Eng Ru
Отправить письмо

Мощный двигатель Стирлинга своими руками. Стирлинг технология


Конструкци двигателей Стирлинга

Двигатель Стирлинга сегодня

Двигатель, предложенный самим Робертом Стирлингом, имел значительные массо-габаритные характеристики и низкий КПД. Из-за сложности процессов в таком двигателе, связанных с непрерывным движением поршней, первый упрощенный математический аппарат разработан только в 1871 году пражским профессором Г. Шмидтом. Предложенный им метод расчета основывался на идеальной модели цикла Стирлинга и позволял создавать двигатели с КПД не превышающем 15%. Лишь к 1953 году голландской фирмой «Филипс» разработаны первые высокоэффективные двигатели Стирлинга, превосходящие по характеристикам двигатели внутреннего сгорания.

Мировой интерес к этому типу двигателей с того времени продвинулся из области теоретических построений в плоскость практической реализации в самых разных сферах. За рубежом уже начато производство двигателей Стирлинга, технические характеристики которых уже сейчас превосходят ДВС и газотурбинные установки. Так, двигатели Стирлинга фирм Philips, STM Inc., Daimler Benz, Solo, United Stirling мощностью от 5 до 1 200 кВт имеют эффективный КПД более 42 %, ресурс - более 40 тыс. ч, удельную массу - от 1,2 до 3,8 кг/кВт.

В США стартовал проект создания солнечной электростанции с использованием двигателя Стирлинга в качестве прямого преобразователя теповой энергии в механическую. На фото Чак Андрака (Chuck Andraka, слева) и глава Stirling Energy Systems Боб Лиден (Bob Liden) на фоне первой установки в испытательном центре Сандия (фото с сайта sandia.gov). Теоретически КПД Стирлинга может совпадать с физическим пределом, определяемым разностью температур нагревателя и холодильника, да и на практике можно получить от стирлингов КПД порядка 70%. По расчётам авторов проекта, в теории одна ферма солнечных стирлингов, под которую отвели бы территорию 160 х 160 километров на юге США, полностью покрыла бы всю потребность страны в электроэнергии. На сегодняшний день прототипы успешно проходят испытания, но стоимость каждого еще слишком высока (более 150 тысяч долларов США), что тормозит массовое внедрение.

Подобными разработками интересуются и в Швеции. На сайте компании "Cleanergy" вниманию посетителей представлен новый концепт солнечной миниэлектростанции для получения электроэнергии. Создан как полномасштабный образец с гелиоконцентратором на подвижной с закрепленным в фокусе стирлингом, так и отдельный когенерационный агрегат для получения электроэнергии и тепла общей мощностью 9 кВт (однако, стоит отметить, что из 9 кВт только 2кВт - электроэнергия, остальные 7кВт - тепло для обогрева помещений).

Наиболее бурное развитие двигателей Стирлинга происходит в сфере военных технологий.

Быстрыми темпами создаются опытные и серийные образцы Стирлинг-установок для неатомных подводных лодок. Вот выдержка из статьи заслуженного изобретателя Российской Федерации, академика Академии военных наук, д.т.н. Кириллова Н.Г., посвященной данному вопросу:

«…наибольших результатов в разработке анаэробных установок достиг шведский концерн Kockums Submarin Systems, построивший три ПЛ класса "Gotland" типа А19 на основе двигателей Стирлинга. На ПЛ устанавливается два двигателя V4-275R по мщностью по 75 кВт. Три подводные лодки типа «Gotland» были построены фирмой Kokums в 1992 – 1996 годах. Длина субмарин – 60,4 метра, подводное водоизмещение – 1599 тонн. Экипаж – 27 человек, в том числе 5 офицеров. Вооружение: 4 Х 533-мм и 2 Х 400-мм торпедных аппарата. Скорость полного подводного хода – 20 узлов. При использовании двигателя Стирлинга лодки могут находиться под водой без подзарядки аккумуляторных батарей до 20 суток!

Самый многообещающий проект шведов связан с перспективной подводной лодкой «Викинг». Это название выбрано не случайно. В реализации проекта должны участвовать еще две скандинавские страны - Норвегия и Дания. «Кокумс», норвежская компания «Конгсберг» и датская «Оденсе столшипсваерфт» образовали консорциум для практической работы над проектом. Всего планировалось построить 12 субмарин нового поколения. По мнению ведущих специалистов, эта была бы лучшая подводная лодка XXI века. На ней планировалось установить единый двигатель Стирлинга большой мощности (ориентировочно 800 кВт).

Первыми, после шведов, перспективность анаэробных установок на основе двигателей Стирлинга поняли японцы… Для отработки технологии применения двигателей Стирлинга в 2000-2001 годах на кораблестроительной верфи «Кобе» фирмой «Мицубиси дзюкоге» были проведены работы по оснащению ПЛ «Асасио» энергетической установкой замкнутого цикла с двигателем Стирлинга.… Ходовые испытания прошли на «отлично». Поэтому уже с 2003 года японские ПЛ типа «Оясио» начали строиться с анаэробными установками на основе двигателей Стирлинга…

Японцы ввели новое словосочетание «стирлинг-подводные лодки»… Именно для новой ПЛ с единым двигателем фирмой “Mitsubichi” создан и прошел успешные стендовые испытания двигатель Стирлинга мощностью более 600 кВт. В качестве рабочего тела двигателя используется азот.

И наконец, последними из мировых держав, окончательный выбор по типу анаэробной установки сделали американцы. Их решение однозначное – двигатели Стирлинга.

Для этого в 2005 году ВМС США взяли в лизинг шведскую подводную лодку типа «Gotland», оснащенную вспомогательной воздухонезависимой установкой Стирлинга...»

Как можно видеть все развитые страны ударными темпами разрабатывают и внедряют Стирлинги в серийное производство. И не удивительно, при сопоставимой с ДВС мощности Стирлинг-двигатели имеют высокий крутящий момент почти на всех режимах работы, малошумны, «всеядны» в плане топлива и могут работать в любых условиях.

Специалистами NASA (Национального Аэрокосмического Агентства США) были проделаны предварительные проработки проекта создания обитаемой базы на Луне. В качестве основного источника энергии для работы в условиях лунной поверхности был выбран атомный реактор SP-100 с тепловой мощностью 2500 кВт и 8 электрических генераторов, работающих от двигателей Стирлинга. В проекте приводится подробное техническое описание реакторной установки, конструкции и теплового подсоединения двигателей Стирлинга, систем отвода тепла и распределения мощности.

К Стирлингам интерес проявляли и в России. В 1996 году на ОАО “Машиностроительный завод “АРСЕНАЛ”, в рамках договора с ГП ГОКБ “Прожектор” были начаты работы по теме “Исследование и разработка электроагрегатов на базе многотопливных двигателей Стирлинга”. Но, к сожалению, работы в данном направлении были приостановлены из-за отсутствия дальнейшего финансирования проекта.

В настоящее время в России накоплен достаточный научный потенциал для создания высокоэффективных двигателей Стирлинга. Значительные результаты были достигнуты в ООО «Инновационно-исследовательский центр «Стирлинг-технологии». Специалистами были проведены теоретико-экспериментальные исследования для разработки новых методов расчета высокоэффективных двигателей Стирлинга. Основные направления работ связаны с применением двигателей Стирлинга в когенерационных установках и системах использования теплоты отработанных газов, например в мини-ТЭЦ. В результате были созданы методики разработки и опытные образцы двигателей мощностью 3 кВт.

Не менее мощное развитие получили Стирлинг-машины в области криогенной техники. Поскольку Стирлинги обратимы, на их базе создано множество холодильных машин без фреона – газа, используемого в обычных холодильных комперссорах. Данное преимущество позволило уменьшить габариты системы охлаждения и повысить ее производительность.

 

 

Холодильные машины, работающие по обратному циклу Стирлинга, наиболее эффективны в диапазоне криогенных температур (очень низкие температуры), в более высоком диапазоне температур (низкие температуры, используемые в промышленности и в быту) в настоящее время главным образом работают фреоновые парокомпрессионные холодильные машины.

Криогенные стирлинг -машины находят все большее применение в радиоэлектронных системах, где требуется мощное охлаждение, но отсутствуют условия для применения стандартных способов охлаждения (например термопарами). Некоторые фирмы, в том числе такие, как «Малакер и Хьюз эйркрафт», США (Malakar Labs Inc., Hughes Aircraft Co.) выпускают для продажи небольшие (или даже миниатюрные) криогенные машины. Эти компании совместно с Северо-Американским отделением фирмы Филипс (North American Philips Inc.), специализирующиеся на производстве миниатюрных охладителей, считают своей основной целью производство небольших криогенных машин для электронной промышленности, где они используются в основном для мощного охлаждения инфракрасных детекторов, применяемых в различных военных и гражданских целях.

Цикл Стирлинга

В двигателях внутреннего сгорания (ДВС) распыленное топливо соединяется с окислителем, как правило воздухом, до фазы сжатия или после этой фазы, и образовавшаяся горючая смесь отдает свою энергию во время кратковременной фазы горения.

В двигателе Стирлинга энергия поступает в двигатель и отводится от него через стенки цилиндра или теплообменник. Еще одним существенным различием между двигателем внутреннего сгорания и двигателем Стирлинга является отсутствие в последнем клапанов, поскольку рабочее тело (газ) постоянно находится в полостях двигателя.

Цикл Стирлинга основан на последовательном нагревании и охлаждении газа (его называют рабочим телом) в замкнутом объеме. Рабочее тело нагревается в горячей части двигателя, расширяется и производит полезную работу, после чего перегоняется в холодную часть двигателя где охлаждается, сжимается и снова подается в горячую часть двигателя. Цикл повторяется. Количество рабочего тела остается неизменным, меняется его температура, давление и объем. Весь цикл условно разделен на четыре такта. Условность заключается в том, что четкоге разделение на такты в цикле отсутствует, процессы переходят один в другой. Это обусловлено отсутствием в конструкции двигателей Стирлинга клапанного механизма (стирлинг-двигатели с клаппаным механизмом называются двигателями Эриксона). С одной стороны данный факт резко упрощает конструкцию, с другой стороны вносит сложность в теорию расчета. Но об этом позже.

Рассмотрим принцип работы на примере гама-стирлинга. Этот тип наиболее часто применяют в моделировании. Двигатель состоит из двух цилиндров. Большой цилиндр - теплообменный. Его задача поочередно разогревать и охлаждать рабочее тело. Для этого один торец цилиндра разогревают (на схеме он закрашен розовым цветом), другой торец - охлаждают (на схеме он закрашен синим цветом). Большой поршень выполненный из теплоизоляционного материала, свободно перемещается в теплообменном цилиндре (зазор между стенками цилиндра и поршня составляет 1-2 мм) и выполняет роль теплового клапана, пегегоняющего рабочее тело то к холодному, то к горячему торцу.

Малый цилиндр является рабочим. Поршень плотно подогнан к цилиндру.

Гамма стирлинг. Первый такт

Первый такт - такт сжатия при постоянной температуре рабочего тела:

Поршень теплообменного цилиндра находится вблизи нижней мертвой точки (НМТ) и остается условно неподвижным. Газ сжимается рабочим поршнем малого цилиндра. Давление газа возрастает, а температура остается постоянной, так как теплота сжатия отводится через холодный торец теплообменного цилиндра в окружающую среду.

Под условной неподвижностью подразумевают малую высоту перемещения поршня при прохождении коленвалом расстояния вблизи верхней или нижней мертвой точки.

 

Гамма стирлинг. Второй такт

Второй такт – такт нагревания при постоянном объеме:

рабочий поршень рабочего цилиндра находится вблизи НМТ и полностью перемещает холодный сжатый газ в теплообменный цилиндр, поршень которого движется к верхней мертвой точки (ВМТ) и вытесняет газ в горячую полость. Так как при этом суммарный внутренний объем цилиндров двигателя остается постоянным, рабочее тело разогревается давление повышается и достигает максимального значения.

Это в теории. На практике прирост давления идет паралельно с выталкиванием рабочего поршня. В результате давление не достигает теоретически расчитанного максимума. Данный факт также объясняет хороший к.п.д. на малых оборотах двигателя. Рабочее тело прогревается лучше и прирост давления приближается к максимуму.

Гамма стирлинг. Третий такт

Третий такт - такт расширения при постоянной температуре газа:

поршень теплообменного цилиндра находится вблизи верхней мертвой точки (ВМТ) и остается условно неподвижным. Поршень рабочего цилиндра под действием давления газа движется к верхней мертвой точке. Происходит расширение горячего газа в полости рабочего цилиндра. Полезная работа, совершаемая поршнем рабочего цилиндра , через кривошипно-шатунный механизм передается на вал двигателя. Давление в цилиндрах двигателя при этом падает, а температура газа в горячей полости остается постоянной, так как к нему подводится тепло от источника тепла через горячую стенку цилиндра.

В моделях двигателей Стирлинга, где теплообменный цилиндр не имеет качественного нагревателя рабочее тело разогревается не полностью, но поскольку давление в газах распространяется равномерно во все стороны его изменение оказывает действие и на рабочий поршень, заставляя его двигаться и совершать работу.

 

Плюсы стирлингов

- КПД двигателя Стирлинга может достигать 65-70% КПД от цикла Карно при современном уровне проектирования и технологии изготовления. Кроме того крутящий момент двигателя почти не зависит от скорости вращения коленвала. В двигателях внутреннего сгорания напротив максимальный крутящий момент достигается в узком диапазоне частот вращения.

- В конструкции двигателя отсутствует система высоковольтного зажигания, клапанная система и, соответственно, распредвал. Грамотно спроектированный и технологично изготовленный двигатель Стирлинга не требует регулировки и настройки в процессе всего срока эксплуатации.

- В ДВС сгорание томливо-воздушной смеси в цилиндре двигателя является, по сути, взрывом со скоростью распространения взрывной волны 5-7 км/сек. Этот процесс дает чудовищные пиковые нагрузки на шатуны, коленчатый вал и подшипники. Стирлинги лишены этого недостатка.

- Двигатель не будет "капризничать" из-за потери искры, засорившегося карбюратора или низкого заряда аккумулятора, поскольку не имеет этих агрегатов. Понятие "двигатель заглох" не имеет смысла для Стирлингов. Стирлинг может остановиться, если нагрузка превышает расчетную. Повторно запуск осуществляется однократным проворотом маховика коленчатого вала.

-Простота конструкции позволяет длительно эксплуатировать Стирлинг в автономном режиме.

- Двигатель Стирлинга может использовать любой источник тепловой энергии, начиная с дров и заканчивая ядерным топливом!

- Сгорание топлива происходит вне внутреннего объема двигателя (в отличии от ДВС), что позволяет обеспечить равномерное горение топлива и полное его дожигание (т.е. отбор максимума содержащейся в топливе энергии и минимизация выброса токсичных компонентов).

- Бесшумность двигателя — стирлинг не имеет выхлопа, а значит — не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

- «Всеядность» двигателя — как все двигатели внешнего сгорания (вернее — внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

 

Минусы стирлингов

- Поскольку сгорание топлива происходит вне двигателя, а отвод тепла осуществляется через стенки радиатора (напомним, что Стирлинги имеют замкнутый объем) габариты двигателя увеличиваются.

- Еще один минус - материалоемкость. Для производства компактных и мощных Стирлинг-машин требуются жаропрочные стали, выдерживающие высокое рабочее давление и в то же время, обладающие низкой теплопроводностью. Обычная смазка для Стирлингов не годится - коксуется при высокой температуре, по этому необходимы материалы с низким коэффициентом трения.

- Для получения высокой удельной мощности в качестве рабочего тела в Стирлингах используют водород или гелий. Водород взрывоопасен, при высоких температурах растворяется в металлах, образуя металлогидриды - т.е. разрушает цилиндры двигателя. К тому же водород, как и гелий обладает высокой проникающей способностью и просачивается через уплотнения подвижных частей двигателя, снижая рабочее давление.

 

 

Применение

Насосы

Эффективность систем отопления или охлаждения возрастает, если в контуре установлен насос принудительной подачи теплоносителя. Установка электрического насоса снижает живучесть системы, а в быту неприятно тем, что электросчётчик «накручивает» хоть и небольшую, но ощутимую сумму. Насос, использующий принцип двигателя Стирлинга, решает эту проблему.

Стирлинг для перекачки жидкостей может быть гораздо проще привычной схемы «двигатель-насос». В двигателе Стирлинга вместо рабочего поршня может использоваться перекачиваемая жидкость, которая одновременно служит для охлаждения рабочего тела.

Насос на основе стирлинга может служить для накачки воды в ирригационные каналы посредством солнечного тепла, для подачи горячей воды от солнечного коллектора в дом (в системах отопления теплоаккумулятор стараются установить как можно ниже, чтобы вода шла в радиаторы самотёком).

Стирлинг-насос может использоваться для перекачки химических реагентов, поскольку абсолютно герметичен.

Тепловые насосы

Тепловые насосы позволяют существенно экономить на отоплении. Обычно используются теплонасосы, приводимые в движение электричеством. Но электричество в ряде стран производится на теплоэлектростанциях, сжигающих газ, уголь, мазут, и в результате калория, полученная на таком теплонасосе оказывается не дешевле, чем полученная от сжигания газа. Агрегат, в котором совмещены двигатель Стирлинга и тепловой насос Стирлинга, делает ситуацию более благоприятной. Двигатель Стирлинга отдаёт в систему отопления бросовое тепло от «холодного» цилиндра, а полученная механическая энергия используется для подкачки дополнительных порций тепла, которое забирается из окружающей среды. Гибридный теплонасос «стирлинг-стирлинг» оказывается проще, чем композиция из двух стирлинг-машин. В агрегате совершенно отсутствуют рабочие поршни. Перепады давления, возникающие в двигателе,

непосредственно используются для перекачки тепла тепловым насосом. Внутреннее пространство агрегата герметично и позволяет использовать рабочее тело под очень высоким давлением.

Расчёты показывают, что в идеале тепловой насос «стирлинг-стирлинг» на каждую калорию сожжённого газа может добавить ещё от 3 до 10 калорий из окружающей среды. На практике эта величина оказывается меньше. Опыты по использованию таких устройств были прекращены.

Холодильная техника

Практически, все холодильники используют те же тепловые насосы. Применительно к системам охлаждения их судьба оказалась более счастливой. Ряд производителей бытовых холодильников собирается установить на свои модели стирлинги. Они будут обладать большей экономичностью, а в качестве рабочего тела будут использовать обычный воздух.

Сверхнизкие температуры

Стирлинги оказались эффективны для сжижения газов. Если не требуется огромных объёмов, то стирлинги выгоднее, чем турбинные установки.

Стирлинги выгодно применять для охлаждения датчиков в сверхточных приборах.

Подводные лодки

Преимущества стирлинга привели к тому, что ещё в первой половине 1960-х годов военно-морские справочники указывали на возможность установки на подводных лодках типа «Шёурмен» производства Швеции воздухонезависимых двигателей Стирлинга. Однако ни «Шёурмены», ни последовавшие за ними «Наккены» и «Вестеръётланды» указанные силовые установки так и не получили. И только в 1988 году головная субмарина типа «Наккен» была переоборудована под двигатели Стирлинга. С ними она прошла под водой более 10 000 часов. Другими словами, именно шведы открыли в подводном кораблестроении эру вспомогательных анаэробных двигательных установок. И если «Наккен» — первый опытный корабль этого подкласса, то субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка.

Аккумуляторы энергии

Можно запасать с его помощью энергию, используя в качестве источника тепла теплоаккумуляторы на расплавах солей. Такие аккумуляторы превосходят по запасу энергии химические аккумуляторы и дешевле их. Используя для регулировки мощности изменение фазного угла между поршнями, можно аккумулировать механическую энергию, тормозя двигателем. В этом случае двигатель превращается в тепловой насос.

Солнечные электростанции

Список литературы

 

1. “Двигатель с внешним подводом теплоты” Заявка №99110725 от 31 мая 1999 г., РФ

2. “Двигатель с внешним подводом теплоты”. Патент №2105156 от 23 июня 1995 г., РФ

3. Двигатели Стирлинга. Пер. с англ. Под ред. В.М.Бродянского. М.: Мир, 1975.

4. Ридер Г., Хупер Ч. Двигатели Стирлинга: Пер. с англ. – М.: Мир, 1986.

5. Уокер Г. Двигатели Стирлинга: Пер. с англ. – М.: Машиностроение, 1985.

6. Walker, G. (1973) Stirling-Cycle Machines, Oxford University Press

7. Personal communication from J. Alfred, NASA Johnson Space Center.

Двигатель Стирлинга сегодня

Двигатель, предложенный самим Робертом Стирлингом, имел значительные массо-габаритные характеристики и низкий КПД. Из-за сложности процессов в таком двигателе, связанных с непрерывным движением поршней, первый упрощенный математический аппарат разработан только в 1871 году пражским профессором Г. Шмидтом. Предложенный им метод расчета основывался на идеальной модели цикла Стирлинга и позволял создавать двигатели с КПД не превышающем 15%. Лишь к 1953 году голландской фирмой «Филипс» разработаны первые высокоэффективные двигатели Стирлинга, превосходящие по характеристикам двигатели внутреннего сгорания.

Мировой интерес к этому типу двигателей с того времени продвинулся из области теоретических построений в плоскость практической реализации в самых разных сферах. За рубежом уже начато производство двигателей Стирлинга, технические характеристики которых уже сейчас превосходят ДВС и газотурбинные установки. Так, двигатели Стирлинга фирм Philips, STM Inc., Daimler Benz, Solo, United Stirling мощностью от 5 до 1 200 кВт имеют эффективный КПД более 42 %, ресурс - более 40 тыс. ч, удельную массу - от 1,2 до 3,8 кг/кВт.

В США стартовал проект создания солнечной электростанции с использованием двигателя Стирлинга в качестве прямого преобразователя теповой энергии в механическую. На фото Чак Андрака (Chuck Andraka, слева) и глава Stirling Energy Systems Боб Лиден (Bob Liden) на фоне первой установки в испытательном центре Сандия (фото с сайта sandia.gov). Теоретически КПД Стирлинга может совпадать с физическим пределом, определяемым разностью температур нагревателя и холодильника, да и на практике можно получить от стирлингов КПД порядка 70%. По расчётам авторов проекта, в теории одна ферма солнечных стирлингов, под которую отвели бы территорию 160 х 160 километров на юге США, полностью покрыла бы всю потребность страны в электроэнергии. На сегодняшний день прототипы успешно проходят испытания, но стоимость каждого еще слишком высока (более 150 тысяч долларов США), что тормозит массовое внедрение.

Подобными разработками интересуются и в Швеции. На сайте компании "Cleanergy" вниманию посетителей представлен новый концепт солнечной миниэлектростанции для получения электроэнергии. Создан как полномасштабный образец с гелиоконцентратором на подвижной с закрепленным в фокусе стирлингом, так и отдельный когенерационный агрегат для получения электроэнергии и тепла общей мощностью 9 кВт (однако, стоит отметить, что из 9 кВт только 2кВт - электроэнергия, остальные 7кВт - тепло для обогрева помещений).

Наиболее бурное развитие двигателей Стирлинга происходит в сфере военных технологий.

Быстрыми темпами создаются опытные и серийные образцы Стирлинг-установок для неатомных подводных лодок. Вот выдержка из статьи заслуженного изобретателя Российской Федерации, академика Академии военных наук, д.т.н. Кириллова Н.Г., посвященной данному вопросу:

«…наибольших результатов в разработке анаэробных установок достиг шведский концерн Kockums Submarin Systems, построивший три ПЛ класса "Gotland" типа А19 на основе двигателей Стирлинга. На ПЛ устанавливается два двигателя V4-275R по мщностью по 75 кВт. Три подводные лодки типа «Gotland» были построены фирмой Kokums в 1992 – 1996 годах. Длина субмарин – 60,4 метра, подводное водоизмещение – 1599 тонн. Экипаж – 27 человек, в том числе 5 офицеров. Вооружение: 4 Х 533-мм и 2 Х 400-мм торпедных аппарата. Скорость полного подводного хода – 20 узлов. При использовании двигателя Стирлинга лодки могут находиться под водой без подзарядки аккумуляторных батарей до 20 суток!

Самый многообещающий проект шведов связан с перспективной подводной лодкой «Викинг». Это название выбрано не случайно. В реализации проекта должны участвовать еще две скандинавские страны - Норвегия и Дания. «Кокумс», норвежская компания «Конгсберг» и датская «Оденсе столшипсваерфт» образовали консорциум для практической работы над проектом. Всего планировалось построить 12 субмарин нового поколения. По мнению ведущих специалистов, эта была бы лучшая подводная лодка XXI века. На ней планировалось установить единый двигатель Стирлинга большой мощности (ориентировочно 800 кВт).

Первыми, после шведов, перспективность анаэробных установок на основе двигателей Стирлинга поняли японцы… Для отработки технологии применения двигателей Стирлинга в 2000-2001 годах на кораблестроительной верфи «Кобе» фирмой «Мицубиси дзюкоге» были проведены работы по оснащению ПЛ «Асасио» энергетической установкой замкнутого цикла с двигателем Стирлинга.… Ходовые испытания прошли на «отлично». Поэтому уже с 2003 года японские ПЛ типа «Оясио» начали строиться с анаэробными установками на основе двигателей Стирлинга…

Японцы ввели новое словосочетание «стирлинг-подводные лодки»… Именно для новой ПЛ с единым двигателем фирмой “Mitsubichi” создан и прошел успешные стендовые испытания двигатель Стирлинга мощностью более 600 кВт. В качестве рабочего тела двигателя используется азот.

И наконец, последними из мировых держав, окончательный выбор по типу анаэробной установки сделали американцы. Их решение однозначное – двигатели Стирлинга.

Для этого в 2005 году ВМС США взяли в лизинг шведскую подводную лодку типа «Gotland», оснащенную вспомогательной воздухонезависимой установкой Стирлинга...»

Как можно видеть все развитые страны ударными темпами разрабатывают и внедряют Стирлинги в серийное производство. И не удивительно, при сопоставимой с ДВС мощности Стирлинг-двигатели имеют высокий крутящий момент почти на всех режимах работы, малошумны, «всеядны» в плане топлива и могут работать в любых условиях.

Специалистами NASA (Национального Аэрокосмического Агентства США) были проделаны предварительные проработки проекта создания обитаемой базы на Луне. В качестве основного источника энергии для работы в условиях лунной поверхности был выбран атомный реактор SP-100 с тепловой мощностью 2500 кВт и 8 электрических генераторов, работающих от двигателей Стирлинга. В проекте приводится подробное техническое описание реакторной установки, конструкции и теплового подсоединения двигателей Стирлинга, систем отвода тепла и распределения мощности.

К Стирлингам интерес проявляли и в России. В 1996 году на ОАО “Машиностроительный завод “АРСЕНАЛ”, в рамках договора с ГП ГОКБ “Прожектор” были начаты работы по теме “Исследование и разработка электроагрегатов на базе многотопливных двигателей Стирлинга”. Но, к сожалению, работы в данном направлении были приостановлены из-за отсутствия дальнейшего финансирования проекта.

В настоящее время в России накоплен достаточный научный потенциал для создания высокоэффективных двигателей Стирлинга. Значительные результаты были достигнуты в ООО «Инновационно-исследовательский центр «Стирлинг-технологии». Специалистами были проведены теоретико-экспериментальные исследования для разработки новых методов расчета высокоэффективных двигателей Стирлинга. Основные направления работ связаны с применением двигателей Стирлинга в когенерационных установках и системах использования теплоты отработанных газов, например в мини-ТЭЦ. В результате были созданы методики разработки и опытные образцы двигателей мощностью 3 кВт.

Не менее мощное развитие получили Стирлинг-машины в области криогенной техники. Поскольку Стирлинги обратимы, на их базе создано множество холодильных машин без фреона – газа, используемого в обычных холодильных комперссорах. Данное преимущество позволило уменьшить габариты системы охлаждения и повысить ее производительность.

 

 

Холодильные машины, работающие по обратному циклу Стирлинга, наиболее эффективны в диапазоне криогенных температур (очень низкие температуры), в более высоком диапазоне температур (низкие температуры, используемые в промышленности и в быту) в настоящее время главным образом работают фреоновые парокомпрессионные холодильные машины.

Криогенные стирлинг -машины находят все большее применение в радиоэлектронных системах, где требуется мощное охлаждение, но отсутствуют условия для применения стандартных способов охлаждения (например термопарами). Некоторые фирмы, в том числе такие, как «Малакер и Хьюз эйркрафт», США (Malakar Labs Inc., Hughes Aircraft Co.) выпускают для продажи небольшие (или даже миниатюрные) криогенные машины. Эти компании совместно с Северо-Американским отделением фирмы Филипс (North American Philips Inc.), специализирующиеся на производстве миниатюрных охладителей, считают своей основной целью производство небольших криогенных машин для электронной промышленности, где они используются в основном для мощного охлаждения инфракрасных детекторов, применяемых в различных военных и гражданских целях.

Конструкци двигателей Стирлинга

В процессе истории развития стирлинг машин появилось множество конструкций и модификаций двигателей Стирлинга. Во всех машинах Стирлинга имеются две полости, находящиеся при разных температурных уровнях и соединяющиеся посредством регенератора. Эти узлы можно компановать в множество различных систем. Единственный критерий, устанавливающий их характерную особенность - управление потоком рабочего тела. Все стирлинг-машины, имеющие для этой цели клапана называются стирлинг-машинами Эриксона (в рамках данного сайта они не рассматриваются). Двигатели, не имеющие клапанов и управляющие рабочим телом посредством изменения его теппературы и объема можно назвать истинными Стирлингами.

Мы кратко пройдемся по упрощенной классификации, рассмотрев альфа-тип, бета-тип и гамма-тип, а также рассмотрим нестандартные типы стирлинг-машин.



infopedia.su

СТИРЛИНГИ | МОДЕЛИСТ-КОНСТРУКТОР

Из прошлого — в будущее! В 1817 году шотландский священник Роберт Стирлинг получил… патент на новый тип двигателя, названный впоследствии, подобно моторам Дизеля, именем изобретателя — стирлинг. Прихожане маленького шотландского местечка уже давно и с явным подозрением косились на своего духовного пастыря. Еще бы! Шипение и грохот, проникавшие через стены сарая, где частенько пропадал отец Стирлинг, могли смутить не только их богобоязненные умы. Ходили упорные слухи, что в сарае содержится страшный дракон, которого святой отец приручил и вскармливает летучими мышами и керосином.

Но Роберта Стирлинга, одного из просвещеннейших людей Шотландии, не смущала неприязнь паствы. Мирские дела и заботы все больше и больше занимали его, в ущерб служению господу: увлекали пастора… машины.

Британские острова в тот период переживают промышленную революцию: стремительно развиваются мануфактуры. И служители культа не остаются равнодушными к громадным доходам, которые сулит новый способ производства.

С благословения церкви и не без помощи фабрикантов несколько машин Стирлинга были построены, и лучшая из них, в 45 л. с., три года проработала на шахте в Дунди.

Дальнейшее развитие Стирлингов задержалось: в 60-х годах прошлого столетия на арену вышел новый двигатель Эриксона.

В обеих конструкциях было много общего. Это были двигатели внешнего сгорания. И в той и в другой машине рабочим телом был воздух, и в той и в другой основой двигателя являлся регенератор, проходя через который отработанный горячий воздух отдавал все тепло. Свежая же порция воздуха, просачиваясь через плотную металлическую сетку, отбирала это тепло, перед тем как попасть в рабочий цилиндр.

По схеме на рисунке 1 можно проследить, как воздух через всасывающую трубу 10 и клапан 4 попадает в компрессор 3, сжимается и через клапан 5 выходит в промежуточный резервуар. В это время золотник 8 перекрывает выхлопную трубу 9, и воздух через регенератор попадает в рабочий цилиндр 1, нагреваемый топкой 11. Здесь воздух расширяется, совершая полезную работу, которая частично направлена на поднимаемый тяжелый поршень, частично — на сжатие холодного воздуха в компрессоре 3. Опускаясь, поршень выталкивает отработанный воздух через регенератор 7 и золотник 8 в выхлопную трубу. При опускании поршня в компрессор засасывается свежая порция воздуха.

Рис. 1. Схема двигателя внешнего сгорания (Эриксона):

modelist-konstruktor.com

СТИРЛИНГ ПО-РОССИЙСКИ | Наука и жизнь

Ограниченные запасы углеводородного топлива и высокие цены на него заставляют инженеров искать замену двигателям внутреннего сгорания. Российский изобретатель предлагает простую конструкцию двигателя с внешним подводом теплоты, который рассчитан на любой вид топлива, даже на нагрев солнечными лучами. Создатель проекта двигателя Виталий Максимович Нисковских - конструктор, широко известный специалистам-металлургам не только в нашей стране, но и за рубежом. Он автор более 200 изобретений в области оборудования по разливке стали, один из основателей отечественной школы проектирования машин непрерывного литья криволинейных заготовок (МНЛЗ). Сегодня 36 таких машин, изготовленных под руководством В. М. Нисковских на Уралмаше, работают на металлургических комбинатах России, а также в Болгарии, Македонии, Пакистане, Словакии, Финляндии, Японии. Роторный двигатель внешнего сгорания состоит из двух цилиндров, соединенных двумя ветками трубопроводов - высокого и низкого давления (для наглядности роторы разнесены, хотя в действительности они находятся на одном валу).

В 1816 году шотландец Роберт Стирлинг изобрел двигатель с внешним подводом теплоты. Широкого распространения изобретение в то время не получило - слишком сложной была конструкция по сравнению с паровой машиной и появившимися позже двигателями внутреннего сгорания (ДВС).

Однако в наши дни вновь возник острый интерес к двигателям Стирлинга. Постоянно появляется информация о новых разработках и попытках наладить их массовое производство. Например, на голландской фирме "Филипс" построили несколько модификаций двигателя Стирлинга для большегрузных автомобилей. Двигатели внешнего сгорания ставят на судах, на небольших электростанциях и ТЭЦ, а в перспективе собираются оснащать ими космические станции (там их предполагают использовать для привода электрогенераторов, поскольку двигатели способны работать даже на орбите Плутона).

Двигатели Стирлинга имеют высокий кпд, могут работать с любым источником теплоты, бесшумны, в них не расходуется рабочее тело, в качестве которого обычно применяют водород или гелий. Двигатель Стирлинга мог бы успешно использоваться на атомных подводных лодках.

В цилиндры работающего двигателя внутреннего сгорания вместе с воздухом обязательно заносятся частицы пыли, вызывающие износ трущихся поверхностей. В двигателях с внешним подводом теплоты такое исключено, поскольку они абсолютно герметичны. Кроме того, смазка не окисляется и требует замены значительно реже, чем в ДВС.

Двигатель Стирлинга, если его использовать как механизм с внешним приводом, превращается в холодильный агрегат. В 1944 году в Голландии образец такого двигателя раскрутили с помощью электромотора, и температура головки цилиндра вскоре понизилась до -190°С. Подобные устройства успешно используют для сжижения газов.

И все же сложность системы кривошипов и рычагов в поршневых двигателях Стирлинга ограничивает их применение.

Проблему можно решить, заменив поршни роторами. Основная идея изобретения состоит в том, что на общем валу установлены два рабочих цилиндра разной длины с эксцентриковыми роторами и подпружиненными разделительными пластинами. Полость нагнетания (условно - сжатия) малого цилиндра соединена с полостью расширения большого цилиндра через канавки в разделительных пластинах, трубопровод, теплообменник-регенератор и нагреватель, а полость расширения малого цилиндра - с полостью нагнетания большого цилиндра через регенератор и холодильник.

Двигатель работает следующим образом. В каждый момент времени из малого цилиндра в ветвь высокого давления поступает некоторый объем газа. Чтобы заполнить полость нагнетания большого цилиндра и при этом сохранить давление, газ нагревают в регенераторе и нагревателе; его объем увеличивается, и давление остается постоянным. То же, но "с обратным знаком" происходит в ветви низкого давления.

Из-за разницы в площадях поверхности роторов возникает результирующая сила F=∆p(Sб-S м), где ∆p - разность давлений в ветвях высокого и низкого давлений; Sб - рабочая площадь большого ротора; Sм - рабочая площадь малого ротора. Эта сила вращает вал с роторами, и рабочее тело непрерывно циркулирует, последовательно проходя через всю систему. Полезный рабочий объем двигателя равен разности объемов двух цилиндров.

См. в номере на ту же тему

А. ДУБРОВСКИЙ - Классический четырехтактный…

www.nkj.ru

Мощный двигатель Стирлинга своими руками :: SYL.ru

Двигатель Стирлинга, некогда известный, был надолго забыт из-за широкого распространения другого мотора (внутреннего сгорания). Но сегодня о нем слышно все больше. Может быть, у него есть шансы стать более популярным и найти свое место в новой модификации в современном мире?

История

Двигатель Стирлинга — это тепловая машина, которая была изобретена в начале девятнадцатого века. Автором, как понятно, был некий Стирлинг по имени Роберт, священник из Шотландии. Устройство представляет собой двигатель внешнего сгорания, где тело движется в замкнутой емкости, постоянно меняя свою температуру.

Из-за распространения другого вида мотора о нем почти забыли. Тем не менее, благодаря своим преимуществам, сегодня двигатель Стирлинга (своими руками многие любители сооружают его дома) снова возвращается.

Основное отличие от двигателя внутреннего сгорания заключается в том, что энергия тепла приходит извне, а не вырабатывается в самом двигателе, как в ДВС.

Принцип работы

Можно представить замкнутый воздушный объем, заключенный в корпусе, имеющем мембрану, то есть поршень. При нагревании корпуса воздух расширяется и совершает работу, выгибая таким образом поршень. Затем происходит охлаждение, и он вгибается снова. В этом состоит цикл работы механизма.

Немудрено, что термоакустический двигатель Стирлинга своими руками многие изготавливают в домашних условиях. Инструментов и материалов для этого требуется самый минимум, который найдется в доме у каждого. Рассмотрим два разных способа, как легко его создать.

Материалы для работы

Чтобы сделать двигатель Стирлинга своими руками, понадобятся следующие материалы:

  • жесть;
  • спица из стали;
  • трубка из латуни;
  • ножовка;
  • напильник;
  • подставка из дерева;
  • ножницы по металлу;
  • детали крепежа;
  • паяльник;
  • пайка;
  • припой;
  • станок.

Это все. Остальное - дело нехитрой техники.

Как сделать

Из жести готовят топку и два цилиндра для базы, из которых будет состоять двигатель Стирлинга, своими руками изготовленный. Размеры подбирают самостоятельно, учитывая цели, для которых предназначено это устройство. Предположим, что мотор делается для демонстрации. Тогда развертка главного цилиндра составит от двадцати до двадцати пяти сантиметров, не более. Остальные части должны подстраиваться под него.

На верху цилиндра для передвижения поршня делают два выступа и отверстия диаметром от четырех до пяти миллиметров. Элементы выступят в роли подшипников для расположения кривошипного устройства.

Далее делают рабочее тело мотора (им станет обычная вода). К цилиндру, который сворачивают в трубу, припаивают кружочки из жести. В них проделывают отверстия и вставляют трубки из латуни от двадцати пяти до тридцати пяти сантиметров в длину и диаметром от четырех до пяти миллиметров. В конце проверяют, насколько герметичной стала камера, залив ее водой.

Далее приходит черед вытеснителя. Для изготовления берут заготовку из дерева. На станке добиваются, чтобы она обрела форму правильного цилиндра. Вытеснитель должен быть немногим меньше диаметра цилиндра. Оптимальную высоту подбирают уже после того, как двигатель Стирлинга своими руками будет сделан. Потому на данном этапе длина должна предполагать некоторый запас.

Спицу превращают в шток цилиндра. По центру деревянной емкости делают отверстие, подходящее под шток, вставляют его. В верхней части штока необходимо предусмотреть место для шатунного устройства.

Затем берут трубки из меди длиной четыре с половиной сантиметра и диаметром два с половиной сантиметра. Кружок из жести припаивают к цилиндру. По бокам на стенках делают отверстие для сообщения емкости с цилиндром.

Поршень также подгоняют на токарном станке под диаметр большого цилиндра изнутри. Наверху подсоединяют шток шарнирным способом.

Сборку заканчивают и настраивают механизм. Для этого поршень вставляют в цилиндр большего размера и соединяют последний с другим цилиндром меньшего размера.

На большом цилиндре сооружают кривошипно-шатунный механизм. Фиксируют часть двигателя при помощи паяльника. Основные части закрепляют на деревянном основании.

Цилиндр наполняют водой и под низ подставляют свечку. Двигатель Стирлинга, своими руками сделанный от начала и до конца, проверяют на работоспособность.

Второй способ: материалы

Двигатель можно сделать и другим способом. Для этого понадобятся следующие материалы:

  • консервная банка;
  • поролон;
  • скрепки;
  • диски;
  • два болта.

Как сделать

Поролон очень часто используют, чтобы сделать дома простой не мощный двигатель Стирлинга своими руками. Из него готовят вытеснитель для мотора. Вырезают поролоновый круг. Диаметр должен быть немного меньше, чем у консервной банки, а высота — чуть более половины.

По центру крышки проделывают отверстие для будущего шатуна. Чтобы он ходил ровно, скрепку сворачивают в спиральку и паяют к крышке.

Поролоновый круг посередине пронизывают тонкой проволокой с винтом и фиксируют его сверху шайбой. Затем соединяют кусок скрепки пайкой.

Вытеснитель вталкивают в отверстие на крышке и соединяют банку с крышкой путем пайки для герметизации. На скрепке делают маленькую петлю, а в крышке — еще одно, более крупное отверстие.

Жестяной лист сворачивают в цилиндр и спаивают, а потом прикрепляют к банке настолько, чтобы щелей не осталось совсем.

Скрепку превращают в коленчатый вал. Разнос при этом должен быть ровно девяносто градусов. Колено над цилиндром делают слегка больше другого.

Остальные скрепки превращаются в стойки для вала. Делается мембрана следующим образом: цилиндр оборачивают в пленку из полиэтилена, продавливают и крепят ниткой.

Шатун изготавливается из скрепки, которую вставляют в кусок резины, и готовую деталь прикрепляют к мембране. Длина шатуна делается такой, чтобы в нижней валовой точке мембрана была втянутой в цилиндр, а в высшей — вытянута. Таким же образом делается и вторая деталь шатуна.

Затем один приклеивают к мембране, а другой — к вытеснителю.

Ножки для банки можно также сделать из скрепок и припаять. Для кривошипа используют CD-диск.

Вот и готов весь механизм. Осталось лишь под него подставить и зажечь свечку, а затем дать толчок через маховик.

Заключение

Таков низкотемпературный двигатель Стирлинга (своими руками сооруженный). Конечно, в промышленных масштабах такие приборы изготавливаются совсем другим способом. Однако принцип остается неизменным: происходит нагрев, а затем охлаждение воздушного объема. И это постоянно повторяется.

Напоследок посмотрите эти чертежи двигателя Стирлинга (своими руками его можно сделать без особых навыков). Может быть, вы уже загорелись идеей, и вам захочется сделать что-либо подобное?

www.syl.ru

Выбор компоновочной схемы для двигателей Стирлинга двойного действия

3. Выбор компоновочной схемы для двигателей двойного действия.

Наибольшее число двигателей, доведенных или нацеленных на доводку до состояния промышленного производства, выполняются четырехцилиндровыми двойного действия. Большое и все увеличивающееся число реализованных вариантов говорит о том, что и в этом вопросе не достигнуто четких понятий о лучшем варианте. Пожалуй только наиболее простой случай, — рядный, крейцкопфный, — не встречался в работах последнего десятилетия. В 1970-х годах подобные двигатели, в том числе в 4-х и 6-ти цилиндровые, разрабатывались исследовательской группой MAN-MWM, а в 1980-х годах четырехцилиндровый двигатель с заклинкой 1-2-4-3 был разработан и испытан французским предприятием ЕСА. Все эти двигатели предназначались для подводных технических средств.

Один из мировых лидеров в области двигателей Стирлинга шведская фирма United Stirling в 1970-е годы ввела понятие «квадратная четверка», понимая под этим четырехцилиндровый двигатель с цилиндрами, расположенными параллельно друг другу по углам квадрата, с единой камерой сгорания и с общим торообразным нагревателем, собранным из четырех секторов. Первые исполнения таких двигателей имели два синхронизированных параллельных коленчатых вала (U-образная компоновка). Именно такими были первые варианты известных двигателей Р-40 (4-95) и Р-75 (4-275). Стремление избавиться от зубчатых пар, уменьшить механические потери и массо-габаритные показатели привода привело к появлению модификаций этих моторов в V-образной компоновке. Одним из таких двигателей стал V4-275R, успешно примененный на подводной лодке SAGA I. Двигатель Р-40 в новом исполнении разрабатывался фирмой MTI (США). Первая модификация, названная Mod I, оставалась еще U-образной, а последующие, начиная с Mod II, — V-образными [4, с.430], [8]. На этой стадии одними из важнейших стали вопросы профилирования трубок нагревателя и коллекторов, связывающих нагреватель с цилиндром и с регенератором [3, с.3.203]. По сути в этих работах эффективность и мощность двигателя были в наибольшей степени предопределены уровнем применяемых технологий. К негативным качествам V-образных двигателей необходимо отнести неравномерную схему заклинки коленвала, вызванную необходимостью организации фазового сдвига между сопряженными цилиндрами на равный угол независимо от величины угла развала цилиндров. Это приводит к необходимости применения соответствующих мер по балансировке и уравновешиванию двигателей (проблема, стоящая и для U-образных двигателей).

Следующим шагом в развитии V-образной компоновки стал двигатель Mod III (MTI Inc.) (рис. 2) [5, с.69], [8], в котором отказались от общего пространства камеры сгорания, единого сегментного нагревателя. В нем каждая цилиндро-поршневая группа выполнена подобно конструкциям по β-схеме с кольцевыми теплообменными аппаратами. В результате значительно сократился мертвый объем нагревателя, упростились практически все элементы в горячей части двигателя. Важно, что эти упрощения относятся к наиболее сложным и дорогим элементам двигателя. Из проблем, которые привнесены новой компоновкой, следует отметить две: необходимость синхронного регулирования четырех камер сгорания, а также организация увязки конструкции на двойное действие через элементы холодной зоны. Особенность последней задачи заключается в том, что дополнительный мертвый объем в холодных полостях негативно отражается на мощности двигателя примерно так же, как вдвое больший объем в горячих полостях.

Двигатель Стирлинга двойного действия

Двигатель Стирлинга двойного действия

Рис. 2. Двигатель Стирлинга двойного действия MOD III

1 — запальная свеча, 2 — газовый штуцер, 3 — газовая горелка, 4 — изоляция, 5 — преднагреватель, 6 — вход воздуха, 7 — выхлопной патрубок, 8 — регенератор, 9 — охладитель, 10 — главное уплотнение, 11 — шток, 12 — крейцкопф.

Разработан Mechanical Technology Inc. в 1994 г. Мощность 108 кВт, частота вращения 2800 мин-1, 4 цилиндра размером 117/30 мм, угол развала 40º, рабочее тело — гелий, среднее давление 15 МПа, температура нагревателя 1048 К, эффективный КПД 36 %.

Стирлинг-генератор на его основе — мощность 75 кВт, частота вращения 1800 мин-1, масса 523 кг.

Приведенные размышления иллюстрируются таблицей 1. К приведенным в ней данным следует относиться с осторожностью, поскольку они собраны из большого числа публикаций и относятся к двигателям в различных условиях. За 20 лет при схожих размерах кинематического механизма мощность двигателя увеличилась в 2,7 раза. Причем наиболее существенным оказался переход от Mod II к Mod III. Хорошие показатели двигателя 4-95 образца 1984 года, по-видимому, являются следствием применения водорода в качестве рабочего тела [9].

Таблица 1

Развитие двигателей на базе Р-40

Модификация

P-40

4-95

Mod I

Upgraded Mod I

Mod II

Mod III

Год создания

1973

1984

1981

1983

1986

1994

Схема механизма

U

U

U

U

V

V

Размеры цилиндров D/S, мм

50/48

55/40

73/30

117/30

Рабочий объем, см3

4х94

4х95

4х123

4х126

4х323

Среднее давление, МПа

15

20

15

15

15

Температура нагревателя, К

973

993

993

1093

1093

1048

Максимальная мощность, кВт

40

52

54,4

62,2

62,3

108

Частота вращения, мин-1

4000

4000

4000

4000

4000

2800

Эффективный КПД, %

26…32

29.4…41

34,5…37,7

33,5…39

38,5…39

36

Удельная масса, кг/кВт

4,5

6,3

3,8

3,38

Другое направление при создании двигателей двойного действия — аксиально-поршневые с механизмом типа наклонная шайба — было выбрано фирмой Philips. И хотя в настоящее время Philips сконцентрировала свои усилия в области машин Стирлинга на криогенных холодильно-газовых машинах, работы по аксиально-поршневым двигателям настойчиво продолжаются с учетом ее опыта на вновь организованной фирме Stirling Thermal Motors (STM Inc., США) [1]. Главной особенностью созданного здесь двигателя STM 4-120 является гидравлический механизм изменения угла наклона шайбы, позволяющий воздействовать на величину хода поршней и таким образом регулировать мощность двигателя не прибегая к системам изменения давления рабочего тела или мертвого объема. По степени доведенности, а также по эффективности и массо-габаритным показателям этот двигатель находится в одном ряду с двигателями фирмы Kockums и так же, как и последние, был опробован в самых различных областях применения. Кроме того, на его базе были разработаны рефрижераторная и криогенная холодильно-газовые машины [5, с.209], [5, с.321].

Двигатель Стирлинга двойного действия

Двигатель Стирлинга двойного действия

Рис. 3. Двигатель Стирлинга двойного действия WG 3000

1- камера сгорания, 2- преднагреватель. 3 — нагреватель, 4 — поршень, 5 — регенератор, 6 — верхняя плита, 7 — охладитель, 8 — основной корпус, 9 — балансир, 10 — качающееся звено, 11 — корпус генератора, 12 — вал отбора мощности, 13 — ротор генератора, 14 — статор генератора, 15 — привод для стартера.

Разработан Whisper Tech Ltd и Кентерберийским университетом (Новая Зеландия) для применения на яхтах и в малой энергетике в составе когенерационных установок. Электрическая мощность 2,7 кВт, частота вращения 2000 мин-1, 4 цилиндра размером 10,16/5,08, рабочее тело — азот, среднее давление 2 МПа, температура нагревателя 1023 К, камера горения на пропане.

Среди приводных механизмов двигателей двойного действия новейших типов следует выделить три: отмеченные выше KS15D концерна DaimlerBenz и датский двигатель SM-3 мощностью 40 кВт, а также WG 3000 новозеландской фирмы Whisper Tech Ltd.

Приводной механизм датского двигателя интересен тем, что в принципе состоит из достаточно простых звеньев и допускает использование подшипников качения. В основе его лежит известный многозвенный механизм Росса. Особенностью, помимо отмеченных ранее, является применение обратных шатунов, благодаря чему значительно увеличивается база для восприятия звеном «ползун-шток» перекашивающего усилия, и, как следствие, до технологического минимума уменьшается нагрузка на штоковые и поршневые уплотнения [6, с.353].

Двигатель WG 3000 (рис. 3) является сочетанием аксиально-поршневой компоновки с кинематическим механизмом на подшипниках качения (без наклонной шайбы) [5, с.87], [7, с.169]. Механизм последовательно состоит из одноколенного вала с наклоненной вращающейся шейкой колена, двух карданных пар и штоков поршней. Карданные звенья, сидящие на шейке вала, движутся синхронно подобно качающейся шайбе, а вторые карданные звенья, — балансиры, — качаются в двух взаимно перпендикулярных плоскостях на неподвижных осях, Сочленение штоков с поршнями в публикациях не приведено, вероятно, это одно из ноу-хау, хотя ранее фирмой Philips конструкции такого типа применялись. По приведенным изображениям видно, что штоки двойные: наружный в виде трубы, выполняющий направляющую роль ползуна и обеспечивающий работу уплотнений, и внутренний — силовой, — совершающий при проворачивании механизма относительно малые смещения от оси цилиндра (до 0,4 мм). Большое число силовых подшипников является недостатком этого механизма, но отсутствие ползунов обыкновенного типа и применение исключительно подшипников качения значительно повышают механический КПД и позволяют выполнить механизм на консистентной смазке.

Литература.

1. Hargreaves C. M. The Philips Stirling Engine. — Amsterdam, Elsevier, 1991.

2. Maurer T. Stirlingkonzept mit doppeitwirkender Kreuzkolbenmaschine. Universitat Kassel, 1994.

3. Proceedings of 20th Intersoc. Energy Conver. Eng. Conf., Miami Beach, Fl., 1985.

4. Proceedings of 21st Intersoc. Energy Conver. Eng. Conf., San Diego, 1986.

5. Proceedings of 6th International Stirling Engine Conf., Eindhoven, Netherlands, 1993.

6. Proceedings of 7th International Conf. on Stirling Cycle Machines, Waseda University, Tokyo, 1995.

7. Proceedings of 8th International Stirling Engine Conference and Exhibition. — University of Ancona, Italy, 1997.

8. Steimle F. Stiling-Maschinen-Technik: Grundlagen, Konzepte und Chancen. — Heidelberg, Muller, 1996.

9. Stine W. B., Diver R. B. A Compendium of Solar Dish/Stirling Technology /SAND93-7026 UC-236 Unlimited Release, Sandia National Laboratories, USA, Alburquerque, 1994.

10. Tagungsband des Europaischen Stirling Forums 1998, Osnabruck 24-26 Februar 1998.

Статья опубликована в журнале «Двигателестроение», 2002, № 2, с. 3-6.

ctirling.ru

Двигатель Стирлинга. Видео обзоры двигателя Стирлинга

Сегодня, на фоне широко известных источников альтернативной энергии, начинает появляться ещё одно хитрое устройство. Придумали его почти двести лет назад, но не справедливо забыли в эпоху дешевых энергоносителей, имя ей - Двигатель Стирлинга.Это устройство способно преобразовывать любую тепловую энергию, в механическую. Его можно подключить к генератору и получать электричество. Или к насосу, циркулярке, короче, к любому потребителю механической энергии. Наиболее заманчиво выглядит утилизация, с его помощью, дармового тепла, вылетающего в трубы котельных, дровяных печей или падающего на нас с неба, в виде солнечных лучей.Но самое главное – это то, что этот двигатель можно собрать своими силами, и интернете Вы найдёте массу примеров этому. Я сам давно увлекаюсь этой темой и имею ряд интересных конструкций, вот например видео работы простейшего стирлинга со свободным поршнем и линейным генератором

А вот двигатель Стирлинга работает внутри солнечного концентратора:

Двигатель Стирлинга имеет ряд важных преимуществ перед другими двигателями:«Всеядность» двигателя — как все двигатели с внешним подводом тепла, двигатель Стирлинга может работать от почти любого перепада температур: например, от солнца, от угольной или дровяной печи и т. д.Простота конструкции — конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Его характеристики позволяют избавиться от коробки передач. Практически не используются смазочные материалы.Увеличенный ресурс — простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы. Экономичность — в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %) чем тепловые машины на пару.Бесшумность двигателя — стирлинг не имеет выхлопа, а значит — не шумит. Экологичность — сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью используемого источника тепла.

alternativenergy.ru

Применение двигателя стирлинга

РЕФЕРАТ НА ТЕМУ:

«Применение двигателя стирлинга» ПРЕПОДАВАТЕЛЬ:

Ивлев В.И.

РАБОТА ВЫПОЛНЕНА: Аксяитов Артур Шамилевич

лицей №43, 11 «А»

Саранск 2012

Двигатель Стирлинга применим в случаях, когда необходим компактный преобразователь тепловой энергии, простой по устройству, либо когда эффективность других тепловых двигателей оказывается ниже: например, если разницы температур недостаточно для работы паровой или газовой турбины.

Универсальные источники электроэнергии

Двигатели Стирлинга могут применяться для превращения в электроэнергию любой теплоты. На них возлагают надежды по созданию солнечных электроустановок. Их применяют как автономные генераторы для туристов. Некоторые фирмы выпускают генераторы, которые работают от конфорки газовой печи. NASA рассматривает варианты генераторов на основе стирлинга, работающие от ядерных и радиоизотопных источников тепла. Специально разработаный генератор стирлинга с радиоизотопным источником энергии (Advanced Stirling Radioisotope Generator (ASRG)), будет использован в планируемой NASA космической экспедиции — Titan Saturn System Mission.

Насосы

Эффективность систем отопления или охлаждения возрастает, если в контуре установлен насос принудительной подачи теплоносителя. Установка электрического насоса снижает живучесть системы, а в быту неприятно тем, что электросчётчик «накручивает» ощутимую сумму. Насос, использующий принцип двигателя Стирлинга, решает эту проблему. «Стирлинг» для перекачки жидкостей может быть гораздо проще привычной схемы «двигатель-насос». В двигателе Стирлинга вместо рабочего поршня может использоваться перекачиваемая жидкость, которая одновременно служит для охлаждения рабочего тела. Насос на основе двигателя стирлинга может служить для накачки воды в ирригационные каналы посредством солнечного тепла, для подачи горячей воды от солнечного коллектора в дом (в системах отопления теплоаккумулятор стараются установить как можно ниже, чтобы вода шла в радиаторы самотёком).

Машины СТИРЛИНГА - новое перспективное направление в развитии отечественного машиностроения

До недавнего времени системы автономного энергоснабжения, использовавшие традиционные тепломеханические агрегаты, удовлетворяли существующему уровню развития общества и техники. Однако обострение общенациональных, глобальных проблем, требующих срочного решения (истощение природных ресурсов; надвигающийся энергетический кризис; загрязнение окружающей среды; уменьшение озонового слоя Земли; усиление "парникового эффекта" и т.д) привело к необходимости принятия в конце XX века ряда крупных международных и российских законодательных актов в области экологии, природопользования и энергосбережения. Основные требования этих законов направлены на сокращение выбросов СО2, прекращение производства озоноразрушающих веществ и фреона R-12, как холодильного агента для парокомпрессионных холодильных машин (ПКХМ), ресурсо - и энергосбережение, перевод автотранспорта на экологически чистые моторные топлива и т.д. Огромные масштабы, удорожание производства топливно - энергетических ресурсов и растущее загрязнение окружающей среды выдвинули на первый план задачу поиска новых технологий энергопреобразования, разработки новой техники на основе высокоэффективных термодинамических циклов, использование новых видов топлива, новых рабочих тел и т.д., то есть создание таких экологически чистых энергосистем, которые бы обеспечивали удовлетворение нужд промышленности и населения при минимальных затратах материальных ресурсов. Наряду с другими подходами, в решении стоящих перед Российской Федерацией экологических и энергетических проблем, наиболее перспективным путем является разработка и широкое внедрение энергопреобразующих систем на основе машин, работающих по прямому и обратному циклам Стирлинга (машины Стирлинга).

В настоящее время разработано большое количество компоновочных схем и конструктивного исполнения отдельных узлов машин Стирлинга. Так, только одних приводов известно более 18 типов. Однако наиболее широкое распространение получили машины Стирлинга, выполненные по a , b , g - схемам. Конструктивно, машины Стирлинга представляют собой удачное сочетание в одном агрегате компрессора, детандера и теплообменных устройств: теплообменника нагрузки (нагревателя или конденсатора), регенератора и холодильника.

На последних европейских и мировых форумах по современному состоянию и перспективам развития машин, работающих по циклу Стирлинга, отмечалось, что технология изготовления машин Стирлинга за рубежом полностью освоена. Решены проблемы уплотнений двигающихся деталей, выбора материалов, пайки теплообменников и т.д. Ввиду этого, наряду с традиционным применением двигателей и криогенных машин Стирлинга для военных целей (переконденсация низкокипящих жидкостей, охлаждение детекторов инфракрасного излучения, анаэробных систем автономного энергоснабжения и т.д.), перспективными направлениями считаются применение холодильных машин Стирлинга на уровне умеренного холода для хранения пищевых продуктов и систем кондиционирования воздуха, использование двигателей Стирлинга в когенерационных установках, тепловых насосах в системах децентрализованного теплоснабжени и т.д.

Подтверждением возрастающего интереса к машинам Стирлинга служит тот факт, что начиная с 1982 года каждые два года проводится международная конференция по двигателям Стирлинга, а в г. Оснабрюк (Германия) раз в два года проходит Европейский форум по двигателям Стирлинга. Кроме того ежегодно в США проходит конференция, посвященная преобразованию различных видов энергии, на которой работает секция по двигателям Стирлинга. В Великобритании создано общество по изучению двигателей Стирлинга, членами которого являются свыше 300 ученых всего мира. Обществом ежеквартально, начиная с 1996 года, издается журнал “ UK Stirling News ”. В США ежеквартально, начиная с 1978 года, издается журнал “ Stirling Machine World ”. Ежегодно издается одна-две книги, посвященные машинам Стирлинга.

Холодильная техника

Практически все холодильники используют те же тепловые насосы. Применительно к системам охлаждения их судьба оказалась более счастливой. Ряд производителей бытовых холодильников собирается установить на свои модели «стирлинги». Они будут обладать большей экономичностью, а в качестве рабочего тела будут использовать обычный воздух.

Подводные лодки

Преимущества «стирлинга» привели к тому, что ещё в первой половине 1960-х годов военно-морские справочники указывали на возможность установки на подводных лодках типа «Шёурмен» производства Швеции воздухонезависимых двигателей Стирлинга. Однако ни «Шёурмены», ни последовавшие за ними «Наккены» и «Вестеръётланды» указанные силовые установки так и не получили. И только в 1988 году головная субмарина типа «Наккен» была переоборудована под двигатели Стирлинга. С ними она прошла под водой более 10 000 часов. Другими словами, именно шведы открыли в подводном кораблестроении эру вспомогательных анаэробных двигательных установок. И если «Наккен» — первый опытный корабль этого подкласса, то субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка – доля бедного населения.

Аккумуляторы энергии

Можно запасать с его помощью энергию, используя в качестве источника тепла теплоаккумуляторы на расплавах солей. Такие аккумуляторы превосходят по запасу энергии химические аккумуляторы и дешевле их. Используя для регулировки мощности изменение фазного угла между поршнями, можно аккумулировать механическую энергию, тормозя двигателем. В этом случае двигатель превращается в тепловой насос.

Солнечная версия двигателя "Стирлинг 161", Германской фирмы SOLO системы (EURODISH)

Солнечная версия двигателя Стирлинг 161 используется между тем несколькими производителями в различных исполнениях. На испанском солнечном плато de Алмерию с 1997 работают 6 систем. В рамках поддержанного ЕС проекта в сотрудничестве с Schlaich Bergermann und Partner und MERO Raumsysteme GmbH, кроме всего прочего, теперь строится новое поколение системы Dish Стирлинг 10 кВт. Целью проекта является сокращение стоимостей капиталовложений до 5.000 евро / киловатт. При этом снова вступает в действие Стирлинг 161 при модификациях в Receiver, Cavity и корпусе. Характеристики нового Dish/Стирлинга системы (EURODISH): номинальная производительность СОЛО "Стирлинг 161" 10,0кВт брутто, диаметр солнечного зеркала 8,5м. В Alanya, центр исследования солнечной энергии Турции создал Kombassan холдинг - компанию, которая строит на подготовительных работах Cummins. Работы очень интенсивны и показывают хорошие результаты.

1.

Микро ТЭЦ на основе двигателя Стирлинга

Подсоединив к двигателю Стирлинга электрогенератор, получаем комбинированную установку для получения и электроэнергии и тепла-микро-ТЭЦ. Вспомните, что КПД двигателя внутреннего сгорания — порядка 30%, остальная энергия сгоревшего топлива в буквальном смысле улетает в трубу. А в микро-ТЭЦ она не теряется зря: и электроэнергия производится и вода в водопроводе нагревается. Суммарный КПД такого комбинированного генератора, в зависимости от нагрузки, составляет 83-90%, то есть такая доля энергии, содержащейся в топливе, превращается в электричество и тепло для дома. Кроме того, вследствие особенностей термодинамического цикла Стирлинга, значительная часть полученной тепловой энергии это побочный результат получения электроэнергии. Очевидно, что создание предприятия по производству микро-ТЭЦ на базе двигателя Стирлинга является актуальным, как для нашего региона, так и для российского рынка в целом. Области применения автономных установок на базе двигателя Стирлинга – от загородных домов и коттеджей до крупных промышленных объектов и районов крайнего Севера. На данный момент заканчиваются работы по разработке Микро – ТЭЦ мощностью 3-7 кВт. Разработка этого проекта ведется на базе Агентства инноваций «Голубой Океан» . На данный момент разработана инновационная компоновочная схема двигателя Стирлинга (защищена патентом). Организация производства планируется на основе промышленной кооперации с предприятиями г. Новосибирска. Планируется выпуск установок 2-х типов:

1) Установка для загородных домов и дач мощностью 3-7 кВт. Начало производства февраль – март 2012год.

2) Установки мощностью 10 – 100 кВт для промышленных объектов, больничных и храмовых комплексов, поселков нефтяников, геологов отдаленных поселков и хуторов в сельской местности.

Этот вариант особенно интересен для промышленных предприятий имеющих проблемы с использованием излишек тепловой энергии, которые образуются в технологическом процессе. Используя часть тепловой энергии на работу двигателя Стирлинга, предприятие сможет обеспечить себя собственной электроэнергией. Запуск в производство этого варианта – 2013 год. Отметим, что для снижения себестоимости в установке будут использованы готовые детали и блоки. По предварительным расчетам, потребность в автономных установках в России составит сотни тысяч штук в год.

mognovse.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта