной оцинкованной проволоки 8 мм согласно Таблице 3.1.

Расстояние токоотвода от крыши до заземляющего устройства должно быть минимальным. Необходимо установить несколько токоотводов для равного стекания тока молнии и снижения его величины на проволоке. Токоотводы должны располагаться равномерно по периметру объекта. Среднее расстояние между токоотводами должно быть 20 м. (Таблица 3.3 СО 153-34.21.122-2003). В нашем случае это два опуска на противоположных сторонах здания.

Токоотводы располагаются на поверхности стены и крепятся на держателях круглого проводника. (D10121).

Держатель крепится при помощи самореза и пластикового дюбеля. Монтаж осуществляется простым нажатием проводника до щелчка в держателе.

Заземление объекта.

Согласно п.п. 2.13 «В качестве заземлителей защиты от прямых ударов молнии во всех возможных случаях (см. п. 1.8) следует использовать железобетонные фундаменты зданий и сооружений. При невозможности использования фундаментов предусматриваются искусственные заземлители:

— при наличии молниеприемной сетки или металлической кровли по периметру здания или сооружения прокладывается наружный контур следующей конструкции:

— в грунтах с эквивалентным удельным сопротивлением   500 Омм при площади здания более 250 м2 выполняется контур из горизонтальных электродов, уложенных в земле на глубине не менее 0,5 м, а при площади здания менее 250 м2 к этому контуру в местах присоединения токоотводов приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2—3 м;»

3.2.3.2. Специально прокладываемые заземляющие электроды СО 153-34. 21.122-2003.

«Сильно заглубленные заземлители оказываются эффективными, если удельное сопротивление грунта уменьшается с глубиной и на большой глубине оказывается существенно меньше, чем на уровне обычного расположения. Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли и на расстоянии не менее 1 м от стен. Глубина закладки и тип заземляющих электродов выбираются из условия обеспечения минимальной коррозии, а также возможно меньшей сезонной вариации сопротивления заземления в результате высыхания и промерзания грунта.»

Необходимо выполнить траншею глубиной 0,5 м и шириной 0,25 м

Таким образом, согласно таблице 2. 11 РД 34.21.122-87, минимальный диаметр стального вертикального электрода заземления: 10 мм.

Выбираем стержень стальной оцинкованный диаметром 16 мм длиной 1,5 (Z10161).

Конструкция стержня такова, что толщина стержня позволяет заглублять его вертикально при помощи электроинструмента. А резьбовая оснастка позволяет соединять стержня между собой для увеличения глубины залегания. Так достигается наилучшее растекание тока, кроме того на большой глубине, грунт не промерзает и не высыхает.

Стержень оцинкованный длиной 1,5 м – соединяется между собой при помощи муфты (Z10163) и образует вертикальный очаг заземления длиной 3 м.

Для увеличения скорости монтажа на первый стержень накручивается стальной наконечник (Z10164).

Стержни заглубляются при помощи кувалды или электроинструмента. Удар должен осуществляться по удароприемной головке (Z10174),которая закручивается в соединительную муфту.

 

При использовании электроинструмента типа «отбойный молоток» или «перфоратор» необходимо использовать тип патрон SDS-MAX и насадку (Z10105) для передачи удара в головку.

 

Заглубить вертикальные стержни заземления в местах опусков токоотводов. При установке вертикальных заземлителей необходимо оставить на дне траншеи выпуск стержня длиной 150 мм для подключения горизонтального заземлителя (S10309).

Горизонтальный заземлитель полоса стальная оцинкованная 40х4 мм. П.п. Таблица 3. РД 34.21.122-87.

Таблица 3










 

 

Форма токоотвода и заземлителя

Сечение (диаметр) токоотвода и заземлителя, проложенных

 

снаружи здания на воздухе

в земле

Круглые токоотводы и перемычки диаметром, мм

6

Круглые вертикальные электроды диаметром, мм

10

Круглые горизонтальные* электроды диаметром, мм

10

Прямоугольные электроды:

 

 

сечением, мм

48

160

толщиной, мм

4

4

* Только для выравнивания потенциалов внутри зданий и для прокладки наружных контуров на дне котлована по периметру здания.

Контур прокладывается вокруг здания и соединяется между собой сваркой. Перед сваркой необходимо зачистить слой цинка. После сварки требуется окрасить цинконаполненным составом (M10247). Длина шва 6 см. 

Выполнить соединение горизонтального и вертикального заземлителя при помощи специального зажима типа Z (Z10101). Подключить к зажиму токоотвод.

Очистить соединение «полоса-токоотвод-стержень» от грунта, воды. Обмотать соединение лентой изоляционной (Z10104).

Расчет сопротивления растекания заземляющего устройства

Для сопротивления внешней молниезащиты здания требуется заземляющее устройство с сопротивлением до 10 Ом. Для расчета возьмем усредненную величину удельного сопротивления грунта – 350 Ом/м.

Сопротивление растеканию вертикального заземлителя определяется по формуле:

 

 

Где:

ρ- удельное сопротивление грунта, Ом/м;
Сij – безразмерный коэффициент, зависящий от формы заземлителя и условий его заглубления;
l — длина вертикального электрода, м;
d — диаметр глубинного электрода, м;
n — количество электродов, шт;
H — заглубление (расстояние от поверхности земли до середины заземлителя, м).

Как правило, с учетом прокладки заземляющего проводника на глубине 0,5 м, H = L/2 + 0,5;

ρ- 350 Ом/м;
l — 3 м;
d – 0,016 м;
n – 2 шт;
H – 2 м.

Сопротивление одного вертикального электрода

Коэффициент использования стержней равен 0,8

Сопротивление всех вертикальных заземлителей

Безразмерный коэффициент вертикального электрода, зависящий от формы заземлителя и условий его заглубления:

Найдем коэффициент по формуле, указанной в п.6 таблицы 8 справочника по молниезащите Р.Н. Карякина

Предусматривая коэффициент использования стержней находим сопротивление всех вертикальных заземлителей по формуле:












Число заземлителей

Отношение расстояний между электродами к их длине

1

2

3

1

2

3

Электроды размещены в ряд (рас. 1)

Электроды размещены по контуру (рис.2)

2

0,85

0,91

0,94

4

0,73

0,83

0,89

0,69

0,78

0,85

6

0,65

0,77

0,85

0,61

0,73

0,80

10

0,59

0,74

0,81

0,56

0,68

0,76

20

0,48

0,67

0,76

0,47

0,63

0,71

40

0,41

0,58

0,66

60

0,39

0,55

0,64

100

0,36

0,52

0,62











Отношение расстояний между вертикальными электродами к их длине

Число вертикальных электродов

2

4

6

10

20

40

60

100

Вертикальные электроды размещены в ряд (рис. 1 см. выше)

1

0,85

0,77

0,72

0,62

0,42

2

0,94

0,80

0,84

0,75

0,56

3

0,96

0,92

0,88

0,82

0,68

Вертикальные электроды размещены по контуру (рис. 2 см. выше)

1

0,45

0,40

0,34

0,27

0,22

0,20

0,19

2

0,55

0,48

0,40

0,32

0,29

0,27

0,23

3

0,70

0,64

0,56

0,45

0,39

0,36

0,33

Условия эксплуатации

Для обеспечения постоянной надежности работы устройства молниезащиты ежегодно перед началом грозового сезона производится проверка и осмотр всех устройств молниезащиты.

Во время осмотра и проверки устройств молниезащиты рекомендуется:

  • проверить визуальным осмотром целостность молниеприемников и токоотводов, надежность их соединения и крепления к мачтам;
  • выявить элементы устройств молниезащиты, требующие замены или ремонта вследствие нарушения их механической прочности;
  • определить степень разрушения коррозией отдельных элементов устройств молниезащиты, принять меры по антикоррозионной защите и усилению элементов, поврежденных коррозией;
  • проверить надежность электрических соединений между токоведущими частями всех элементов устройств молниезащиты;
  • проверить соответствие устройств молниезащиты назначению объектов и в случае наличия строительных или технологических изменений за предшествующий период наметить мероприятия по модернизации и реконструкции молниезащиты в соответствии с требованиями настоящей Инструкции;
  • уточнить исполнительную схему устройств молниезащиты и определить пути растекания тока молнии по ее элементам при разряде молнии методом имитации разряда молнии в молниеприемник с помощью специализированного измерительного комплекса, подключенного между молниеприемником и удаленным токовым электродом;

Внеочередные осмотры устройств молниезащиты следует производить после стихийных бедствий (ураганный ветер, наводнение, землетрясение, пожар) и гроз чрезвычайной интенсивности.

Для определения технического состояния заземляющего устройства должны проводиться визуальные осмотры видимой части, осмотры заземляющего устройства с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования.

Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником, им уполномоченным.

При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.

Результаты осмотров должны заноситься в паспорт заземляющего устройства.

Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования должны производиться:

  • измерение сопротивления заземляющего устройства;
  • измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
  • измерение удельного сопротивления грунта в районе заземляющего устройства

Периодическому контролю со вскрытием в течение шести лет подвергаются все искусственные заземлители, токоотводы и места их присоединений, при этом ежегодно производится проверка до 20 % их общего количества. Пораженные коррозией заземлители и токоотводы при уменьшении их площади поперечного сечения более чем на 25 % должны быть заменены новыми.

Внеочередные замеры сопротивления заземления устройств молниезащиты следует

производить после выполнения ремонтных работ как на устройствах молниезащиты, так и на

самих защищаемых объектах и вблизи них.

Результаты проверок оформляются актами, заносятся в паспорта и журнал учета состояния

устройств молниезащиты.

Земляные работы у защищаемых зданий и сооружений объектов, устройств молниезащиты, а также вблизи них производятся, как правило, с разрешения эксплуатирующей организации, которая выделяет ответственных лиц, наблюдающих за сохранностью устройств молниезащиты.

Во время грозы работы на устройствах молниезащиты и вблизи них не производятся.

Приложения 1-7 – Схемы молниезащиты скатной кровли с основными элементами

Схема 1 – Общая схема молниезащиты

Схема 2 – Держатель проводника на конек ДПК-К100, оцинкованная сталь

Схема 3 – Держатель проводника на конек ДПК-К100, оцинкованная сталь

Схема 4 – Держатель проводника для желоба водостока, оцинкованная сталь

Схема 5 – Держатель круглого проводника 8 мм

Схема 6 – Стержневой молниеприемник (алюминиевый сплав) — 1,5 м.

Схема 7 – Кронштейн мачтовый (молниеприемный) 150 мм, Зажим для подключения, оцинкованная сталь

Схема 7 – Стержень заземления оцинкованный d=16мм 1,5 м, Муфта соединительная для стержней d=16 мм, оцинкованная сталь, Направляющая головка для стержней d=16 мм, Зажим соединения (Тип Z) оцинкованный

Схема 9 – Вертикальный очаг заземления – 3 м (Стержень заземления оцинкованный d=16мм 1,5 м*2)

Добавить комментарий

Как сделать контур заземления. Контур заземления своими руками. Детальная инструкция по монтажу контура заземления с приведением формул и таблиц расчета.Информационный строительный сайт |

Давно прошло то время, когда наличие защитного заземления было  прерогативой исключительно промышленных предприятий. С ростом количества бытовой техники в нашем жилище,  защитное  заземление стало  непременным атрибутом  любого частного дома.   И это неудивительно.  Любое  нарушение в изоляции  электроприборов  способно привести к  весьма серьезным последствиям для обитателей дома.  

Содержание

  • Предназначение и устройство контура заземления
  • Материалы, необходимые  для монтажа контура заземления
  • Расчет заземления
  • Как сделать контур заземления своими руками

 

Лучший способ обезопасить себя – оборудовать заземление.  Нет необходимости привлекать к устройству контура заземления дома профессионалов.  С этой задачей вполне справится любой желающий. Главное – терпение и внимательность во время работы.

 

Предназначение и устройство контура заземления

Защитное заземление представляет собой  соединение между  токоведущими частями электроустановок и землей, выполненное преднамеренно.

При  нормальной работе электроприборов  их корпус не находится под напряжением. Работать с такими приборами безопасно. К сожалению, чем больше приборов, тем выше вероятность  выхода какого-либо из них из строя. Малейшее повреждение изоляционного слоя – и корпус прибора окажется под напряжением. Прикасаться к подобному прибору смертельно опасно.

Именно  такие ситуации и предотвращает  защитное заземление.  Всем известно, что электрический ток течет в сторону с наименьшим сопротивлением. Наличие контура  заземления в частном доме с низким  значением сопротивления – залог того, что ток направится в землю.

Самый распространенный вариант контура заземления  представляет собой  электроды, заглубленные в грунт. Они соединены между собой в виде замкнутого контура определенной формы. Нередко используется треугольная форма контура. Возможно выполнение контура заземления вдоль периметра здания.  Среди основных критериев выбора формы контура выделяют удобство его монтажа и  размеры территории, используемой  для его  устройства. Контур заземления присоединяют к  электрощиту при помощи специального кабеля заземления.

Оптимальным расстоянием между домом и контуром заземления считается  5 м. При этом расстояние ближе 1 м и дальше 10 м считается недопустимым.

Совет: минимальная глубина расположения контура заземления – 0,8 м. Контур, размещенный в границах промерзания почвы, зимой не работает.

Электроды заглубляются в почву на 1,5 – 3 м. Выбор глубины для каждого отдельного случая зависит от  структуры грунта и его влажности. Чем больше насыщен грунт водой, тем меньше  заглубляют электроды.

Материалы, необходимые  для монтажа контура заземления

Как правило контур заземления  делают из подручных материалов. Заземляющим электродом  способен послужить  любой стержень, выполненный из черного металла.  Выбор весьма широк. Главный критерий – удобство при забивании в грунт. В основном используются стальные уголки. Возможно использование арматуры  гладкой структуры, труб, двутавра. Единственное требование – сечение металла от 1,5 см2.

Для определения количества необходимых электродов, расчеты применяются крайне редко. В основном используют опытный путь. Самое распространенное количество электродов – три. Таким образом, получается контур заземления треугольной формы. Вершинами треугольника служат электроды. Расстояние между соседними электродами менее 1,2 м недопустимо. Его рассчитывают исходя из сопротивления грунта. Соединение электродов между собой осуществляется с помощью полос металла. Подобная полоса служит и для соединения контура с распределительным.

Перед монтажем контура заземления обязательно проконсультируйтесь с квалифицированным электриком, проживающем в этом же районе. Подобный специалист из опыта знает как сделать  контур заземления, идеально подходящий для  данного района:

  • каково должно быть расстояние от здания до контура;
  • каково должно быть расстояние между соседними электродами;
  • количество необходимых электродов;
  • глубина, на которую следует забить электроды;
  • глубина, на которой  следует расположить контур.

Неоспоримым преимуществом самодельной системы заземления является ее низкая цена.

Необязательно делать контур заземления только из  подручных материалов. В продаже появились специальные готовые системы заземления.

Комплект модульных систем заземления состоит из следующего:

  • стержни, изготовленные из высококачественной стали и покрытые медью.  Длина  стержней составляет около 1,5 м, диаметр – 0,14 м.  Каждый стержень снабжен нарезкой омедненной резьбы;
  • латунные муфты для соединения элементов контура заземления;
  • наконечники. Способствуют облегчению забивания стержня в грунт. Крепятся к стержню при помощи резьбы. Существуют наконечники нескольких видов. Предназначены для различных типов грунта;
  • зажимы для присоединения горизонтальных элементов к вертикальным;
  • антикоррозийная паста для обработки всех элементов системы заземления.

Преимущества модульных систем заземления:

  1. Стержни, изготовленные из нержавеющей стали и покрытые медью, менее подвержены коррозии.
  2. Нет необходимости в сварочных работах.
  3. Нет необходимости в специальном оборудовании при монтаже.
  4. Экономия площади. Для оборудования всей системы достаточно 1 м2.
  5. Долговечность.

Расчет заземления

Какой бы вариант системы заземления ни был выбран, обязательным этапом является предварительные расчеты параметров  заземления. Обычно заземление выполняют опытным путем. Этот способ поможет избежать множества сложных расчетов.

Алгоритм  монтажа контура заземления в данном случае следующий:

  • Строим на расстоянии 5 м от дома контур заземления треугольной формы. Длину электродов берем 3 м, расстояние между ними 2 м. Используем стержни из металла.
  • Соединяем электроды между собой.
  • Производим замер  сопротивления контура заземления. Для измерения сопротивления используем специальный прибор – омметр. Максимально допустимое сопротивление контура заземления  составляет 10 Ом. Оптимальное значение — 4 Ом. Сравниваем полученный результат  с оптимальным значением.
  • При несоответствии полученного  значения сопротивления оптимальному,  добавляем в контур еще один электрод.
  • Соединяем  все электроды в новый контур.
  • Вновь измеряем сопротивление контура.
  • Повторяем указанные выше процедуры до тех пор, пока не добьемся значения сопротивления контура  4 Ом.

Существует возможность определить количество необходимых электродов и длину горизонтального заземлителя при помощи расчетов:

  • При наличии на участке однородного грунта, определяем сопротивление одного электрода, используя формулу 1:

Для определения значения  удельного сопротивления грунта используйте таблицу 1.

При наличии на участке неоднородного грунта определим сопротивление одного электрода по формуле 2:

При этом значения сезонного климатического  коэффициента приведены в таблице 2:

По формуле 3 определим необходимое количество электродов без учета сопротивления горизонтального заземлителя:

Для определения нормируемого сопротивления заземления воспользуемся таблицей 3:

Определим  сопротивление  горизонтального заземлителя по формуле 4:

При этом для определения длины заземлителя используем формулу 5:

Рассчитаем сопротивление электродов с учетом сопротивления горизонтального заземлителя по формуле 6:

Определим окончательное количество электродов, необходимых для устройства контура заземления:

Для определения коэффициента спроса вертикальных заземлителей воспользуемся таблицей 4:

Окончательное значение количества электродов, полученное в результате приведенных выше расчетов, округляем до большего целого. Каким методом воспользоваться – опытным либо расчетным – личное дело каждого. Выбирайте любой, исходя из собственных предпочтений.

Как сделать контур заземления своими руками

После проведения всех предварительных расчетов и подготовки необходимых материалов приступаем непосредственно к  монтажу контура заземления.

Совет: лучшее время для монтажа контура  заземления – лето. И не только из-за того, что в теплое время года легче производить земляные работы.  Дело в том, что в сухом грунте  сопротивление  больше. Добившись оптимального значения сопротивления  в засушливую погоду, не стоит беспокоиться об ухудшении этого показателя в дальнейшем. Напротив, с увеличением влажности почвы сопротивление снизится.

Рассмотрим основные этапы монтажа  треугольного контура заземления, схема которого представлена на рисунке.

  • На расстоянии порядка 5 м от дома в удобном месте  выройте траншею в виде равностороннего треугольника. Глубина траншеи около 1 м, ширина – 0,5 м. Длина стороны треугольника должна соответствовать выполненным ранее расчетам. От любого угла к  распределительному щитку дома прокопайте траншею.
  • Вбейте в каждую из вершин треугольника  электроды. Концы электродов предварительно заострите при помощи болгарки.
  • При очень твердом грунте предварительно пробурите  скважины под электроды. Вставив в скважину электрод,  засыпьте ее смесью грунта и соли.
  • Не погружайте электрод в грунт полностью, оставьте верхушку над землей.
  • Соедините между собой электроды стальной  полосой, шириной не менее 40 и толщиной не менее 5 мм. Для крепления  электродов и полосы используйте сварку.
  • Соедините один из электродов с  распределительным щитком, проложив в ранее подготовленной траншее идентичную  стальную полосу.
  • Соедините полосу и  распределительный щиток при помощи 10 мм болта. Обязательно приварите болт к щитку.
  • Следующим этапом является измерение контура заземления. Для измерения воспользуйтесь омметром.

  • Если результат измерений соответствует оптимальному значению сопротивления – контур заземления смонтирован правильно. Можно приступать к закапыванию траншей.
  • Если же при измерении контура заземления выяснится, что сопротивление превышает нормативное значение – добавьте еще один электрод.
  • Для закапывания траншеи используйте исключительно однородный грунт. Наличие примесей щебня  и строительного мусора недопустимо.
  • Контур заземления готов.

Привнесение заземления на Землю

Вам иногда кажется, что мириады правил заземления слишком сложны для понимания? Проблемы с реализацией заземления иногда оставляют вас ошеломленными и сбитыми с толку, а правильное решение кажется немного выше вашей головы? Если это так, не чувствуйте себя одиноким.

Несмотря на обширную литературу по заземлению, некоторые из его важных концепций, по-видимому, отсутствуют в устной традиции и обычной практике электротехнической промышленности, а некоторые ошибочные представления о заземлении прочно укоренились на их месте. Следовательно, многие конструкции и установки не настолько надежны или безопасны, как могли бы быть.

Но вы можете избежать путаницы, если понимаете принципы, лежащие в основе правил. Благодаря лучшему пониманию вы можете быть более уверены в том, что ваша система заземления будет работать так, как вы предполагали.

Назад к основам. Первое, что нужно понять, это то, что ток замыкания на землю, как и все электричество, стремится вернуться к своему источнику питания. Именно этот принцип заставляет электрические цепи работать в первую очередь. Что является источником тока замыкания на землю? Он возникает не в земле, а в трансформаторе.

Закон Кирхгофа гласит, что ток будет протекать обратно пропорционально полному сопротивлению представленных ему путей. Таким образом, относительные импедансы различных путей определяют, как ток короткого замыкания возвращается к своему источнику.

Полное сопротивление пути между заземляющим электродом и источником почти всегда значительно выше, чем полное сопротивление пути через заземляющий/заземляющий проводник.

Если вы не уверены в этом на своем предприятии, измерьте импеданс медного провода от электрода до источника и сравните его с импедансом через землю.

Эта разница в импедансе означает, что через заземляющий электрод протекает лишь незначительное количество тока короткого замыкания. Неисправность обычно распространяется вдоль заземления оборудования (проводники и металлические кабельные системы), через соединение нейтрали и земли и обратно к источнику через заземленный (нейтральный) проводник. Именно высокий ток короткого замыкания через цепь с низким импедансом вызывает срабатывание устройства перегрузки по току, а не пренебрежимо малое количество тока, протекающего через грязь через заземляющий стержень (9). 0009 Рис. 1 ).

Если это так, какова функция заземляющего электрода? Хотите верьте, хотите нет, но их несколько, в том числе следующие:

  • Ограничение напряжения, вызванное молнией, скачками напряжения или случайным контактом с линиями более высокого напряжения.

  • Стабилизация напряжения относительно земли во время нормальной работы, помогающая поддерживать напряжение в предсказуемых пределах.

  • Помощь коммунальному предприятию в устранении собственных неисправностей, фактически становясь частью многоточечной системы заземления коммунального предприятия.

  • Обеспечение пути к земле для рассеивания статического электричества.

Расстояние между заземляющими стержнями. Предположим, вы подключаете первый заземляющий стержень системы. Если он имеет сопротивление заземления 25 Ом или более, 250,56 NEC 2005 года требует, чтобы вы вбили второй стержень. Но многие подрядчики не утруждают себя измерением сопротивления грунта. Они просто планируют использовать два стержня, потому что это будет соответствовать требованиям 250.56, независимо от фактического сопротивления грунта. Таким образом, двухстержневые установки распространены, но обязательно ли они правильны?

Кодекс требует, чтобы стержни располагались на расстоянии не менее 6 футов друг от друга [250.53(B)]. Однако это расстояние минимально — и далеко от идеала. При использовании типичного 8-футового или 10-футового заземляющего стержня вы получите наилучшие результаты, разместив стержни на расстоянии не менее 16 или 20 футов друг от друга соответственно. Это намного больше, чем минимальное расстояние в 6 футов, предусмотренное Кодексом.

Заземляющие стержни, расположенные на расстоянии менее двух длин стержней друг от друга, будут мешать друг другу, поскольку площади их эффективного сопротивления будут перекрываться ( Рис. 2a выше). Для справки см. IEEE-142 и Soares Book on Grounding. Перекрытие увеличивает чистое сопротивление каждого стержня, делая систему заземляющих электродов менее эффективной, чем если бы стержни были разнесены дальше друг от друга ( рис. 2b выше).

Основная соединительная перемычка. Основная соединительная перемычка является связующим звеном между нейтралью и заземляющими шинами оборудования в сервисе. Это жизненно важное соединение позволяет току замыкания на землю возвращаться к источнику. Без основной соединительной перемычки неисправность должна проходить через землю с высоким импедансом, а не медь с низким импедансом. Этот путь с высоким импедансом, скорее всего, ограничит ток и предотвратит срабатывание автоматических выключателей или, по крайней мере, предотвратит их срабатывание достаточно быстро, чтобы избежать повреждения оборудования.

Выберите размер основной соединительной перемычки в соответствии с таблицей 250.66. Многие люди предполагают, что в этой таблице указан максимальный размер основной соединительной перемычки 3/0 AWG, но это еще одно распространенное заблуждение. Соединительная перемычка должна занимать не менее 12,5 % эквивалентной площади фазных проводов [250.28(D)]. Если вы используете 11 наборов проводников по 500 тыс. смил (например, сеть на 4 000 А), основная соединительная перемычка должна иметь сечение не менее 700 ксм, а не 3/0 AWG.

Эта проблема меньше касается соединительных перемычек для вторичных производных систем, таких как трансформаторы и генераторы, поскольку токи короткого замыкания в этих системах обычно намного ниже.

Калибровка заземляющих проводников оборудования. Разработчики обычно используют Таблицу 250.122 при определении размеров заземляющих проводников оборудования. В большинстве случаев размера будет достаточно, особенно для небольших ответвлений. Но когда доступный ток короткого замыкания высок — скажем, 100 000 А — и когда вышестоящий автоматический выключатель настроен на задержку срабатывания на несколько циклов, вы должны более тщательно выбирать заземляющие проводники.

Металлические кабельные каналы, которые обычно пропускают больший ток, чем заземляющие проводники оборудования, могут быть установлены неправильно или со временем могут развалиться. Следовательно, заземляющий провод оборудования может быть единственным доступным путем заземления. Заземляющие проводники меньшего размера могут расплавиться во время неисправности, прежде чем они выполнят свою функцию обеспечения непрерывного пути тока с низким импедансом обратно к источнику во время неисправности.

Важно понимать, что проводники имеют рейтинг устойчивости. Ассоциация инженеров по изолированным кабелям разработала стандарт под названием «Характеристики короткого замыкания изолированного кабеля », номер P 32-382 (1994). Этот стандарт говорит, что в течение 5-секундного периода номинальное сопротивление проводника составляет 1 А на 42,25 круговых мила.

Например, проводник 3/0 AWG может безопасно выдерживать ток 3972 А в течение 5 секунд. Таким образом, I 2 T, 5-секундный рейтинг устойчивости составляет 78 883,9.20А. Теперь предположим, что автоматический выключатель настроен на размыкание через 30 циклов — задержку, которую вы можете увидеть в сервисе. Вы можете быстро определить, что максимальный ток, который может выдержать 3/0 AWG за 30 циклов (0,5 с), составляет: ÷0,5)

I=12 560 А

Но если доступный ток короткого замыкания составляет 65 000 А или 100 000 А на стороне нагрузки заземляющего проводника, заземляющий проводник будет быстро разрушен в случае неисправности, если автоматический выключатель требуется 30 циклов, чтобы открыть. Вы должны помнить о доступном токе короткого замыкания и учитывать время размыкания автоматических выключателей, особенно главного и фидерного выключателей в главном распределительном щите. Выполнить я 2 T расчеты, как описано выше, особенно при высоком доступном токе короткого замыкания. Вы можете видеть, что правильный размер заземляющих проводников оборудования не так прост, как применение минимумов NEC.

Токи системы заземления. Ток присутствует в системе заземления при нормальных условиях эксплуатации, а не только при неисправности. Это, вероятно, объясняет, почему Кодекс разрешает устанавливать датчики замыкания на землю до 1200 А, чтобы предотвратить ложное срабатывание [230. 9].5(А)].

Помимо замыканий на землю, ток в системе заземления могут вызывать несколько причин, в том числе следующие:

  • Наведенные токи от соседних токоведущих проводов.

  • Наведенные токи от двигателей (особенно однофазных).

  • Емкостная связь между фазным и нулевым проводами и заземляющими проводами. Известно, что это явление вызывает ложное срабатывание GFCI в длинных цепях.

  • Электростатический разряд от оборудования.

Контуры заземления. Вы можете образовывать контуры заземления за счет взаимодействия силового заземления и низковольтной проводки. Низковольтные кабели часто содержат сигнальный заземляющий проводник, который может по существу соединять внутренние сигнальные земли между различными частями электронного оборудования. Если между заземлением питания и заземлением сигнала в электронном оборудовании также существует внутренняя связь, ток может протекать через этот контур. Хотя экранированные низковольтные кабели обычно заземляются только с одного конца, чтобы предотвратить образование контуров заземления, отдельный сигнальный заземляющий провод внутри экрана все же может создавать соединение.

В качестве примера того, где это обычно происходит, подумайте о компьютерной сети и экранах на таких устройствах, как принтеры, маршрутизаторы и рабочие станции. Если вы соединяете разные части оборудования вместе, вы соединяете устройства, которые имеют потенциал между соответствующими контактами заземления (, рис. 3, ). Если у вас есть полная цепь через сигнальные провода, у вас есть контур заземления. Из-за этого потенциала будут протекать токи заземления, которые будут создавать электрические помехи, которые могут мешать работе системы. Электромагнитные поля, которые проходят через эту петлю, также могут вызывать протекание тока.

Чтобы свести к минимуму это явление, необходимо ограничить потенциал между этими различными точками заземления. TIA/EIA J-STD-607-A рекомендует максимальный потенциал 1 В между точками заземления. Интересно, что для заземления многоэтажных зданий также рекомендуется один большой контур заземления ( рис. 4 ). В компьютерных сетях ограничение потенциала между точками заземления явно имеет приоритет над опасениями по поводу циркулирующих контуров токов заземления. Однако аудиовизуальное оборудование гораздо более чувствительно.

В любом здании есть сотни, если не тысячи низковольтных кабелей, и каждый из них может образовывать собственный контур заземления в сочетании с системой заземления. К сожалению, в стандартном здании нет практического способа гарантировать ровную плоскость заземления.

Лучшее, что вы можете сделать, это правильно заземлить основные части оборудования. Это означает наличие заземляющих шин во всех телекоммуникационных и аудио/видео комнатах, а также обеспечение того, чтобы каждое оборудование в этих комнатах было привязано к этим заземляющим шинам. Это обеспечивает достаточно ровную плоскость заземления в помещении — по крайней мере, в нижнем частотном диапазоне.

Обычно рекомендуемым решением таких проблем с заземлением является обеспечение эквипотенциальных заземляющих плоскостей в широком диапазоне частот. Методы включают использование наземных сеток внутри плит и опорных сеток сигналов под фальшполами. Учитывая стоимость таких мер, эти методы обычно предназначены для наиболее чувствительных средств связи, а не для типичных коммерческих или институциональных объектов. Однако эквипотенциальная заземляющая плоскость — это только один шаг. Это не панацея от контуров заземления, потому что токи всегда могут быть вызваны электромагнитными полями, которые проходят через проводники.

Пусть вас не смущает огромное количество мелочей, связанных с заземлением. Знание нескольких основных концепций заземления должно помочь вам разобраться во всем. Хорошее заземление является ключом к успешной эксплуатации любого объекта, поэтому чем более продуманными будут ваши проекты, тем надежнее будет установка и тем меньше проблем с качеством электроэнергии возникнет.

Расстояние от здания до контура заземления: Расстояние от контура заземления до фундамента здания по ПУЭ