Солнечные панели из чего делают: Из чего делают солнечные батареи различных поколений панелей

Устройство солнечной батареи. Теория

Состав и устройство солнечной батареи, ее элементов определяют эффективность выработки энергии готовым изделием. В настоящее время, для генерации электрической энергии используются солнечные панели на основе кремния (с-Si, mc-Si & кремниевые тонкопленочные батареи), теллурида кадмия CdTe, соединения медь-индий (галлий)-селен Cu(InGa)Se2, а также концентраторные батареи на основе арсенида галлия (GaAs). Ниже будут даны краткие описания каждой из них.

Солнечные батареи основе кремния

Солнечные батареи (СБ) на основе кремния составляют на сегодняшний день порядка 85% всех выпускаемых солнечных панелей. Исторически это обусловлено тем, что при производстве СБ на основе кремния использовался обширный технологический задел и инфраструктура микроэлектронной промышленности, основной «рабочей лошадкой» которой также является кремний. В результате, многие ключевые технологии микроэлектронной промышленности такие как выращивания кремния, нанесения покрытий, легирования, удалось адаптировать для производства кремниевых батарей с минимальными изменениями и инвестициями. Кроме того, кремний – один из самых распространенных элементов земной коры и составляет по разным данным 27-29% по массе. Таким образом, нет никаких физических ограничений для производства значительной доли электроэнергии Земли с имеющимися запасами Si.

Различают два основных типа кремниевых СБ – на основе монокристаллического кремния (crystalline-Si, c-Si) и на основе мультикристаллического (multicrystalline-Si, mc-Si) или поликристаллического. В первом случае используется высококачественный (и, соответственно, более дорогой) кремний выращенный по методу Чохральского, который является стандартным методом для получения кремниевых пластин-заготовок для производства микропроцессоров и микросхем. Эффективность СБ изготовленных из монокристаллического кремния составляет обычно 19-22%. Не так давно, фирма Panasonic заявила о начале промышленного выпуска СБ с эффективностью 24,5% (что вплотную приближается к максимально возможному теоретически значению ~30%).

Во втором случае для производства СБ используется более дешевый кремний произведенный по методу направленной кристаллизации в тигле (block-cast), специально разработанного для производства СБ. Получаемые в результате кремниевые пластины состоят из множества мелких разнонаправленных кристаллитов (типичные размеры 1-10мм) разделенных границами зерен. Подобные неидеальности кристаллической структуры (дефекты) приводят к снижению эффективности – типичные значения эффективности СБ из mc-Si составляют 14-18%. Снижение эффективности данных СБ компенсируется их меньшей ценой, так что цена за один ватт произведенной электроэнергии оказывается примерно одинаковой для солнечных панелей как на основе c-Siтак и mc-Si.

Тонкопленочные солнечные панели

Возникает вопрос – зачем разрабатывать другие типы модулей, если солнечные панели на основе моно- и мультикристаллического кремния уже созданы и показывают неплохие результаты? Очевидный ответ — чтобы добиться еще большего снижения стоимости и улучшения технологичности и эффективности, по сравнению с обычными c-Si и mc-Siсолнечными батареями.

Дело в том, что обычные кремниевые фотоэлектрические модули наряду с преимуществами, перечисленными выше, обладают и рядом недостатков. Кемний из-за своих особых электрофизических свойств (непрямозонный полупроводник) обладает довольно низким коэффициентом поглощения, особенно в области инфракрасных длин волн. Таким образом, толщина кремниевой пластины для эффективного поглощения солнечного излучения должна составлять довольно внушительные 100-300 мкм. Более толстые пластины означают больший расход материала, что ведет к удорожанию СБ.

В то же время, прямозонные полупроводники на вроде GaAs, CdTe, Cu(InGa)Se2, и даже некоторые модифицированные формы Si, способны поглощать требуемое количество солнечной энергии при толщине всего в несколько микрон. Открывается заманчивая перспектива сэкономить на расходных материалах, а также на электроэнергии, которой требуется значительно меньше для изготовления более тонкого слоя полупроводника. Еще одной положительной чертой СБ на основе вышеназванных полупроводников – в отличие от СБ на основе c-Si и mc-Si– является их способность не снижать эффективность преобразования солнечной энергии в электрическую даже в условиях рассеянного излучения (облачный день или в тени).

Исследования СБ на основе теллурида кадмия (CdTe) начались еще в 1970х годах ввиду их потенциального использования в качестве перспективных для космических аппаратов. А первое широкое применение «на земле» подобные СБ нашли в качестве элементов питания карманных микрокалькуляторов.

Данные элементы представляют собой гетероструктуру из тонких слоев p-CdTe / n-CdS (суммарная толщина 2-8 мкм) напыленных на стеклянную подложку (основу). Эффективность современных фотоэлектрических элементов данного типа равняется 15-17%. Основным (и фактически единственным) производителем СБ на основе теллурида кадмия является американская фирма FirstSolar, которая занимает 4-5% всего рынка.

К сожалению, есть проблемы с обоими элементами входящими в состав соединения CdTe. Кадмий – это экологически вредный тяжелый метал, который требует особых методов обращения и ставит сложный вопросутилизации старых изделий. В виду этого, законодательство многих стран ограничивает свободную продажу гражданам СБ этого типа (строятся только масштабных солнечных электростанций под гарантии утилизации от фирмы производителя). Второй элемент – теллур, довольно редко встречается в земной коре. Уже в настоящее время более половины всего добываемого теллура идет на изготовление солнечных панелей, а перспективы нарастить добычу – довольно призрачны.

Солнечные батареи на основе соединения медь-индий (галлий)-селен Cu(InGa)Se2 (иногда обозначаются как CIGS) являются новичками на рынке солнечной энергетики. Несмотря на то, что начало исследований элементов этого типа было положено еще в середине 70х, в настоящее время коммерческий выпуск в боле-менее солидных масштабах ведет всего лишь фирма SolarFrontierKKиз Японии. Отчасти это связано с технически сложным и дорогим процессом изготовления, хотя в некоторых (удачных!) случаях их эффективность может достигать 20%.

Несмотря на отсутствие экологически вредных элементов в составе этого соединения, значительному расширению производства данных солнечных модулей в будущем угрожает дефицит индия. Ведутся исследования с целью заменить дорогой In на более дешевые элементы и может быть скоро появятся новые изделия на основе соединения Cu2ZnSn(S,Se)4.

Фотоэлектрические модули на основе аморфного кремния a-Si:H. Тонкопленочные солнечные батареи могут быть построены также и на основе хорошо известного кремния, если удастся каким-либо образом улучшить его способности к поглощению солнечного света. Применяются две основные методики:

— увеличить путь прохождения фотонов посредством многократного внутреннего переотражения;

— использовать аморфный кремний (a-Si), обладающий гораздо большим коэффициентом поглощения чем обычный кристаллический кремний (с-Si).

По первому пути пошла австралийская фирма CSGSolarLtd, разработавшая СБ с эффективностью 10-13% при толщине слоя кремния всего 1,5 мкм. По второму – швейцарская OerlikonSolar (которую сейчас перекупили японцы), создавшая комбинированные солнечные панели на основе слоев аморфного и кристаллического кремния a-Si / с-Si эффективность которых также составляет 11-13%. Своеобразной особенностью СБ из аморфного кремния является снижение эффективности их работы при понижении температуры окружающего воздуха (у всех остальных — наоборот). Так, фирма производитель рекомендует устанавливать данные модули в странах с жарким климатом.

Концентраторные солнечные модули

Наиболее совершенные и самые дорогие на сегодняшний день солнечные модули обладают эффективностью фотоэлектрического преобразования до 44%. Они представляют собой многослойные структуры из разных полупроводников последовательно выращенных друг на друге слой за слоем. Наиболее успешной является структура состоящая из трех слоев:  Ge (нижний полупроводник и подложка), GaAsи GaInP. Благодаря тому, что в подобной комбинации каждый отдельный полупроводниковый слой поглощает наиболее эффективно свой определенный диапазон солнечного спектра (определяемый шириной запрещенной зоны полупроводника), достигается наиболее полное поглощение солнечного света во всем диапазоне длин волн, недостижимое для СБ состоящих из одного типа полупроводника. К сожалению, процесс изготовления подобных многослойных полупроводниковых слоев очень сложен технически и, как следствие, весьма дорог.  

Если солнечные батареи стоят очень дорого, фокусировка солнечного излучения на меньшей площади СБ может применяться как эффективный способ снижения финансовых затрат. Например, собрав при помощи линзы солнечный свет с 10 см2 и сфокусировав его на 1 см2 солнечной батареи, можно получить тоже количество электроэнергии, что и от элемента площадью 10 см2 без концентратора, но экономя при этом целых 90% площади! Но при этом, набор подобных ячеек (солнечная батарея + линза) должен быть смонтирован на подвижной механической системе, которая будет ориентировать оптику в направлении солнца в то время как оно движется по небу в течении дня, что увеличивает стоимость системы.

В настоящее время экономически оправдано использовать подобные дорогие концентраторные солнечные модули только в тех странах и регионах земного шара, где круглый год имеется в достатке прямое солнечное излучение (рассеянное излучение не может быть сфокусировано линзой). Так, французская фирма-производитель концентраторных СБ SOITEC устанавливает свои СБ в Калифорнии, ЮАР, на юге Франции (Прованс), в Испании.  

Органические солнечные батареи и модули фотосенсибилизованные красителем

Но есть и новый тип тонкопленочных солнечных батарей, такой как сенсибилизированные красителем солнечные элементы, которые работают на совершенно ином принципе, чем все модули рассмотренные выше, на принципе больше напоминающем фотосинтез у растений. Но их пока нет в коммерческой продаже.

 

Трушин М.В. Ph.D

 

 

 

 

схема и комплектующие, история создания

Содержание

Краткая история модифицирования: три поколения солнечных батарей

Специалисты разделяют все фотоэлектрические устройства, способные поглощать световые фотоны и преобразовывать их в электрический ток, на три поколения.

Схема подключения батареи к контроллерам и аккумуляторам

Как устроены солнечные батареи и из чего они состоят, мы выяснили. Теперь поговорим о практическом использовании. Сама по себе солнечная панель малополезна. Она выдает не особо высокое напряжение, которое, кроме того, постоянно меняется. Пасмурно – напряжение одно, солнечно – другое. Набежала тучка – получили скачок.

Далее, солнечная панель выдает постоянный ток, в то время как большинство бытовых приборов работает на переменном. Ну и, конечно, солнечные батареи абсолютно бесполезны ночью. Чтобы получить от такого источника какую-то пользу, необходимо энергию запасти и преобразовать до нужных значений. То есть нужно построить солнечную электростанцию.

В качестве накопителя энергии очень удобно использовать обыкновенные автомобильные аккумуляторы. Они идеально подходят по напряжению и легко подбираются по емкости. Кроме того, что батарея будет запасать энергию, она дополнительно стабилизирует напряжение. Упало оно на панели – потребитель будет получать питание от аккумулятора. Поднялось – панель будет питать потребители и одновременно заряжать АКБ.

Преобразование постоянного напряжения батареи в переменное 220 В несложно сделать при помощи так называемого инвертора (преобразователя). Сегодня таких устройств самой разной мощности и стоимости полные прилавки.

Важно! Выбирая преобразователь, необходимо учитывать, что некоторым бытовым приборам, к примеру, холодильникам, необходима чистая синусоида. Большинство же недорогих устройств выдают не настоящую синусоиду, а так называемую аппроксимированную, состоящую из набора разнополярных прямоугольников.

Но нельзя просто взять и подключить панель к аккумулятору. Ведь заряжать АКБ нужно определенным током и нельзя допускать ее перезарядки. Поэтому нам понадобится еще один узел – контроллер заряда АКБ. Он самостоятельно будет выдерживать зарядный ток и отключит АКБ от панели, если она полностью заряжена или панель не в состоянии обеспечить необходимое напряжение.

Купить такой прибор тоже не проблема, причем есть совсем недорогие модели, хотя при желании можно взять устройство с целым набором дополнительных функций: вольтметром, таймером, собственным преобразователем и т. д. Ну и цена, конечно, будет соответствующей. Что касается схемы соединения всех узлов, то она довольно проста.

Особых пояснений она не требует. Напряжение с панели поступает на контроллер, который заряжает аккумулятор и питает низковольтную нагрузку (не все модели). Аккумулятор же, в свою очередь, питает преобразователь, если энергии солнечной панели для этих целей недостаточно.

Конечно, такая схема не является универсальной – все будет зависеть от используемого контроллера. В любом случае она окажется такой же простой и обязательно будет прилагаться в комплекте с прибором.

Как повысить эффективность солнечных батарей?

Для достижения максимально эффективной электрификации помещений:

  • Перед покупкой и установкой батарей следует со стороной куда будут устанавливаться панели. Желательно делать это на южное направление.
  • Для оценки освещенности лучше всего будет воспользоваться люксметром либо пригласить специалиста, который составит вам предварительную смету и рассчитает рентабельность системы.
  • Рассчитайте окупаемость системы – если вы живете в Центральной России или в северных регионах, то установка аккумуляторных батарей будет неоправданно высока.

Если в живете в южном регионе, то солнечные панели отлично вам подойдут. Однако для оптимальной работы необходим корректный расчет и правильная установка.

Отопление солнечной энергией домов

Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.

Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.

Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.

Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.

Как вообще делаются солнечные батареи?

Несмотря на огромный источник энергии, сияющий в небе, отрицатели продолжают спорить и преуменьшать достоинства солнечной энергии и других возобновляемых источников энергии, снова и снова задавая одни и те же вопросы: насколько эффективна солнечная энергия? Разве это не дороже? Что происходит, когда солнце садится или становится облачно?

Мы развенчивали эти мифы раньше, но нам всегда задают застенчивый вопрос: Хорошо, но из чего сделаны солнечные панели и не вредим ли мы климату, создавая их?

Не нужно быть застенчивым. Это немного сложно!

Во-первых, это сама панель.

Большие черные солнечные панели, которые вы видите в домах и на предприятиях, состоят из множества солнечных элементов (или фотоэлектрических элементов), изготовленных из кремниевых полупроводников, которые поглощают солнечный свет и создают электрический ток. Эти отдельные ячейки соединены вместе, чтобы сделать одну солнечную панель.

Если вы хотите получить еще больше технических знаний, вы можете взглянуть на структуру этих отдельных солнечных элементов. Они сделаны из двух типов полупроводников: положительного (p-типа) и отрицательного (n-типа) слоев кремния.

В то время как слой кремния n-типа имеет дополнительные электроны, которые могут перемещаться относительно свободно, слой p-типа имеет электронные вакансии, называемые дырками. Когда вы соединяете слои вместе, электроны начинают переходить из n-типа в p-тип, который образует особый контакт и создает в материале электрический потенциал. Когда солнечный свет попадает на это соединение, фотон может выбить электрон и оставить после себя дыру. По мере того, как все больше электронов заполняют вновь созданные дырки, свободные электроны начинают собираться на полюсе. Собранные электроны затем проходят через проводник, и возникает электрический ток.

Почему кремний?

В 1940-х годах исследователь из Bell Labs по имени Рассел Ол обнаружил функциональность PN-перехода и то, что кремний — элемент, обнаруженный в песке и второй по распространенности элемент в земной коре после кислорода — проявляет свойства, способствующие формированию данного стыка.

Ученые продолжали работать над открытием Оля, и в 1954 году Bell Labs представила первый современный солнечный элемент.

Демонстрация вдохновила статью New York Times 1954 года, в которой предсказывалось, что солнечные элементы в конечном итоге приведут к «осуществлению одной из самых заветных мечтаний человечества — использованию почти безграничной энергии солнца».

В настоящее время фотоэлектрические (PV) элементы в основном производятся серийно и вырезаются с помощью лазеров, что далеко от их скромного происхождения.

Далее инвертор. Солнечные элементы собирают солнечную энергию и превращают ее в электричество постоянного тока. Однако в большинстве домов и предприятий используется переменный ток (AC). Инверторы превращают электричество постоянного тока от солнечных батарей в пригодное для использования электричество переменного тока.

Наконец, есть система крепления , позволяющая держать все это на крыше или надежно закреплять на земле. Как правило, в северном полушарии солнечные панели должны быть обращены на юг и устанавливаться под углом 30 или 45 градусов, в зависимости от расстояния от экватора. Фиксированные крепления удерживают панели на месте, но также доступны крепления на гусеницах, которые «следуют» за солнцем в течение дня, хотя обычно они дороже.

Итак, насколько все это зелено?

Да, это правда, что при производстве солнечных панелей образуется углекислый газ, как и при производстве большинства вещей. Есть также некоторая законная озабоченность по поводу утилизации солнечных батарей.

Но по мере того, как производство солнечных панелей становится более эффективным, его углеродный след значительно сокращается. В исследовании 2016 года сообщается , что общие производимые выбросы снижались на 17–24 процента каждый раз, когда мощность установки удваивалась за последние 40 лет.

И общие выбросы парниковых газов, связанные с солнечной энергией, по-прежнему (что неудивительно) намного ниже, чем при использовании угля или природного газа. Сами солнечные панели могут работать десятилетиями без особого обслуживания, а поскольку их части не изнашиваются быстро, хорошо известно, что фотоэлектрические панели продолжают производить чистую электроэнергию намного дольше, чем их часто длительные гарантии, хотя иногда с немного меньшей эффективностью по сравнению с годами. исчезают от одного к другому.

По окончании срока службы панели некоторые производители предлагают своим клиентам глобальные программы утилизации.

Исследование Национальной лаборатории возобновляемых источников энергии (NREL), проведенное в июне 2012 года, в котором изучались скорости фотоэлектрической деградации около 2 000 солнечных установок за период в 40 лет, показало, что средняя солнечная система теряет всего 0,5 процента своей выходной мощности в год. Таким образом, к концу стандартной 25-летней гарантии солнечные панели на вашей крыше все еще могут работать примерно на 87 процентов от своей первоначальной мощности.

Кроме того, с ростом популярности солнечной энергии ожидается, что программы и компании по переработке отходов будут расти и становиться более надежными в будущем.

Узнайте больше о преимуществах солнечной энергии, загрузив нашу бесплатную электронную книгу  Все выглядит ярко: факты о солнечной энергии или просмотрев Знание – сила , наше сотрудничество с HGTV’s Property Brothers соведущий и защитник солнечной энергии Джонатан Скотт.

В электронной книге рассказывается о невероятных преимуществах солнечной энергии и обманчивой тактике, которую используют предприятия, работающие на ископаемом топливе, чтобы защитить свою прибыль за счет каждого человека на планете.

Как делают солнечные панели?

Производство кристаллических солнечных модулей

Солнечный фотоэлектрический модуль состоит из солнечных элементов, стекла, EVA, заднего листа и рамы. Узнайте больше о компонентах и ​​процессе изготовления солнечной панели.

На рынке доступны солнечные панели 3 типов:

  • монокристаллические солнечные панели

  • поликристаллические солнечные панели

  • тонкопленочные солнечные панели

Таким образом, на уровне клеточной структуры существуют различные типы материалов для производства, такие как монокремний, поликремний или аморфный кремний (AnSi). Первые 2 вида ячеек имеют схожий производственный процесс. Читайте ниже об этапах производства кристаллической солнечной панели.

Шаг 1: Песок

Все начинается с сырья, которым в нашем случае является песок. Большинство солнечных панелей сделаны из кремния, который является основным компонентом природного пляжного песка.

Кремний широко доступен, что делает его вторым наиболее доступным элементом на Земле.

Однако преобразование песка в высококачественный кремний требует больших затрат и является энергоемким процессом. Кремний высокой чистоты получают из кварцевого песка в дуговой печи при очень высоких температурах.

Этап 2: Слитки

Кремний собирают, как правило, в виде твердых пород. Сотни этих пород сплавляются вместе при очень высоких температурах, чтобы сформировать слитки в форме цилиндра. Для достижения желаемой формы используется стальная цилиндрическая печь.

В процессе плавления внимание уделяется тому, чтобы все атомы были идеально выровнены в желаемой структуре и ориентации. В процесс добавляется бор, который придает силикону положительную электрическую полярность.

Монокристаллические элементы изготавливаются из монокристалла кремния. Монокремний имеет более высокую эффективность преобразования солнечной энергии в электричество, поэтому цена монокристаллических панелей выше.

Полисиликоновые элементы изготавливаются путем сплавления нескольких кристаллов кремния. Вы можете узнать их по виду разбитого стекла, придаваемому различными кристаллами кремния. После остывания слитка производят шлифовку и полировку, оставляя слиток с плоскими сторонами.

Этап 3: Вафли

Вафли представляют собой следующий этап производственного процесса.

Слиток кремния нарезается на тонкие диски, также называемые пластинами. Канатная пила используется для точной резки. Тонкость пластины аналогична толщине листа бумаги.

Поскольку чистый кремний блестящий, он может отражать солнечный свет. Чтобы уменьшить количество потерянного солнечного света, на кремниевую пластину наносится антибликовое покрытие.

Этап 4: Солнечные элементы

Следующие процессы преобразуют пластину в солнечный элемент, способный преобразовывать солнечную энергию в электричество.

Каждая из пластин обрабатывается, и на каждую поверхность добавляются металлические проводники. Проводники придают пластине сеткообразную матрицу на поверхности. Это обеспечит преобразование солнечной энергии в электрическую. Покрытие будет способствовать поглощению солнечного света, а не его отражению.

В камере, похожей на печь, фосфор распыляется тонким слоем по поверхности пластин. Это зарядит поверхность отрицательной электрической ориентацией. Комбинация бора и фосфора создаст положительно-отрицательное соединение, что имеет решающее значение для правильного функционирования фотоэлектрической ячейки.

Шаг 5: От солнечной батареи к солнечной панели

Солнечные батареи спаяны вместе с помощью металлических соединителей для соединения ячеек. Солнечные панели состоят из солнечных элементов, объединенных в матричную структуру.

Текущие стандартные предложения на рынке:

  • Панели с 48 ячейками – подходят для небольших жилых крыш.

  • 60-ячеечные панели — это стандартный размер.

  • Панели с 72 ячейками – используются для крупномасштабных установок.

Самой распространенной системой в пересчете на кВт·ч для домов в Великобритании является солнечная система мощностью 4 кВт·ч.

После сборки ячеек на лицевую сторону, обращенную к солнцу, наносится тонкий слой (около 6-7 мм) стекла. Задний лист изготовлен из высокопрочного материала на полимерной основе. Это предотвратит попадание воды, почвы и других материалов на панель сзади. Впоследствии добавляется соединительная коробка, чтобы обеспечить соединения внутри модуля.

Все собирается вместе после сборки рамы. Рама также обеспечит защиту от ударов и непогоды. Использование рамы также позволяет монтировать панель различными способами, например, с помощью монтажных зажимов.

ЭВА (этиленвинилацетат) — это клей, который соединяет все вместе. Очень важно, чтобы качество герметика было высоким, чтобы он не повреждал клетки в суровых погодных условиях.

Шаг 6. Тестирование модулей

Когда модуль готов, проводится тестирование, чтобы убедиться, что ячейки работают должным образом. STC (стандартные условия испытаний) используются в качестве ориентира. Панель помещается в флэш-тестер на заводе-изготовителе. Тестер выдает излучение, эквивалентное 1000 Вт/м2, температуру ячейки 25°C и массу воздуха 1,5 г. Электрические параметры записываются, и вы можете найти эти результаты в листе технических характеристик каждой панели. Рейтинги покажут выходную мощность, эффективность, напряжение, ток, устойчивость к ударам и температуре.

Помимо STC, каждый производитель использует NOCT (номинальная рабочая температура ячейки). Используемые параметры более близки к реальному сценарию: рабочая температура модуля с открытым контуром при освещенности 800 Вт/м2, температура окружающей среды 20°C, скорость ветра 1 м/с. Опять же, рейтинги NOCT можно найти в листе технических характеристик.

Очистка и осмотр являются последними этапами производства перед тем, как модуль будет готов к отправке в дома или на предприятия.

Исследования и разработки в области солнечной энергетики направлены на снижение стоимости солнечных панелей и повышение эффективности. Индустрия производства солнечных панелей становится все более конкурентоспособной и, по прогнозам, станет более популярной, чем традиционные источники энергии, такие как ископаемое топливо.

Солнечные панели из чего делают: Из чего делают солнечные батареи различных поколений панелей