Переменный резистор: принцип действия. Как подключить переменный резистор? Схема резистора
Резисторы, их виды и обозначения на схемах.
Радиоэлемент «резистор» имеет важное свойство — сопротивление электрическому току. Резисторы бывают постоянными и переменными. В жизни постоянные резисторы могут выглядеть примерно вот так:
Слева мы видим резистор, который рассеивает очень большую мощность, поэтому он такой большой. Справа мы видим маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье Маркировка резисторов. А вот так выглядит постоянный резистор на электрических схемах:
Наше отечественное изображение резистора показывают прямоугольником (слева), а заморский вариант (справа), или как говорят — буржуйский, используется в иностранных радиосхемах.
А вот так выглядит маркировка мощности на них:
Далее мощность маркируется с помощью римских цифр.
Переменные резисторы выглядят как-то так:
Переменный резистор, который управляет напряжением называется потенциометром, а тот, который управляет силой тока — реостатом. Здесь заложен принцип Делителя напряжения и Делителя тока соответственно.
Вот так обозначаются перменные резисторы на схемах:
Соответственно отечественный и зарубежный вариант.
А вот и их цоколевка (расположение выводов):
Переменники, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы, для регулировки сопротивления.
А вот так обозначаются подстроечные резисторы:
Чтобы включить его как реостат, нам нужно два вывода соединить вместе.
Также существуют и другие виды резисторов. Это могут быть термисторы, варисторы, фоторезисторы. Термисторы — это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр, как ТКС — тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды. Этот коэффициент может быть как отрицательный, так и положительный. Если ТКС отрицательный, то такой термистор называют термистором :-), а если ТКС положительный, то такой термистор называют позистором. Какой еще нафиг ТКС, что к чему? Не замарачивайтесь, все просто :-). У термисторов при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды растет и сопротивление.
Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.
Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения — это варисторы.
Это свойство варисторов широко используют от защиты перенапряжений в цепи, а также от импульсных скачков напряжения. Допустим у нас скаканула напруга, при этом также сразу же резко уменьшилось сопротивление варистора. Весь электрический ток сразу же начнет протекать через варистор, тем самым защищая основую цепь радиоэлектронного устройства. На схемах варисторы обозначаются вот таким образом:
Большой популярностью также пользуются Фоторезисторы. Весь прикол заключается в том, что они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например от фонарика.
На схемах они обозначаются вот таким образом:
В настоящее время резисторы используются абсолютно во всей радиоаппаратуре. Переменные резисторы регулируют громкость ваших компьютерных колонок. Фоторезисторы и термисторы используются в охранно-пожарной сигнализации, как высокочувствительные датчики. Не знание схемотехники резисторов — это все равно, что не знание таблицы умножения.
Резисторы ‒ один из важных элементов схемы электронного устройства. Их основное назначение - ограничивать или регулировать ток в электрической цепи. Производятся постоянные, переменные и подстроечные резисторы. Есть и другие классификации их деления.
Назначение
Резисторы ‒ пассивный элемент электрической цепи, не преобразующий энергию из одного вида в другой. Они обладают активным сопротивлением. Их основной характеристикой является номинальная резистентность. Не менее важна такая характеристика, как мощность.
Переменные резисторы могут менять сопротивление с помощью доступного регулировочного органа. Выступают регулятором тока или напряжения.
У подстроечных резисторов имеется орган управления, с помощью которого изменяется сопротивление, но он недоступен для ручной настройки. Для этого надо применять специальную отвёртку. Эти резисторы применяются только для настройки режимов работы технического устройства и не предназначены для частого использования.
Графическое обозначение
По стандарту существует несколько вариантов условного графического обозначения (УГО) различных переменных резисторов.
На рисунке изображены УГО, применяемые в Европе и России. Первые два – это общее обозначение, третье – сопротивление с линейной характеристикой зависимости от угла поворота ручки управления, четвёртое – сопротивление с нелинейной зависимостью. Первый и второй тип резисторов применяют для включения по схеме потенциометра, а третий и четвёртый – по схеме регулятора.
Подстроечный резистор, обозначение которого приведено ниже, по стандарту изображается двумя способами.
Первым знаком обозначаются резисторы, выполняющие роль регуляторов тока. Второй способ предназначен для резисторов, включенных по схеме потенциометра.
В США, Японии и некоторых других странах применяются другие УГО.
Принципиальных отличий нет, но хорошо знать и те и другие обозначения.
Устройство
Существует большое количество всевозможных конструкций переменных и подстроечных резисторов мощностью от десятков ватт до нескольких милливатт. Некоторые из них приведены ниже на фото.
Подстроечные резисторы имеют почти одинаковое устройство с переменными. Они состоят из подвижной и неподвижной частей, помещённых в общий корпус. Неподвижная часть представляет из себя пластинку из изоляционной подложки, на которую нанесён по незамкнутому кругу токопроводящий слой. Концы этого слоя выведены на два контакта.
Подвижная часть выполняет роль токосъёмного пружинящего контакта, закрепленного на оси. Таким образом обеспечивается надежная связь с токопроводящим слоем.
Немного другое устройство имеет резистор подстроечный многооборотный. У него проводящий слой нанесён на прямой стержень, а токосъёмный контакт перемещается параллельно ему на винтовом стержне.
Эти два метода изменения сопротивления применяются во всех типах подстроечных резисторов.
Типы и разновидности
По способу монтажа различают 2 вида подстроечников – для навесного и поверхностного монтажа (ПМ). Первые – крупногабаритные, навесной монтаж не налагает особых ограничений к размерам элементов. Вторые – малогабаритные, к их размерам предъявляются высокие требования. Следует иметь в виду, что промышленность не выпускает проволочные подстроечные резисторы.
Резисторы однооборотного исполнения различаются по расположению органа управления, который обычно доступен только для специальной отвёртки. Он может располагаться сбоку или сверху. Все зависит от того, в каком положении к нему более удобен доступ. Форма корпуса обычно кубическая, реже - цилиндрическая.
Многооборотные подстроечники бывают преимущественно двух видов – с кубической и продолговатой формой корпуса. Орган управления может располагаться сверху или сбоку, в зависимости от требований к конструкции устройства.
Существуют и другие разновидности этих резисторов, но для этого нужно уже обращаться к справочным изданиям.
Схемы включения
Схема подстроечного резистора существует в двух основных вариантах. Первый вариант – это реостатная схема включения, используется в качестве регулятора тока. При таком способе включения используется начальный или конечный вывод резистора и средний. Иногда средний вывод соединяют с одним из крайних. Эта схема более надёжна, так как при потере контакта среднего вывода электрическая цепь не разрывается.
Второй вариант включения – это потенциометрическая схема, где резистор применяется как делитель напряжения. При таком подключении задействованы все выводы.
Большое значение имеет, каким образом изменяется сопротивление подстроечника в зависимости от угла поворота ручки управления. Эта зависимость называется функциональной характеристикой, их различают три разновидности.
Основная характеристика – линейная. Как видно, сопротивление пропорционально изменению угла поворота ручки. Другие две – это логарифмическая и антилогарифмическая, применяются в основном в усилителях.
Маркировка резисторов
В технической документации подстроечные резисторы всегда обозначены полностью. Единой системы маркировки подстроечных резисторов не существует. За рубежом разработаны свои правила, не совпадающие с нашими. На территории России стандарт для переменных резисторов ‒ ГОСТ 10318-80.
Маркировка подстроечных резисторов содержит в начале обозначения буквы РП – резистор переменный. Далее следует цифра 1 (непроволочные), или 2 (проволочные). После через дефис указывается номер разработки изделия. Например, РП1-4, следует читать так: резистор переменный, непроволочный, номер модели 4.
После этого через дефис указывается допустимая мощность в ваттах. Для подстроечников существует её стандартный ряд: 0,01; 0,025 и так далее. Также определён ряд рабочих напряжений. Стандарт предусматривает ряд допустимых отклонений от номинального сопротивления. Используя все его положения, записывают кодировку резистора.
Область применения
В электронных и электротехнических устройствах широкое используются подстроечные переменные резисторы. Их применяют для подстройки величины тока в цепях и в качестве делителей напряжения. При низких частотах до 1 мегагерца никаких проблем с их применением не наблюдается.
При работе на высоких частотах начинают сказываться собственные индуктивность и ёмкость резисторов, этот фактор необходимо учитывать. При подборе деталей следует обращать внимание на диапазон рабочих частот. Не рекомендуется работать с предельно допустимыми параметрами резистора.
Термин «резистор» происходит от английского глагола resist, что означает «сопротивляться», «препятствовать», «противостоять». В буквальном переводе на русский язык название этого прибора и означает «сопротивление». Дело в том, что в электрических цепях протекает ток, который испытывает внутреннее противодействие. Его величина определяется свойствами проводника и множеством других внешних факторов.
Эта характеристика тока измеряется в омах и связана зависимостью с силой тока и напряжением. Сопротивление проводника равняется 1 ом, если по нему протекает ток силой в 1 ампер, а к концам проводника приложено напряжение в 1 вольт. Таким образом, при помощи искусственно созданного и введенного в электрическую цепь сопротивления можно регулировать другие важные параметры системы, которые могут быть рассчитаны заранее.
Сфера применения резисторов необычайно широка, они считаются одними из самых распространенных элементов монтажа. Основная функция резистора состоит в ограничении тока и контроле над ним. Он также нередко применяется в схемах деления напряжения, когда требуется понизить эту характеристику цепи. Будучи пассивными элементами электрических схем, резисторы характеризуются не только величиной номинального сопротивления, но и мощностью, которая показывает, сколько энергии резистор в состоянии рассеять без перегрева.
В электронных приборах и бытовых электрических схемах применяется множество резисторов разной формы и величины. Отличаются друг от друга эти миниатюрные приборы не только по внешнему виду, но также по номиналу и рабочим характеристикам. Все резисторы условно делятся на три большие группы: постоянные, переменные и подстроечные.
Чаще всего в устройствах можно встретить резисторы постоянного типа, напоминающие по виду продолговатые «бочонки» с выводами на концах. Параметры сопротивления в приборах этого вида существенно не меняются от внешних воздействий. Небольшие отклонения от номинала могут быть вызваны внутренними шумами, изменением температурного режима или влиянием скачков напряжения.
У переменных резисторов пользователь может произвольно менять значение сопротивления. Для этого прибор оснащается особой рукояткой, имеющей вид ползунка или способной вращаться. Самый распространенный представитель этого семейства резисторов можно увидеть в регуляторах громкости, которыми оснащается аудиотехника. Поворот рукоятки способен плавно изменить параметры цепи и, соответственно, повысить или понизить громкость. А вот подстроечные резисторы предназначены лишь для сравнительно редких регулировок, поэтому имеют не ручку, а винт со шлицом.
www.kakprosto.ru
Резисторы [Амперка / Вики]
Резистор — один из наиболее распространённых компонентов в электронике. Его назначение — простое: сопротивляться течению тока, преобразовывая его часть в тепло.
Основной характеристикой резистора является сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.
Закон Ома
Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I, напряжение U, сопротивление R, если известны две остальные:
Для обозначения напряжения наряду с символом U используется V.
Рассмотрим простую цепь
Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1. Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.
Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.
В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал — 240 или 220 Ом.
Аналогично, мы могли бы расчитать требуемое напряжение, если бы оно было не известно, а на руках были значения сопротивления и желаемая сила тока.
Соединение резисторов
При последовательном соединении резисторов, их сопротивление суммируется:
При параллельном соединении, итоговое сопротивление расчитывается по формуле:
Если резистора всего два, то:
В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.
Таким образом можно получать новые номиналы из имеющихся в наличии.
Применеие на практике
Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:
Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.
В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.
Стягивающие и подтягивающие резисторы
Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему
Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:
Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.
Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:
То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.
Делитель напряжения
Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.
Мощность резисторов
Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:
При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!
wiki.amperka.ru
принцип действия. Как подключить переменный резистор? :: SYL.ru
Большое количество людей обращаются в радиомагазины, чтобы сделать что-то своими руками. Главная задача любителей собирать радиоприемники и схемы – это создавать полезные предметы, которые будут приносить пользу не только себе, но и окружающим. Переменный резистор помогает выполнить ремонт или создать прибор, который работает от электрической сети.
Основные свойства переменных резисторов
Когда человек имеет четкое представление об условных элементах графического отображения на схемах, тогда у него возникает проблема переноса чертежа в реальность. Требуется найти или приобрести отдельные компоненты уже готовой схемы. Сегодня есть большое количество магазинов, которые продают необходимые детали. Найти элементы можно и в старой поломанной радиоаппаратуре.
Переменный резистор должен присутствовать в любой схеме. Его находят в любых электронных устройствах. Эта конструкция представляет собой цилиндр, который включает в себя диаметральные противоположные выводы. Резистор создает ограничение поступления тока в цепи. В случае необходимости он будет выполнять сопротивление, которое можно измерить в омах. Переменный резистор обозначается на схеме в виде прямоугольника вместе с двумя черточками. Они расположены на противоположных сторонах внутри прямоугольника. Таким образом, человек обозначает на своей схеме мощность.
Аппаратура, которая имеется практически в каждом доме, включает в себя резисторы с определенным номиналом. Они располагаются по ряду Е24 и условно обозначают диапазон от единицы до десяти.
Разновидности резисторов
Сегодня существует большое количество резисторов, которые встречаются в современных бытовых электроприборах. Можно выделить следующие виды:
Резистор металлический лакированный теплостойкий. Его можно встретить в ламповых приборах, которые имеют мощность не меньше чем 0,5 ватта. В советской аппаратуре можно отыскать такие резисторы, которые выпускали в начале 80-х годов. Они имеют разную мощность, которая напрямую зависит от размеров и габаритов радиоаппаратуры. Когда на схемах нет условного обозначения мощности, тогда разрешается использовать переменный резистор в 0,125 ватта.
Водостойкие резисторы. В большинстве случаев их находят в ламповых электроприборах, которые производились в 1960 году. В черно-белом телевизоре и радиолах обязательно встречаются эти элементы. Их маркировка очень похожа на обозначение металлических резисторов. В зависимости от номинальной мощности они могут иметь разные размеры и габариты.
Сегодня широко используется общепринятая маркировка резисторов, которые разделены на разные цвета. Таким образом, можно быстро и легко определить номинал без использования пайки схемы. Благодаря цветовой маркировке можно значительно ускорить поиск необходимого резистора. Сейчас производством таких элементов для микросхем занимается большое количество зарубежных и отечественных фирм.
Основные характеристики и параметры переменного резистора
Можно выделить несколько главных параметров:
Номинальное сопротивление.
Предельные показатели рассеивания мощности.
Температурные коэффициенты сопротивления.
Допустимые значения отклонения сопротивления. Его вычисляют от номинальных значений. Когда изготавливаются такие резисторы, производители используют технологический разброс.
Предельные показатели рабочего напряжения.
Избыточный шум.
Во время проектирования представленных устройств используются конкретные характеристики. Эти параметры относятся к приборам, которые работают на высоких частотах:
Паразитные емкости.
Паразитная индуктивность.
Общепринятая классификация резисторов
Проволочный переменный резистор считается основным и главным элементом в любой электронной аппаратуре. Его применяют в качестве дискретного компонента или составной части к интегральной микросхеме. Он классифицируется по основным параметрам, таким как способ защиты, монтаж, характер изменения сопротивления или технология производства.
Классификация по общему использованию:
Общего предназначения.
Специального назначения. Они бывают высокоомные, высоковольтные, высокочастотные или прецизионные.
В зависимости от характера изменения сопротивления можно выделить следующие резисторы:
Постоянные.
Переменные, с возможностью регулировки.
Подстроенные переменные.
Если брать во внимание способ защиты резисторов, то можно выделить следующие конструкции:
С изоляцией.
Без изоляции.
Вакуумные.
Герметизированные.
Подключение переменного резистора
Большое количество людей не знают, как подключить переменный резистор. Эти элементы зачастую имеют две схемы подключения. Сделать эту работу сможет человек, который хоть немного разбирается в электронике и имел дело с пайкой микросхем.
Первый вариант подключения заключается в том, что верхний вывод необходимо подсоединить к основному источнику питания. Нижний припаивается к общему проводу. Специалисты называют его «земля». Стоит отметить, что средние выводы соединяются исключительно с управляющими элементами схемы. Это может быть база или главный затвор транзистора. В таком случае эти конструкции будут играть роль потенциометра.
Существует и второй способ, который поможет узнать, как подключить переменный резистор. Верхние выводы необходимо подсоединять к основному источнику питания. Нижние концы конструкции припаиваются к проводу общего назначения, а средние соединяются с нижними или верхними выводами. Именно они способны подавать на управляющие элементы схемы необходимую мощность питания. Этот способ подключения заключается в том, что переменные резисторы будут играть немаловажную роль и регулировать поступающий ток.
Технология изготовления переменных резисторов
Существует классификация, которая зависит от технологии изготовления резисторов. Во время производственного процесса используются разные этапы и схемы. Сегодня можно выделить следующие конструкции:
Проволочный переменный резистор. Подключение производится по простой технологии, которую сможет освоить даже начинающий специалист. Его наматывают из проволоки, где есть высокие показатели удельного сопротивления. При этом используется каркас. Эти конструкции имеют большую паразитную индуктивность. Чтобы значительно снизить этот показатель, нужно применять бифилярную намотку. Проволочные резисторы в некоторых случаях могут изготавливаться из прочного микропровода.
Металлопленочные резисторы. Их еще принято называть композитными. В них имеется резистивный элемент, который представлен в виде тонкой пленки. Ее получают из металлических сплавов или композитных материалов. Такие конструкции обладают высокими показателями удельного сопротивления и низким коэффициентом термического сопротивления. Проволоку наносят на цилиндрические керамические сердечники. Сегодня именно этот тип элементов пользуется особенным спросом, поэтому люди чаще всего спрашивают композитный переменный резистор. Подключение выполняется любым из вышеописанных способов.
Особенности переменных резисторов в 10 кОм
Сегодня на радио рынках можно встретить большое количество элементов для составления схемы. Наиболее востребованным является переменный резистор 10 кОм. Он бывает переменным, проволочным или регулировочным. Основная его отличительная особенность – одинарная однооборотность. Этот тип резисторов предназначен для работы в электрической цепи, где есть постоянный или переменный ток.
Номинальные показатели мощности составляют 50 вольт, а сопротивление - 15 кОм. Эти элементы производились в середине восьмидесятых годов, поэтому сегодня их можно найти не только в специализированных магазинах, но также и в старых схемах радиоприемников. Переменный резистор 10 кОм имеет несколько функциональных и возможных аналогов.
Шум переменного резистора
Даже новые и надежные резисторы при высоком температурном режиме, который значительно выше абсолютного нуля, могут стать основным источником появления шума. Резистор переменный сдвоенный применяется в электрической цепи в микросхеме. О появлении шума стало известно из фундаментальной флуктуационно-диссипационной теоремы. Она известна под общепринятым названием «теорема Найквиста».
Если в схеме есть резистор переменный СП с большими показателями сопротивления, то человек будет наблюдать эффективное напряжение шума. Оно будет иметь прямую пропорциональность к корням из температурного режима.
www.syl.ru
Обозначение резисторов и их виды
В данной статье мы наглядно посмотрим основные виды резисторов и их обозначения на схеме. Резисторы бывают постоянными, переменными, подстроечными, термисторы, варисторы, фоторезисторы.
Постоянные резисторы. Самый распространенный вид, используемый в электронике.
Обозначаются на схеме следующим образом:
Выглядят постоянные резисторы так:
Данные элементы могут отличаться мощностью, которая на схеме тоже может быть указана следующим образом:
Вот наглядные примеры резисторов различной мощности:
На 0.125 Вт резисторы у нас не продают в городе, так как они в корпусе 0.25 Вт и с виду их не различить. Привожу пример зарубежных резисторов, так как, элементы времен СССР уже в большинстве случаев не применяются. Резисторы могут быть и более 2 Ватт, и 10, и 25 Ватт, вот например на 7 Ватт:
Данные сопротивления я использовал для измерения мощности импульсного блока питания.
Пример постоянных сопротивлений на плате:
Высокоточные сопротивления, с погрешностью 0.25%:
Также есть чип резисторы, еще их называют SMD резисторами, они применяются в поверхностном монтаже. Они различаются по размерам и рассеиваемой мощностью.
Переменные резисторы. Резисторы, изменяющие свое сопротивление, при вращении рукоятки называются переменными. На схеме они отображаются следующим образом:
Так же переменники могут выполнять две роли, роль реостата и потенциометра, все зависит от соединения:
В роли потенциометра, резистор работает как делитель напряжения, а в роли реостата как делитель тока.
Выглядят переменные резисторы вот так:
Подстроечные резисторы. Они похожи на переменные, могут быть потенциометрами, либо реостатами. Отличаются размерами и тем , что у подстроечных резисторов вместо рукояти пазы под отвертку, шестигранник и так далее. Хотя есть и с рукоятью, но с пазом под отвертку.
На схеме обозначаются следующим образом:
Выглядят так:
Варистор. Является полупроводниковым резистором, который изменяет свое сопротивление от приложенного к нему напряжения. Изменение сопротивления происходит нелинейно. Например, варистор, рассчитанный на напряжение 275 Вольт, при скачке напряжение более 275 Вольт, сопротивление варистора будет резко (нелинейно) уменьшаться, от сотни МОм до нескольких Ом.
Обозначаются на схеме варисторы следующим образом:
Выглядят так:
Применяются варисторы в основном для защиты цепей от перенапряжения. Варистор ставят параллельно в цепь, а до варистора в цепи ставят последовательно предохранитель. При скачке напряжения, сопротивление варистора падает до десятков Ом, тем самым варистор замыкает цепь, вследствие короткого замыкания (К.З.), сгорает предохранитель.
Термистор. Также является резистором на основе полупроводниковых материалов, сопротивление которого зависит от температуры полупроводника. Одним из важных параметров термисторов является- тепловой коэффициент сопротивления (ТКС). ТКС может быть положительным и отрицательным. У термисторов с отрицательным ТКС, при увеличении температуры, сопротивление падает, называют такие термисторы – термисторами. У термисторов с положительным ТКС, при увеличении температуры, сопротивление увеличивается и такие термисторы называют – позисторами.
Термисторы NTC (Negative Temperature Coefficient) и позисторы PTC (Positive Temperature Coefficient) на схеме обозначаются следующим образом:
Выглядит термистор так:
Фоторезистор. Является полупроводниковым элементом, который изменяет свое сопротивление при попадании на него лучей света, в том числе искусственных. Фоторезисторы можно увидеть в видеокамерах с инфракрасной подсветкой, среди инфракрасных светодиодов стоит один фоторезистор, который является датчиком света, управляющий реле. Реле в свою очередь включает подсветку, когда видеокамера в темноте.
Так же фоторезистор может использоваться в автоматах ночного освещения, регуляторах мощности фар автомобиля, фотоэлектронном контроле оборотов, датчиках дыма и других электронных устройствах.
На схеме отображаются следующим образом:
Внешне выглядят так:
Резисторная сборка. Это сборка из нескольких постоянных резисторов. Вот пример резисторной сборки на 15 кОм с общим выводом:
Теперь вы имеете представление о том, как выглядят различные сопротивления.
Похожие статьи
audio-cxem.ru
Резистор, схема подключения, его обозначение. Сопротивление в электрической цепи.
Тема: как электрическое сопротивление выглядит и обозначается на схеме.
Сопротивление в виде обычного резистора можно встретить практически в любой электрической схеме. Поскольку у каждого электронного и электрического компонента имеется свое внутреннее сопротивление (даже у обычного провода), то и его можно представить (учитывать при создании схем, цепей и их расчетов) в виде резисторов. Суть резистора достаточно проста — это сопротивление, препятствие внутри проводника на пути движения электрически заряженных частиц. То есть, есть напряжение, которое создает как бы давление, при замыкании электрической цепи начинает течь ток зарядов, а те преграды внутри проводника, что препятствуют этому движению и будут являться этим самым сопротивлением.
Резисторы на схемах обозначаются достаточно просто и понятно. Это продолговатый прямоугольник, у которого на противоположных концах (стороны с меньшей длинной) имеются выводы, это обычное обозначение (европейское). В зарубежных схемах часто резистор указывается в виде ровного зигзага. У резисторов сопротивление бывает разное, как и их мощность. Следовательно, на схемах возле самого сопротивления подписывается его величина и единица измерения (Ом, кОм, мОм). Внутри прямоугольника (условного обозначения на схемах) могут ставится полоски (направление и их количество соответствует своему номиналу), обозначающие его мощность.
Само сопротивление, как компонент (резистор), может подключаться в схемах двумя основными способами, это либо последовательно электрической цепи, или же параллельно ей. В зависимости от количества этих самых резисторов в схеме их можно представлять именно так: включены параллельно, последовательно или смешано. Для каждого из варианта подключения в схемах имеются свои формулы, по которым можно легко посчитать конкретное значение сопротивления в той или иной цепи.
В электрике основной формулой считается закон Ома. Она имеет следующий вид: I=U/R, где I это сила тока, U это напряжение, R это сопротивление. Из нее можно вывести две другие формулы: R=U/I и U=R*I. Используя эти три формулы можно легко найти любую неизвестную величину зная две других. К примеру, у нас есть электрический обогреватель, известно его напряжение питания, равное 220 вольт, тестером мы померили его общее сопротивление (пусть оно будет равно 22 ома), если применить одну из формул для нахождения силы тока (I=U/R), которую потребляет обогреватель, то мы получим в итоге 10 ампер (220 вольт деленное на 22 ома). Вдобавок можно еще привести формулу электрической мощности P=U*I (мощность равна напряжению умноженному на силу тока).
Помимо обычных резисторов, имеющие два вывода и постоянное сопротивление, существуют еще переменные и подстроечные. Общий смысл у них одинаковый — имеют три вывода, два из них являются концами общего сопротивления, а третий это ползунок, что плавно перемещается от одного конца резистора к другому. Если измерять электрическое сопротивление между выводом, идущим от ползунка и любым крайним выводом резистора (при этом плавно изменять положение ползунка в одну из сторон), то при измерении мы увидим постепенно изменяемую величину сопротивления. Проще говоря, из самого названия (переменный) ясно, что данный вид резисторов является регулируемым, изменяемым.
Переменный резистор имеет корпус, который устанавливается на передней панели устройств, что позволяет путем вращения оси резистора задавать на нем определенное сопротивление для схемы. Подстроечные резисторы ставятся на самих платах, они имеют более открытый вид, служат для точной подстройки нужного сопротивления в схемах. Их обычно крутят в случае корректировки и настройки нужного режима работы электрической схемы. После наносят немного лака, краски, чтобы данное положение ползунка резистора хорошо зафиксировать.
На схемах переменный резистор обычно обозначается также как и обычный, от которого с середины отходит вывод со стрелкой (это вывод от ползунка). Подстроечные резисторы не имеют стрелки, просто палочка, отходящая от середины этого сопротивления. Хотя в разных схема обозначения могут быть совсем разные и только опытным путем (по смыслу и назначению сопротивления) можно определить тип резистора (переменный или подстроечный).
P.S. Каким бы резистор не был, суть его остается одна и та же — это электрическое сопротивление, которое является препятствием на пути протекания тока (упорядоченное движение частиц внутри проводника). А что касается обозначения, то просто возьмите в интернете несколько различных электрических схем, посмотрите на них после чего уже поймете — обозначение может быть разным, но в схеме сразу видно и понятно, что это именно резистор.