Eng Ru
Отправить письмо

Многоцветные светодиоды на микроконтроллере. Светодиод трехцветный


Двухцветные светодиоды. Как правильно подключать управлять

схема управления двухцветными светодиодами

Само название - двухцветный светодиод основано на том, что чип способен светиться двумя цветами. Ярким примером такого типа диодов - зарядка мобильного телефона, зарядка аккумуляторных батарей, где индикатор во время зарядки светится красным цветом, по мере наполнения зарядом аккумулятора цвет меняется на зеленый.

Двухцветные светодиоды подразделяются на несколько типов. Наиболее распространенные - трехвыводные светодиоды. В одном корпусе интегрированы два светодиода зеленого и красного свечения.

Светодиод двух цветовДвухцветный светодиод с двумя выводами

Двухцветные светодиоды имеют два вывода. Изменение цвета происходит в зависимости от того, в какую сторону течет ток. схема управления двухцветными светодиодами представлена ниже.

Как соединить двухцветный светодиодПравильное соединение двухцветного светодиода

Диоды соединены параллельно.При протекании тока в одном направлении второй диод запирается и не светится. В случае обратного протекания тока свечение происходит наоборот. При использовании ШИМ контроллера можно зажигать сразу оба светодиода, в результате смешения цветов получится желтый, либо несколько других оттенков.

Не смотря на то, что на данной схеме мы видим всего два диода, в некоторых инструкциях его принято называть трехцветным. Такие диоды имеют три вывода. Такое деление - условное, поэтому заострять на этом внимание не следует.

к оглавлению ↑

Схема управления двухцветным светодиодом на таймере 555

остаточно простая и легкая схема управлением двухцветным светодиодом. В этом случае включается поочередно зеленый и красный цвет.

IC 555 управление LED
Управление двухцветным LEDs на микросхеме 555к оглавлению ↑

 схема управления двухцветными светодиодами до 1А

Двухцветный диод схема управленияСхема управления двухцветными светодиодами на контроллере

Схема управления двухцветными светодиодами построена на микросхеме TA7291P с двумя выходами OUT и двумя входами IN. К выходу подключаем два диода или один двухцветный мощностью не менее 1А. Если логика на входах одинакова, то потенциалы выходов равные, соответственно светодиод не горит.

При разных логических уровнях на входах микросхема работает следующим образом. Если на одном из входов, например, IN1 имеется низкий логический уровень, то выход OUT1, соединяется с общим проводом. Катод светодиода HL2 через резистор R2 тоже соединяется с общим проводом. Напряжение на выходе OUT2 (при наличии на входе IN2 логической единицы) в этом случае зависит от напряжения на входе V_ref, что позволяет регулировать яркость свечения светодиода HL2.

В данном случае напряжение V_ref получается из ШИМ импульсов от микроконтроллера с помощью интегрирующей цепочки R1C1, что регулирует яркость светодиода, подключенного к выходу. Микроконтроллер управляет также и входами IN1 и IN2, что позволяет получить самые разнообразные оттенки свечения и алгоритмы управления светодиодами. Сопротивление резистора R2 рассчитывается исходя из предельно допустимого тока светодиодов.

к оглавлению ↑

Самые простые схемы подключения двухцветных светодиодов

Как бы оно ни было, но знаю, что работы с микроконтроллерами многих пугают, поэтому приведу еще пару рабочих  схем управления двухцветным светодиодом без каких-либо "наворотов".

Первая представляет собой схему для подключения двухцветного диода с двумя выводами:

2х цветный светодиодУправление 2-х цветным светодиодом

Следующая схема для 2х цветного светодиода на трех выводах:

2х цветный диод с тремя выводамиСхема 2х цветного LEDs с тремя пинами

Наиболее полная, но для многих покажется сложноватой, информация по двухцветным светодиодам - на этом сайте

к оглавлению ↑

Видео по работе двухцветных светодиодов, простые схемы подключения

leds-test.ru

УРОК 3. ARDUINO И ТРЕХЦВЕТНЫЙ СВЕТОДИОД

Принципиальная схема к уроку №3. Arduino и Управление трехцветным светодиодом

Урок 3. Arduino и Управление трехцветным светодиодом. Принципиальная схема

Трехцветный светодиод может переливаться всеми цветами радуги! Согласитесь, это намного интереснее, чем просто мигать обычным светодиодомНачнем третий урок знакомства с Arduino.

Подключение оборудования:На самом деле, трехцветный светодиод, это три светодиода (красный, зеленый и синий) в одном корпусе. Когда мы запускаем его с разной степенью яркости и интенсивности красного, зеленого и синего, мы получаем на выходе новые цвета.

 

На кромке светодиода есть небольшой скос, это ключ, он указывает на ножку красного светодиода, дальше идет общая, дальше зеленый и синий.

  Подключите ногу КРАСНОГО светодиода к резистору 330 Ом. Подключите другой конец резистора в порт Arduino pin9.

Подключите Общий вывод к земле GND .

  Подключите ногу ЗЕЛЕНОГО к резистору 330 Ом.

Подключите другой конец резистора в порт Arduino pin10.

  Подключите ногу СИНЕГО к резистору 330 Ом.

Подключите другой конец резистора в порт Arduino pin11.

Схемма соединений к уроку №3. Arduino и Управление трехцветным светодиодом

Урок 3. Arduino и Управление трехцветным светодиодом. Cхема соединений

Следующий рисунок показывает внешний вид макетной платы с собранной схемой, и плату Arduino с проводами идущими от макетной платы.

Набор для экспериментов ArduinoKitКод программы для опыта №3: sketch 03

Вид собранной конструкции на макетной плате. Урок №3. Arduino и Управление RGB LED

Урок 3. Arduino и Управление трехцветным светодиодом. Макетная плата

Остается загрузить программу в Arduino через USB шнур. Скачать скетч с третьим уроком LED RGB — выше в статье.

 

arduinokit.ru

Многоцветные светодиоды на микроконтроллере | Техника и Программы

Многоцветные светодиоды появились вслед за двух цветными «красно-зелёными», когда достижения технологии позволили разместить на их кристаллах излучатели синего цвета. Изобретение «синих» и «белых» светодиодов полностью замкнуло RGB-круг: теперь стала реальной индикация любого цвета радуги в видимом диапазоне длин волн 450…680 нм с любой насыщенностью.

Существует несколько способов получения белого «светодиодного» света (именно «света», поскольку белого «цвета» в природе не существует).

Первый способ — на внутреннюю поверхность линзы «синего» светодиода наносится люминофор жёлтого цвета. «Синий» плюс «жёлтый» в сумме дают тон, близкий к белому. Именно так были созданы первые в мире «белые» светодиоды.

Второй способ — на поверхность светоизлучателя, работающего в ультрафиолетовом диапазоне 300…400 нм (невидимое излучение), наносятся три слоя люминофора, соответственно, синего, зелёного и красного цвета. Происходит смешивание спектральных составляющих, как в лампе дневного света.

Третий способ — технология телевизионных ЖК-экранов. На одной подложке близко друг возле друга размещаются «красные», «синие» и «зелёные» излучатели (как три пушки в кинескопе). Цветовые пропорции задаются разными токами через каждый излучатель. Окончательное смешивание красок до получения белого оттенка производится светорассеивающей линзой корпуса.

Четвёртый способ реализуется в так называемых «квантовых» светодиодах, у которых на общую полупроводниковую пластину наносятся красные, зелёные и синие «квантовые» точки или, по-другому, люминесцентные нано кристаллы. Это перспективное энергосберегающее направление, но пока ещё экзотичное.

На сегодняшний день для любительской практики представляют интерес многоцветные светодиоды третьего типа, имеющие отводы от трёх излучателей. Их можно использовать для создания полноцветных устройств отображения информации, например, в виде светодиодных экранов телевизионного формата. Один пиксель такого экрана может светить синим (470 нм), зелёным (526 нм) или красным (630 нм) цветом. В сумме это позволяет получить практически такое же число оттенков, как и в компьютерных мониторах.

Многоцветные светодиоды бывают четырёх-, шест восьмивыводные. В первом случае имеются три вывода для излучателей красного (R), зелёного (G) и синего (В) цвета, дополненные четвёртым выводом общего катода или анода. В шестивыводном варианте в одном корпусе размещаются три полностью автономных светодиода RGB или две двухцветные пары: «красный-синий», «зелёный-синий». Восьмивыводные светодиоды дополнительно имеют «белый» излучатель.

Интересный момент. Доказано, что большинство мужчин неточно воспринимают цвет в красной части спектра. Виновата в этом сама матушка-природа из-за гена OPNlLW, находящегося в Х-хромосоме. У мужчин этот ген один, а у женщин имеютсядве его копии, которые взаимно компенсируют дефекты друг друга. Проявление в быту — женщины, как правило, хорошо различают малиновый, бордовый и алый оттенки, а для многих мужчин такие тона кажутся одинаково красными… Следовательно, конструируя аппаратуру, надо избегать «конфликтной» цветовой гаммы и не заставлять пользователя искать разницу в мелких деталях.

На Рис. 2.17, а…и приведены схемы подключения четырёх-, шест восьмивыводных многоцветных светодиодов к MK.

Рис. 2.17. Схемы подключения многоцветных светодиодов к MK (начало):

R3* со о а) ток через каждый из трёх излучателей красного (R), зелёного (G) и синего (В) цвета определяют резисторы R2…R4 — не более 20…25 мА на каждую линию MK. Резистор R1 организует отрицательную обратную связь по току. С его помощью снижается общая яркость свечения при одновременном включении сразу трёх излучателей;

б) аналогично Рис. 2.17, а, но для светодиода HL1 с общим анодом и с активным НИЗКИМ уровнем на выходах MK;

в) трёхканальное ШИМ-управление обеспечивает полную цветовую гамму RGB. Сопротивления резисторов R1…R3 подбирают в широких пределах по субъективному цветовому ощущению баланса белого при трёх включённых излучателях. Для равномерного перехода одного цвета в другой нужен нелинейный закон управления ШИМ. Средний ток через одну линию MK за один период ШИМ не должен превышать 20…25 мА при импульсном токе не более 40 мА;

г) аналогично Рис. 2.17, в, но для светодиода HL1 с общим анодом и с активным НИЗКИМ уровнем сигналов ШИМ;

д) в светодиоде HL1 находятся три полностью автономных излучателя с отдельными выводами из корпуса, что даёт определённую свободу действий. Например, можно сделать соединение индикаторов по схеме как с общим анодом, так и с общим катодом; О

О Рис. 2.17. Схемы подключения многоцветных светодиодов к MK (окончание):

е) имитатор многоцветного светодиода. Три обычных светодиода HL1..HL3 красного, зелёного и синего цвета конструктивно размещаются в одном общем светорассеивающем корпусе. Для лучшей имитации оригинала можно применить малогабаритные SMD-светодиоды;

ж) мощные многоцветные светодиоды напрямую к МК  подключать нельзя, ввиду низкой нагрузочной способности портов. Требуются транзисторные ключи с допустимым током не менее 500 мА для «одноваттных» светодиодов (350 мА) и не менее 1 А для «трёхваттных» светодиодов (700 мА). Питать MK и светодиод HL1 рекомендуется от разных источников через стабилизатор напряжения, чтобы помехи от коммутации мощной нагрузки не сбивали работу программы. При высоком напряжении питания светодиода HL1 следует увеличить сопротивления резисторов R4…R6 и их мощность. Сам светодиод надо обязательно установить на радиатор 5… 10 см2;

з) шестивыводной светодиод HL1 управляется от четырёх линий MK. Комбинируя НИЗКИЕ/ВЫСОКИЕ уровни можно обеспечить разные цветовые оттенки. В идеале смесь синего и зелёного даёт голубой цвет, а смесь красного и зелёного — жёлтый цвет;

и) востмивыводной светодиод HL1 позволяет не только смешивать цвета красный (R), зелёный (G), синий (В), но и регулировать их насыщенность добавлением белой составляющей (W). Каждый из излучателей светодиода HL1 рассчитан на рабочий ток 350 мА, поэтому необходимо предусмотреть меры по эффективному отводу тепла металлическим радиатором.

Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

nauchebe.net

WS2811: микросхема для управления трехцветным RGB-светодиодом | hardware

Микросхема WS2811 компании Worldsemi [1] является трехканальным драйвером для управления светодиодами стабилизированным током, при этом обеспечивается 256 градаций яркости по каждому каналу (обычно это R красный, G зеленый, B синий, RGB). В этой статье представлен перевод даташита "WS2811 Signal line 256 Gray level 3 channel Constant current LED drive IC".

Яркость светодиодов, подключенных к WS2811, управляется последовательным цифровым кодом, который формируется микроконтроллером. Данные при этом передаются всего лишь по 1 проводу. Цифровой сигнал управления проходит сквозь микросхему WS2811, так что несколько микросхем WS2811 могут быть объединены в длинную цепочку с сохранением возможности управлять каждым светодиодом в цепочке по отдельности.

[Особенности микросхемы WS2811]

• Рабочее напряжение выходного порта до 12V. • Имеется встроенный регулятор напряжения питания VDD, так что можно питать микросхему даже от 24V, если последовательно подключить гасящий напряжение резистор• Может быть установлено до 256 уровней яркости, и при этом частота сканирования составляет не менее чем 400 Гц.• Имеется встроенный узел восстановления формы входного сигнала данных, что обеспечивает отсутствие накапливания искажений на линии сигнала.• Имеется встроенный узел сброса, который сбрасывает микросхему при включении и восстановлении питания.• Сигнал от одной микросхемы к другой может быть передан через один сигнальный провод.• Любые две точки между приемником и передатчиком сигнала могут находиться друг от друга на расстоянии более 10 м без необходимости дополнительных усилителей.• При скорости обновления 30 fps (30 кадров/сек) модель каскадирования на низкой скорости позволяет соединить в цепочку не менее 512 точек, на высокой скорости можно соединить не менее 1024 точек. • Данные передаются на скоростях до 400 и 800 Kbps (килобит/сек).

WS2811 могут применяться для создания декоративного освещения с помощью светодиодов (LED), а также для видеоэкранов либо информационных табло как внутри помещения, так и снаружи.

[Общее описание WS2811]

WS2811 имеет 3 выходных канала специально для управления LED. В микросхеме имеется встроенный продвинутый цифровой порт данных с возможностью усиления сигнала и восстановления его формы. Также в микросхему встроен точный внутренний генератор и программируемый источник постоянного выходного тока, рассчитанный на рабочее напряжение до 12V. Для снижения пульсаций напряжения питания 3 выходных канала разработаны с функцией задержки включения (delay turn-on function).

Микросхема использует режим обмена данными NZR (Non-return-to-zero, код без возврата к нулю [2]). После сброса при подаче питания (power-on reset), порт DIN принимает данные от внешнего контроллера, при этом первая микросхема собирает первые 24 бита данных, и затем передает их во внутреннюю защелку данных, при этом у остальных данных восстанавливается форма с помощью узла восстановления и усиления, и эти остальные данные передаются следующей в цепочке микросхеме через порт DOUT. После прохождения каждой микросхемы количество бит в общем потоке уменьшается каждый раз на 24 бита. Технология автоматического восстановления передаваемого сигнала данных устроена таким образом, что количество каскадируемых микросхем ограничивается только скоростью передачи и требуемой частотой обновления яркости светодиодов.

Данные, защелкнутые в микросхему (24 бита), определяют скважность сигнала выходных портов OUTR, OUTG, OUTB, управляющих светодиодами - применяется PWM (ШИМ, широтно-импульсная модуляция), так что от скважности импульсов выходных портов зависит яркость каждого канала. Все микросхемы в цепочке синхронно отправляют принятые данные на каждый сегмент, когда поступит сигнал сброса на входной порт DIN. Далее будут снова приниматься новые данные после завершения сигнала сброса. До поступления нового сигнала сброса управляющие сигналы портов OUTR, OUTG, OUTB остаются неизменными. Микросхема передает имеющиеся данные PWM на порты OUTR, OUTG, OUTB после приема сигнала сброса низкого уровня, еще в течение 50 мкс.

Часто микросхема WS2811 встраивается прямо в корпус RGB-светодиода (это решение применяют в популярных светодиодных лентах), такой светодиод называется 5050 RGB LED.

ws2812-5050-RGB-LED

Отдельно микросхема WS2811 поставляется в корпусах SOP8 и DIP8.

WS2811-pins

В таблице ниже показано назначение ножек WS2811.

Мнемоника Описание функции вывода
1 OUTR Выходной сигнал PWM для управления яркостью красного светодиода (Red).
2 OUTG Выходной сигнал PWM для управления яркостью зеленого светодиода (Green).
3 OUTB Выходной сигнал PWM для управления яркостью синего светодиода (Blue).
4 GND Земля, общий провод, минус питания.
5 DOUT Выход сигнала данных (для каскадирования микросхем).
6 DIN Вход сигнала данных.
7 SET Установка низкоскоростного режима работы микросхемы (при подключении SET к VDD) или высокоскоростного режима (когда ножка SET никуда не подключена).
8 VDD Плюс напряжения питания.

[Absolute Maximum Ratings (предельные эксплуатационные значения)]

Параметр Мнемоника Значение Ед. изм.
Напряжение питания VDD +6.0 .. +7.0 V
Выходное напряжение VOUT 12 V
Входное напряжение VI -0.5 .. VDD+0.5 V
Рабочая температура Topt -25 .. +85 oC
Температура хранения Tstg -55 .. +150 oC

Примечание: если напряжения на выводах превысят максимальное значение, то это может необратимо повредить микросхему.

[Электрические характеристики]

TA = -20 .. +70oC, VDD = 4.5 .. 5.5V, VSS = 0V, если не указано что-то другое.

Параметр Мнемоника Условия MIN NOM MAX Ед. изм.
Выходной ток при низком напряжении I0L ROUT - 18.5 - мА
Idout Vo=0.4V, DOUT 10 - - мА
Входной ток II VI=VDD/VSS - - ±1 мкА
Уровень входного напряжения VIH DIN, SET 0.7VDD - - V
VIL DIN, SET - - 0.3VDD V
Напряжение гистерезиса VH DIN, SET - 0.35 - V

[Динамические характеристики]

TA = -20 .. +70oC, VDD = 4.5 .. 5.5V, VSS = 0V, если не указано что-то другое.

Параметр Мнемоника Условие MIN NOM MAX Ед. изм.
Рабочая частота Fosc1 - - 400 - КГц
Fosc2 - - 800 - КГц
Задержка передачи (время распространения сигнала) tPLZ CL=15 пФ, DIN->DOUT, RL=10 кОм - - 300 нс
Время спада tTHZ CL=300 пФ, OUTR/OUTG/OUTB - - 120 мкс
Скорость передачи данных FMAX Скважность 50% 400 - - кбит/с
Входная емкость CI - - - 15 пФ

[Интервалы времени для режима низкой скорости (Low Speed mode)]

В этой таблице показаны интервалы времени, которыми кодируются биты данных 0 и 1, и сигнал сброса.

T0H Кодирование 0, время высокого уровня 0.5 мкс ±150 нс
T1H Кодирование 1, время высокого уровня 1.2 мкс ±150 нс
T0L Кодирование 0, время низкого уровня 2.0 мкс ±150 нс
T1L Кодирование 1, время низкого уровня 1.3 мкс ±150 нс
RES Время низкого уровня кода сброса (Treset) > 50 мкс

Примечание: для режима высокой скорости все интервалы времени уменьшаются в 2 раза, но время сброса (reset time) остается неизменным.

Диаграммы поясняют принципы кодирования и передачи данных.

WS2811-digital-coding

WS2811-cascading

WS2811-data-transmission-method

Микроконтроллер посылает данные для микросхем D1, D2, D3 и D4. Микросхемы соединены в цепочку, и данные, которые проходят через них (DIN -> DOUT), восстанавливаются и усиливаются. При этом от последовательности данных каждый раз отрезается по 24 бита данных, которые предназначены именно этой микросхеме после прохождения массива данных для всех микросхем следует сигнал сброса RES (импульс лог. 0 с длительностью не менее 50 мкс). После этого принятый уровень яркости (24 бита на микросхему) передается на выходы PWM OUTR, OUTG, OUTB. Вот так составлена последовательность 24 бит, которая кодирует уровни яркости каналов OUTR, OUTG, OUTB микросхемы (старший MSB бит идет первым):

R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0

[Стандартные схемы включения]

Пример 1 - напряжение питания 5V, 1 светодиод RGB на микросхему.

WS2811-typical-application-example-5V

В этом примере каждый канал в светодиоде RGB управляется постоянным током 18.5 мА, яркость светодиода при этом определяется скважностью PWM (ШИМ). Благодаря стабилизации тока при снижении напряжения питания светодиоды сохраняют свою яркость и цветовую температуру. Для того, чтобы пульсации напряжения питания не влияли на работу микросхемы, рекомендуется использовать фильтрующую цепочку, состоящую из последовательного резистора номиналом на более 100 Ом и блокирующего конденсатора емкостью порядка 0.1 мкФ. Для предотвращения отражений сигнала и для обеспечения возможности горячего соединения в цепь сигнала должен быть включен последовательный резистор номиналом в 33 Ом.

Пример 2 - напряжение питания 12V, 3 светодиода RGB на микросхему.

WS2811-typical-application-example-12V

Как и в предыдущем примере, светодиоды управляются стабилизированным током 18.5 мА. R1 используется для нормальной работы внутреннего стабилизатора напряжения микросхемы, его номинал должен быть 2.7 кОм. Обычно на красном светодиоде всегда падает меньше напряжение при том же самом токе, чем на светодиодах других цветов, и красный светодиод светится ярче. Поэтому канал OUTR должен иметь дополнительный резистор RR, сопротивление которого можно рассчитать по формуле:

         12 - (3 * VLEDR)RR = ------------- кОм          18.5

В этой формуле VLEDR равно падению напряжения на одном светодиоде красной группы (обычно равно 1.8V .. 2V).

[Как устроена светодиодная RGB-лента]

На фото показана обычная влагозащищенная светодиодная RGB лента, построенная на основе технологии микросхем WS2811 (WS2811 waterproof LED Strip) длиной 5 метров, модель GE60RGB2811C. Обычно такая лента поставляется намотанной на бобину, вместе с крепежом для монтажа на стену. Для питания ленты нужен источник стабилизированного напряжения 5V 18A (потребление мощности 18 Вт на 1 метр). На концах ленты установлены коннекторы вход папа (сюда заходит цифровой сигнал и должно быть подключено питание) и выход мама (отсюда выходит цифровой сигнал и здесь также может быть подключено питание), благодаря чему ленты можно соединять друг с другом для увеличения общей длины.

Лента собрана на ленте из тонкого текстолита (гибкая двухсторонняя печатная плата) и устроена так, что ленту можно обрезать в любом месте для получения нужного размера.

WS2811-LED-strip-cell

Для управления RGB светодиодной лентой используют специальные контроллеры, которые программируются от компьютера через USB или с помощью карты SD. Контроллер может задавать сложный автоматический алгоритм управления лентой, некоторые могут даже работать как цветомузыка - с помощью встроенного микрофона анализируют звук и в такт мелодии управляют цветом ленты.

RGB-LED-strip-controller1 RGB-LED-strip-controller2

[UPD140530]

Появились в продаже китайские RGB-ленты с еще более плотным размещением светодиодов: 144 шт. на 1 м., называется WS2812B.

[Ссылки]

1. WS2811 site:www.world-semi.com.2. Non-return-to-zero site:wikipedia.org.3. AVR-USB-MEGA16: цветомузыка на светодиодной RGB-ленте WS2811.

microsin.net

Трехцветный светодиод arduino. Применение светодиодов в электронных схемах

Трехцветный светодиод может переливаться всеми цветами радуги! Согласитесь, это намного интереснее, чем просто мигать обычным светодиодомНачнем третий урок знакомства с Arduino.

Подключение оборудования:На самом деле, трехцветный светодиод, это три светодиода (красный, зеленый и синий) в одном корпусе. Когда мы запускаем его с разной степенью яркости и интенсивности красного, зеленого и синего, мы получаем на выходе новые цвета.

На кромке светодиода есть небольшой скос, это ключ, он указывает на ножку красного светодиода, дальше идет общая, дальше зеленый и синий.

Подключите ногу КРАСНОГО светодиода к резистору 330 Ом. Подключите другой конец резистора в порт Arduino pin9.

Подключите Общий вывод к земле GND .

Подключите ногу ЗЕЛЕНОГО к резистору 330 Ом.

Подключите другой конец резистора в порт Arduino pin10.

Подключите ногу СИНЕГО к резистору 330 Ом.

Подключите другой конец резистора в порт Arduino pin11.

Следующий рисунок показывает внешний вид макетной платы с собранной схемой, и плату Arduino с проводами идущими от макетной платы.

Набор для экспериментов ArduinoKitКод программы для опыта №3:

Остается загрузить программу в Arduino через USB шнур. Скачать скетч с третьим уроком LED RGB — выше в статье.

Со светодиодами сейчас знакомы все. Без них просто немыслима современная техника. Это светодиодные фонари и лампы, индикация режимов работы различной бытовой техники, подсветка экранов компьютерных мониторов, телевизоров и много еще всяких вещей, о которых так сразу и не вспомнить. Все перечисленные устройства содержат светодиоды видимого диапазона излучения различных цветов: красного, зеленого, синего (RGB), желтого, белого. Современные технологии позволяют получить практически любой цвет.

Кроме светодиодов видимого диапазона излучения существуют светодиоды инфракрасного и ультрафиолетового свечения. Основная область применения таких светодиодов это устройства автоматики и управления. Достаточно вспомнить . Если первые модели ПДУ применялись исключительно для управления телевизорами, то теперь с их помощью управляются настенные обогреватели, кондиционеры, вентиляторы и даже кухонная техника, например, кастрюли-мультиварки и хлебопечки.

Так что же такое светодиод?

По сути, мало чем отличается от обычного , - все тот же p-n переход, и все то же основное свойство односторонняя проводимость. По мере изучения p-n перехода выяснилось, что кроме односторонней проводимости он, этот самый переход, обладает еще несколькими дополнительными свойствами. В процессе эволюции полупроводниковой техники эти свойства изучались, развивались и совершенствовались.

Большой вклад в разработку полупроводников внес советский радиофизик (1903 - 1942). В 1919 году он поступил в знаменитую и известную до сих пор Нижегородскую радиолабораторию, а с 1929 году работал в Ленинградском физико-техническом институте. Одним из направлений деятельности ученого было исследование слабого, чуть заметного, свечения кристаллов полупроводников. Именно на этом эффекте и работают все современные светодиоды.

Это слабое свечение возникает при пропускании через p-n переход тока в прямом направлении. Но в настоящее время это явление изучено и усовершенствовано настолько, что яркость некоторых светодиодов такая, что можно просто ослепнуть.

Цветовая гамма светодиодов очень широка, практически все цвета радуги. Но цвет получается вовсе не изменением цвета корпуса светодиода. Это достигается тем, что в p-n переход добавляются легирующие примеси. Например, введение незначительного количества фосфора или алюминия позволяет получить цвета красного и желтого оттенков, а галлий и индий излучают свет от зеленого до голубого цвета. Корпус светодиода может быть прозрачным или матовым, если корпус цветной, то это просто светофильтр соответствующий цвету свечения p-n перехода.

Другим способом получения нужного цвета является введение люминофора. Люминофор - это вещество, дающее видимый свет при воздействии на него другим излучением, даже инфракрасным. Классический тому пример - лампы дневного света. В случае со светодиодами - белый цвет получается, если добавить люминофор в кристалл голубого свечения.

Для увеличения интенсивности излучения почти все светодиоды имеют фокусирующую линзу. Часто в качестве линзы используется торец прозрачного корпуса, имеющий сферическую форму. У светодиодов инфракрасного диапазона излучения иногда линза бывает на вид непрозрачная, дымчато-серого цвета. Хотя в последнее время инфракрасные светодиоды выпускаются просто в прозрачном корпусе, именно такие применяются в различных ПДУ.

Двухцветные светодиоды

Тоже известны практически всем. Например, зарядник для

gksteel.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта