Saf80C509 принципиальная схема: https://docs.google.com/file/d/0b-xykqu3um-xa181evppcnhpvdq/

Содержание

Устройство и ремонт электронных узлов системы зажигания инжекторных двигателей

Современный инжекторный двигатель наряду с механической частью имеет электронные узлы, без которых его работа невозможна. Рассмотрим работу и устройство некоторых электронных узлов системы зажигания инжекторного двигателя.

Контроллер

Основным устройством электронной системы зажигания является контроллер, еще его называют электронным блоком управления (ЭБУ).

Контроллер анализирует сигналы, полученные с различных датчиков, и управляет исполнительными механизмами системы — топливными форсунками, модулем зажигания, регулятором холостого хода,клапаном продувки адсорбера, реле управления, и другими узлами.

На примере широко используемого в автомобилях ВАЗ контроллера типа «Январь 5.1» познакомимся с его устройством и работой в составе системы зажигания автомобиля.

Конструктивно контроллер собран на печатной плате, установленной в герметичный металлический корпус.

 

Рис. 1. Принципиальная электрическая схема контроллера «Январь 5.1» (1/2)

 

Рис. 1. Принципиальная электрическая схема контроллера «Январь 5.1» (2/2)

 

Принципиальная электрическая схема контроллера «Январь 5.1» показана на рис. 1.

На корпусе контроллера расположен трехрядный 55-контактный соединитель ХР1.

Питание на плату контроллера подается через контакты 18 (+12 В, аккумулятор), 37 (+12 В, питание после главного реле) соединителя ХР1.

ЭБУ работает под управлением 8-битного микроконтроллера DD4 типа SAF80C509, который выполнен по технологии CMOS.

 

Рис. 2. Основные сигналы на микроконтроллере SAF800509

 

На рис. 2 показаны основные сигналы микроконтроллера SAF80C509.

Микроконтроллер питается напряжением +5 В (выв. 11, 29, 63, 

89) от стабилизатора DA11 типа TLE 4267G.

В состав DD11 входят схемы защиты от короткого замыкания, повышенного входного напряжения, обратной полярности (переплю-совки) и перегрева.

В составе схемы контроллера имеются электрически стираемое постоянное запоминающее устройство (ЭСППЗУ) DD6 типа NM 24C04 и оперативное запоминающее устройство (ОЗУ) DD2 типа 29F010 (Flash-память). Связь между микроконтроллером и микросхемой DD6 обеспечивается по цифровой шине I2C.

ЭСППЗУ используется для хранения пользовательских данных, а ОЗУ — для временного хранения данных, полученных в результате измерения параметров и кодов неисправностей.

Микросхема ОЗУ являются энергонезависимой, при снятии питания данные сохраняются.

Связь между микросхемой DD2 и микроконтроллером обеспечивается по параллельной 15-разрядной шине адреса и 8-разрядной шине данных.

К выв.12,13 микроконтроллера подключен кварцевый резонатор BQ1 частотой 16 МГц, стабилизирующий частоту внутреннего генератора.

Для связи микроконтроллера DD4 с внешним электронным диагностическим устройством в ЭБУ служит специализированная микросхема DD5 типа МС33199D. Данные передаются по последовательному интерфейсу по линиям К и L стандарта ISO 9141 (выв. 13 — L-линия, выв. 55 — К-линия соединителя ХР1).

Для обеспечения работы системы зажигания инжекторного двигателя используются датчики, с помощью которых ЭБУ снимает показания работы узлов и агрегатов двигателя.

После сбора и обработки информации от датчиков контроллер 

управляет исполнительными механизмами, которые отвечают за топливоподачу, систему зажигания, регулировку холостого хода, охлаждение двигателя и т.д.

На примере некоторых датчиков и исполнительных устройств познакомимся с их работой в составе системы зажигания автомобиля. Кроме того, рассмотрим их характерные отказы и порядок устранения.

Датчик детонации

Датчик детонации (ДД) пьезоэлектрического типа ОК устанавливается на блоке двигателя.

Во время возникновения детонации датчик генерирует напряжение переменного тока, амплитуда которого зависит от уровня детонации.

Датчик соединен с контроллером с помощью жгута. Сигнал с контактов 1 (сигнальный) и 2 («земля») подается на контакты 30 и 11 соединителя ХР1 ЭБУ Для предотвращения наводок от внешних электромагнитных помех проводники жгута, подходящие к датчику, заключены в экран.

Напряжение переменного тока с датчика поступает на вход специализированной микросхемы DA1 типа HIP 9010, расположенной на плате контроллера (см. рис. 1). Микросхема фиксирует момент повышенной детонации двигателя.

Для обеспечения нормальной работы микроконтроллер DD4 производит программирование некоторых функций, таких как коэффициент усиления,характеристики полосовых фильтров и т.д.

Связь между микросхемой DA1 и микроконтроллером DD4 реализуется по цифровой шине.

Фрагмент принципиальной схемы подключения микросхемы DA1 к DD4 показан на рис. 3.

Рис. 3. Схема подключения к контроллеру датчика детонации

 

Для проверки состояния цепи датчика (код ошибки Р0325) следует отключить колодки от датчика и контроллера. С помощью омметра проверяют цепь на обрыв между контактами 1, 2 датчика детонации и 11, 30 контроллера соответственно.

При отсутствии нарушений в цепи датчика детонации следует заменить сам датчик и проверить контроллер.

 

Во время возникновения кодов ошибок Р0327, Р0328 (низкий/высокий уровни сигнала датчика детонации) следует проверить момент затяжки болта крепления, датчика детонации.

Регулятор холостого хода

Регулятор холостого хода (РХХ) служит для стабилизации оборотов холостого хода двигателя (см. рис. 4). Конструктивно РХХ представляет собой шаговый двигатель с двумя независимыми обмотками с подпружиненной конусной иглой. Вращение шагового двигателя с помощью червячно-анкерного механизма преобразуется в поступательное перемещение конусной иглы.

 

Рис. 4. Регулятор холостого хода

 

РХХ установлен на корпусе дроссельного патрубка в обводном канале.

В конструкции шагового двигателя РХХ включены постоянные магниты,которые в сочетании с обмотками фаз расположены на двух разных магнитопроводах, расположенных друг над другом.

Рис. 5. Диаграмма управления фазами шагового двигателя РХХ

 

На рис. 5 приведена временная диаграмма управления фазами шагового двигателя РХХ.

В момент включения фазы АВ создается электромагнитное поле которое позиционирует ротор относительно фазы А (0°), а относительно фазы В (15°), не отключая фазу А, происходит включение фазы CD. При этом ротор устанавливается между полюсами фаз А и В (7,5°), и т.д.

При отключении питания РХХ ротор шагового двигателя устанавливается строго под полюсами статора одной из фаз.

Работу двигателя РХХ на автомобиле принято измерять в шаговом режиме, так, выдвинутое положение конусной иглы соответствует нулю шагов, а втянутое положение конусной иглы — 255 шагам.

Следует учесть, что при каждом включении зажигания контроллер выставляет конусную иглу в полностью выдвинутое положение (закрытое). Далее контроллер управляет работой РХХ, обеспечивая нормальную работу двигателя во всех режимах.

Схема подключения РХХ к контроллеру показана на рис. 6.

Рис. 6. Схема подключения РХХ к контроллеру

 

РХХ непосредственно соединен с контактами 4, 21, 26, 29 соединителя ХР1 ЭБУ.

Сопротивление обмоток шагового двигателя РХХ находится в пределах от 40 до 80 Ом.

Двигателем РХХ управляет драйвер DA2 типа TLE 4729G. В состав этой микросхемы входят усилители токов обмоток шагового двигателя РХХ, схема защиты от короткого замыкания, обрыва, замыкания на землю или бортовое питание автомобиля.

Как правило, неисправности РХХ проявляются в виде частичного или полного отсутствия холостого хода на всех режимах работы двигателя, самопроизвольного снижения оборотов двигателя, вплоть до его полной остановки при включении передачи, а также в начале движения.

Для выявления неисправностей РХХ следует проверить качество его крепления к корпусу дроссельного патрубка(наличие подсоса воздуха), качество соединений в колодке РХХ, проверить воздушные каналы системы холостого хода, при необходимости, с помощью мультиметра проверить целостность цепей между контактами разъема РХХ и контроллером.

Коды ошибок работы регулятора холостого хода следующие: Р0505 — ошибка в работе РХХ, Р0506 — низкие обороты холостого хода, Р0507 — высокие обороты холостого хода.

Нестабильная работа двигателя на холостом ходу может быть вызвана не только неправильной работой РХХ, но и другими факторами, например, загрязнением дроссельного патрубка, нарушением вентиляции картерных газов, неисправностью воздушного фильтра, датчика положения дроссельной заслонки и т. д.

Что такое контроллер в инжекторном двигателе

Рейтинг статьи

Загрузка…

Лабораторный стенд-тренажер «Система управления инжекторного двигателя» СУИД-НР

Целью данного практикума является проведение лабораторных занятий по курсам «Системы управления двигателями внутреннего сгорания», «Конструкция и техническая эксплуатация электронных систем автомобилей», «Электрооборудование автомобиля». Данное оборудование может применяться для обучения в учреждениях специального и среднего профессионального образования для получения базовых и углубленных профессиональных знаний, с целью получения профессиональных навыков по поиску и устранению неисправностей в системе управления инжекторного двигателя легкового автомобиля.

На стенде расположены:Контроллер Январь 7.2 или аналог
Колодка жгута панели приборов к жгуту системы зажигания
Разъем модуля зажигания
Разъем жгута форсунок
Разъем колодки диагностики
Замок зажигания
Датчик положения дроссельной заслонки
Датчик температуры охлаждающей жидкости
Дроссельная заслонка
Датчик массового расхода воздуха
Регулятор холостого хода
Реле электробензонасоса
Предохранитель электробензонасоса
Главное реле
Предохранитель главного реле
Предохранитель контроллера
Датчик положения коленчатого вала
Датчик кислорода
Датчик фаз
Датчик детонации
Электромагнитный клапан продувки адсорбера
Топливная рампа
Панель приборов
Модуль зажигания
Форсунки
Реле электровентилятора
Свечи зажигания
Датчик скорости
Воздушный фильтр с кожухом в разрезе
Педаль газа
Маршрутный компьютер
Заливная горловина (для заливки топлива – керосина)
Цифровой мультиметр
Топливный фильтр
Кнопки для искусственного внесения неисправностей в систему (не менее 10 шт).
Емкость – бак для топлива.
Топливный насос
Кнопки регулятора оборотов двигателя (выводятся с имитатора датчика коленчатого вала ИДК-2)
Потенциометр, имитирующий повышение/понижение температуры двигателя
Потенциометр, регулирующий подачу воздуха на ДМРВ
Контрольные клеммы, выведенные с датчиков, для поиска неисправностей
Кулер, имитирующий работу вентилятора охлаждения двигателя
АПС
Индикатор АПС
Манометр
Осциллограф

Лабораторный стенд-тренажер «Система управления инжекторного двигателя» (СУИД-НР).
Сенсорный беспроводной пульт дистанционного управления.
Сетевой шнур питания
Емкость с заправочной жидкостью (не менее 3 л.).
Комплект преподавателя.
Паспорт.
Руководство по эксплуатации.

Сенсорный беспроводной пульт дистанционного управления позволяет подавать питание на стенд и вводить основные типы неисправностей, изучаемых на стенде (Размер: 190х65х20 мм., тип питания: 2ААА; управление: сенсорное).

В корпус стенда вмонтирован универсальный цифровой микропроцессорный осциллограф:

2. 8″ цветной TFT дисплей разрешением 320х240 выведен на переднюю панель стенда
Полоса пропускания: до 1 МГц
Развертка: 10-6…10 сек
Вертикальная чувствительность: 10-3…10 В
Входное сопротивление: 500 кОм
Максимальное входное напряжение: 81.3 В
Имеет встроенный генератор прямоугольных импульсов 10 Гц…1 МГц, выводится на переднюю панель с помощью аппаратного BN гнезда.

Стенд-тренажер снабжён системой автоматического распознавания «ученик/учитель» для ограничения доступа к эксплуатации оборудования в отсутствии преподавателя и исключения выхода из строя вследствие его некорректного использования, а также строгого соблюдения техники безопасности при эксплуатации оборудования.

В стенд интегрирована информационная панель с памяткой «Правила техники безопасности при работе с лабораторным оборудованием», основанная на двухуровневом замещении объектов, позволяющая проводить обучение и тестирование в зависимости от позиции ученика.

Габариты: не более 1200х1200х400 мм.
Масса: не более 45 кг.
Электропитание: 220 В., 50 Гц.
Потребляемая мощность: не более 500 Вт.
Каркас стенда из алюминиевого профиля.

Компания ООО «Денар-проф» готова предложить своим клиентам, произвести и поставить учебные стенды по автомобильной и дорожно-строительной технике для ВПО, СПО, НПО.
Мы предлагаем Вашему вниманию стенд, стоимость комплекта 191300 руб. Стоимость указана актуальная и действует на 1 квартал 2021 года.
Мы готовы как к осуществлению поставки оборудования, так и к полному формированию проекта, подготовке всей необходимой документации и укомплектованию лабораторию «под ключ». Наша компания на практике подтверждает свою мобильность и надежность. Качество учебных и лабораторных стендов находится на высоком уровне, вся продукция проходит ОТК. Оборудование производится в нужные для Вас сроки и по доступной цене.

Нашими клиентами уже стали сотни университетов, техникумов, колледжей и училищ по всей России и странам ближнего зарубежья. Надеемся на плодотворное сотрудничество!

Сайт о внедорожниках УАЗ, ГАЗ, SUV, CUV, кроссоверах, вездеходах

На автомобили Уаз Хантер с инжекторными двигателями для управления системой впрыска топлива устанавливался электронный блок управления, он же контроллер. Автрон М.1.5.4-У для двигателей УМЗ-4213, Микас 7.2 для двигателя ЗМЗ-409 экологического класса Евро-0 и Евро-2, Bosch M17.9.7 для двигателей ЗМЗ-4091 Евро-3, Bosch ME17.9.7 для двигателей ЗМЗ-40904 Евро-3 и ЗМЗ-40905 Евро-4.

Электронный блок управления системы впрыска инжекторного двигателя Уаз Хантер, общий принцип работы.

Электронный блок управления представляет собой управляющий центр системы впрыска топлива. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами влияющими на токсичность отработавших газов и эксплуатационные показатели двигателя, рассчитывая его потребность в топливе и длительность импульса для открытия топливной форсунки.

Контроллер обладает способностью оценивать результаты своих расчетов и команд, запоминать режимы недавней работы и действовать в соответствии с ними. Самообучение контроллера является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля. Для этого он располагает такими типами памяти : программируемое постоянное запоминающее устройство — ППЗУ, оперативное запоминающее устройство — ОЗУ, электрически репрограммируемое постоянное запоминающее устройство — ЭРПЗУ.

От датчиков в электронный блок управления постоянно поступает следующая информация :

— положение и частота вращения коленчатого вала,
— массовый расход воздуха двигателем,
— температура охлаждающей жидкости,
— положение дроссельной заслонки,
— содержание кислорода в отработавших газах,
— наличие детонации в двигателе,
— напряжение в бортовой сети автомобиля,
— скорость автомобиля,
— положение распределительного вала.

На основе полученной информации контроллер управляет следующими системами и исполнительными механизмами :

— топливоподачей с помощью форсунок и электробензонасоса,
— системой зажигания,
— регулятором холостого хода,
— адсорбером системы улавливания паров бензина,
— вентилятором системы охлаждения двигателя при его наличии,
— системой диагностики.

Контроллер включает выходные цепи путем замыкания их на «массу» через выходные транзисторы. Единственное исключение — цепь реле электробензонасоса, только на обмотку этого реле контроллер подает постоянное напряжение в 12 Вольт.

Электрическая схема соединений системы управления инжекторного двигателя ЗМЗ-409.
Для двигателя ЗМЗ-409.10 экологического класса Евро-0.
Для двигателя ЗМЗ-409.10 экологического класса Евро-2.
Для двигателя ЗМЗ-40904.10 экологического класса Евро-3.
Электрическая схема соединений системы управления дизельного двигателя ЗМЗ-5143.10.
Дополнительные функции контроллера Уаз Хантер.

Электронный блок управления оснащен встроенной системой диагностики, он может распознавать неполадки в работе системы, предупреждая о них через контрольную лампу неисправности системы управления двигателем.

Кроме того, контроллер хранит диагностические коды указывающие области неисправности, чтобы помочь в проведении ремонта. В Уаз Хантер контроллер расположен справа под консолью панели приборов и крепится к щиту моторного отсека.

Купить инжекторные агрегаты и двигатели ВАЗ

Производители моторов для отечественных машин следуют новым технологиям, переходя с изготовления карбюраторных ДВС к производству инжекторных устройств. Автовладельцы предпочитают купить инжекторный двигатель ВАЗ из-за его технических показателей. Мотор обладает большей мощностью, экономится горючее, ресурс инжекторного ДВС гораздо больше, чем у карбюраторных моделей.

Эти качества стали возможны за счет применения иной системы подача бензина. Топливо проходит через форсунки за счет принудительного впрыска и поступает во впускной коллектор или цилиндр.
Мастера DETAL-PARTNER.COM считают лучшими устройствами для отечественных моделей именно инжекторные двигатели на ВАЗ, купить их предлагается, выбрав оборудование в каталоге сайта.

Устройство и принцип работы

В цехах ПАО «АВТОВАЗ» на все модификации ЛАДА, включая «Ларгус» и «Калина», устанавливают моторы, собранные по одному принципу. Оборудование проходит сборку на конвейере, двигатель состоит из следующих узлов:
• датчики, информирующие водителя о дозировании бензина, впрыске его в цилиндр и появлении искры зажигания. Это также датчики расхода воздуха, положения коленчатого вала, температуры охлаждающей жидкости, детонации и положения заслонки дросселя;
• контроллер инжектора анализирует информацию, полученную от датчиков, и управляет исполнительными механизмами;
• топливные форсунки, насос и система зажигания являются исполнительными агрегатами, запускающими мотор;
• каталитический анализатор способствует сокращению в составе выхлопных газов окисей углерода и азота, трансформируя их в углеводороды.

Оригинальные заводские двигатели, производимые в Тольятти, работают по единому принципу тактов. Через каждый такт производится определенная операция: цилиндры заполняются топливом, поршень сжимает цилиндр, обеспечивая ДВС рабочий ход. Механическая энергия образуется путем детонации горючего. На последнем такте отработанные вещества выходят в атмосферу, циклы повторяются вновь.

Предложение купить двигатели и другие запчасти на ВАЗ от производителя

Интернет-магазин предоставляет автовладельцам возможность купить ДВС для ВАЗ, инжектор служит лучшим выбором для российских машин. К услугам покупателей удобный сервис и отличное качество продукции, кроме того:
• реализуем новые двигатели с документами изготовителя, свидетельствующими о проведенных заводских проверках их исправности;
• консультируем покупателей по вопросам выбора ДВС: рассказываем о технических характеристиках моторов, стоимости, их плюсах и минусах;
• предлагаем оформить и оплатить товар любым удобным для заказчика способом: на сайте, через электронные кошельки, по карте;
• доставка заказов по России осуществляется в кратчайшие сроки. Бесплатно до терминала и силами надежных транспортных партнеров;
• предлагаем цены от производителя, без дополнительных накруток, предоставляем гарантию на продукцию в течение полугода.

Заключайте договор с надежной компанией, мы поставим оборудование оригинального качества!

Устройство и ремонт электронных узлов системы зажигания инжекторных двигателей

Современный инжекторный двигатель наряду с механической частью имеет электронные узлы, без которых его работа невозможна. Рассмотрим работу и устройство некоторых электронных узлов системы зажигания инжекторного двигателя.

Основным устройством электронной системы зажигания является контроллер, еще его называют электронным блоком управления (ЭБУ).

Контроллер анализирует сигналы, полученные с различных датчиков, и управляет исполнительными механизмами системы — топливными форсунками, модулем зажигания, регулятором холостого хода,клапаном продувки адсорбера, реле управления, и другими узлами.

На примере широко используемого в автомобилях ВАЗ контроллера типа «Январь 5.1» познакомимся с его устройством и работой в составе системы зажигания автомобиля.

Конструктивно контроллер собран на печатной плате, установленной в герметичный металлический корпус.

Рис. 1. Принципиальная электрическая схема контроллера «Январь 5.1» (1/2)

Рис. 1. Принципиальная электрическая схема контроллера «Январь 5.1» (2/2)

Принципиальная электрическая схема контроллера «Январь 5.1» показана на рис. 1.

На корпусе контроллера расположен трехрядный 55-контактный соединитель ХР1.

Питание на плату контроллера подается через контакты 18 (+12 В, аккумулятор), 37 (+12 В, питание после главного реле) соединителя ХР1.

ЭБУ работает под управлением 8-битного микроконтроллера DD4 типа SAF80C509, который выполнен по технологии CMOS.

Рис. 2. Основные сигналы на микроконтроллере SAF800509

На рис. 2 показаны основные сигналы микроконтроллера SAF80C509.

Микроконтроллер питается напряжением +5 В (выв. 11, 29, 63,

89) от стабилизатора DA11 типа TLE 4267G.

В состав DD11 входят схемы защиты от короткого замыкания, повышенного входного напряжения, обратной полярности (переплю-совки) и перегрева.

В составе схемы контроллера имеются электрически стираемое постоянное запоминающее устройство (ЭСППЗУ) DD6 типа NM 24C04 и оперативное запоминающее устройство (ОЗУ) DD2 типа 29F010 (Flash-память). Связь между микроконтроллером и микросхемой DD6 обеспечивается по цифровой шине I2C.

ЭСППЗУ используется для хранения пользовательских данных, а ОЗУ — для временного хранения данных, полученных в результате измерения параметров и кодов неисправностей.

Микросхема ОЗУ являются энергонезависимой, при снятии питания данные сохраняются.

Связь между микросхемой DD2 и микроконтроллером обеспечивается по параллельной 15-разрядной шине адреса и 8-разрядной шине данных.

К выв.12,13 микроконтроллера подключен кварцевый резонатор BQ1 частотой 16 МГц, стабилизирующий частоту внутреннего генератора.

Для связи микроконтроллера DD4 с внешним электронным диагностическим устройством в ЭБУ служит специализированная микросхема DD5 типа МС33199D. Данные передаются по последовательному интерфейсу по линиям К и L стандарта ISO 9141 (выв. 13 — L-линия, выв. 55 — К-линия соединителя ХР1).

Для обеспечения работы системы зажигания инжекторного двигателя используются датчики, с помощью которых ЭБУ снимает показания работы узлов и агрегатов двигателя.

После сбора и обработки информации от датчиков контроллер

управляет исполнительными механизмами, которые отвечают за топливоподачу, систему зажигания, регулировку холостого хода, охлаждение двигателя и т. д.

На примере некоторых датчиков и исполнительных устройств познакомимся с их работой в составе системы зажигания автомобиля. Кроме того, рассмотрим их характерные отказы и порядок устранения.

Датчик детонации (ДД) пьезоэлектрического типа ОК устанавливается на блоке двигателя.

Во время возникновения детонации датчик генерирует напряжение переменного тока, амплитуда которого зависит от уровня детонации.

Датчик соединен с контроллером с помощью жгута. Сигнал с контактов 1 (сигнальный) и 2 («земля») подается на контакты 30 и 11 соединителя ХР1 ЭБУ Для предотвращения наводок от внешних электромагнитных помех проводники жгута, подходящие к датчику, заключены в экран.

Напряжение переменного тока с датчика поступает на вход специализированной микросхемы DA1 типа HIP 9010, расположенной на плате контроллера (см. рис. 1). Микросхема фиксирует момент повышенной детонации двигателя.

Для обеспечения нормальной работы микроконтроллер DD4 производит программирование некоторых функций, таких как коэффициент усиления,характеристики полосовых фильтров и т. д.

Связь между микросхемой DA1 и микроконтроллером DD4 реализуется по цифровой шине.

Фрагмент принципиальной схемы подключения микросхемы DA1 к DD4 показан на рис. 3.

Рис. 3. Схема подключения к контроллеру датчика детонации

Для проверки состояния цепи датчика (код ошибки Р0325) следует отключить колодки от датчика и контроллера. С помощью омметра проверяют цепь на обрыв между контактами 1, 2 датчика детонации и 11, 30 контроллера соответственно.

При отсутствии нарушений в цепи датчика детонации следует заменить сам датчик и проверить контроллер.

Во время возникновения кодов ошибок Р0327, Р0328 (низкий/высокий уровни сигнала датчика детонации) следует проверить момент затяжки болта крепления, датчика детонации.

Регулятор холостого хода

Регулятор холостого хода (РХХ) служит для стабилизации оборотов холостого хода двигателя (см. рис. 4). Конструктивно РХХ представляет собой шаговый двигатель с двумя независимыми обмотками с подпружиненной конусной иглой. Вращение шагового двигателя с помощью червячно-анкерного механизма преобразуется в поступательное перемещение конусной иглы.

Рис. 4. Регулятор холостого хода

РХХ установлен на корпусе дроссельного патрубка в обводном канале.

В конструкции шагового двигателя РХХ включены постоянные магниты,которые в сочетании с обмотками фаз расположены на двух разных магнитопроводах, расположенных друг над другом.

Рис. 5. Диаграмма управления фазами шагового двигателя РХХ

На рис. 5 приведена временная диаграмма управления фазами шагового двигателя РХХ.

В момент включения фазы АВ создается электромагнитное поле которое позиционирует ротор относительно фазы А (0 ° ), а относительно фазы В (15°), не отключая фазу А, происходит включение фазы CD. При этом ротор устанавливается между полюсами фаз А и В (7,5°), и т.д.

При отключении питания РХХ ротор шагового двигателя устанавливается строго под полюсами статора одной из фаз.

Работу двигателя РХХ на автомобиле принято измерять в шаговом режиме, так, выдвинутое положение конусной иглы соответствует нулю шагов, а втянутое положение конусной иглы — 255 шагам.

Следует учесть, что при каждом включении зажигания контроллер выставляет конусную иглу в полностью выдвинутое положение (закрытое). Далее контроллер управляет работой РХХ, обеспечивая нормальную работу двигателя во всех режимах.

Схема подключения РХХ к контроллеру показана на рис. 6.

Рис. 6. Схема подключения РХХ к контроллеру

РХХ непосредственно соединен с контактами 4, 21, 26, 29 соединителя ХР1 ЭБУ.

Сопротивление обмоток шагового двигателя РХХ находится в пределах от 40 до 80 Ом.

Двигателем РХХ управляет драйвер DA2 типа TLE 4729G. В состав этой микросхемы входят усилители токов обмоток шагового двигателя РХХ, схема защиты от короткого замыкания, обрыва, замыкания на землю или бортовое питание автомобиля.

Как правило, неисправности РХХ проявляются в виде частичного или полного отсутствия холостого хода на всех режимах работы двигателя, самопроизвольного снижения оборотов двигателя, вплоть до его полной остановки при включении передачи, а также в начале движения.

Для выявления неисправностей РХХ следует проверить качество его крепления к корпусу дроссельного патрубка(наличие подсоса воздуха), качество соединений в колодке РХХ, проверить воздушные каналы системы холостого хода, при необходимости, с помощью мультиметра проверить целостность цепей между контактами разъема РХХ и контроллером.

Коды ошибок работы регулятора холостого хода следующие: Р0505 — ошибка в работе РХХ, Р0506 — низкие обороты холостого хода, Р0507 — высокие обороты холостого хода.

Нестабильная работа двигателя на холостом ходу может быть вызвана не только неправильной работой РХХ, но и другими факторами, например, загрязнением дроссельного патрубка, нарушением вентиляции картерных газов, неисправностью воздушного фильтра, датчика положения дроссельной заслонки и т.д.

Мнения читателей
  • Ленар / 24.06.2018 — 18:59

Николай / 15.12.2017 — 23:27

Отличная статья! Спасибо!

Николай / 01.11.2016 — 13:30

Поддержу.Класс статья.

Saf80C509 принципиальная схема: https://docs.google.com/file/d/0b-xykqu3um-xa181evppcnhpvdq/