Eng Ru
Отправить письмо

Системы ВЧ связи по ЛЭП. Коммуникационные решения для электрических сетей. Связь вч по лэп


Системы ВЧ связи по ЛЭП. Коммуникационные решения для электрических сетей

Связь по линиям электропередач снова стала активно обсуждаемой темой, на различных научных уровнях и прессе. В последние несколько лет эта технология пережила много взлетов и падений. В специальных периодических изданиях опубликовано множество статей с противоречивыми взглядами (выводами). Одни специалисты называет передачу данных по электрическим сетям технологией, умирающей, другие предсказывают блестящее будущее в сетях среднего и низкого напряжения, например, в офисах и жилых домах.

Технология, которая сегодня называется ВЧ связь по ЛЭП, на самом деле охватывает несколько различных и независящих друг от друга направлений и приложений. Это с одной стороны узкополосная передача точка-точка по ВЛ высокого напряжения (35-750 кВ), а с другой стороны широкополосная общесетевая передача данных, (BPL — Broadband Power Line), в сетях среднего и низкого напряжения (0,4-35 кВ).

Фирма Siemens является пионером в обоих направлениях. Первые ВЧ системы на высоковольтных линиях, фирмы Siemens были реализованы еще в 1926 году в Ирландии.

Привлекательность этой технологии для операторов сетей электроснабжения состоит в том, что для передачи информационных сигналов используется собственная инфраструктура электросети. Таким образом технология является не только очень экономичной — отсутствуют текущие расходы на содержание каналов связи, но и позволяет быть предприятиям энергоснабжения быть независимыми от провайдеров услуг связи, что особенно важно в аварийных случаях, и даже предписывается на законодательном уровне многих стран. ВЧ связь является универсальным технологическим решением как для предприятий занимающиеся передачей и распределением электроэнергии, так и компаний ориентированных на предоставлении услуг населению.

ВЧ связь в сетях высокого напряжения (35-750 кВ) 

Во время бурного развития информационных технологий (90-е гг.) предприятия электроснабжения в промышленно развитых странах делали значительные инвестиции в прокладку линий оптической связи (ВОЛС) по ВЛ высокого напряжения в надежде обеспечить себе прибыльную долю перегретого рынка телекоммуникаций. В это время добрую старую технологию ВЧ похоронили заново. Затем раздутый информационно-технический пузырь лопнул, и во многих регионах наступило протрезвление. И именно в энергетических сетях установка оптических линий была приостановлена по экономическим соображениям, а технология ВЧ связи по ВЛ приобрела новое значение.

В результате применения цифровых технологий на высоковольтных сетях, сформировались новые требования к ВЧ системам.

В настоящее время, передача данных, речи осуществляется по быстрым цифровым каналам, а сигналы и данные систем защиты передаются одновременно (параллельно) по ВЧ линиям, и цифровым каналам (ВОЛС), образуя надежное резервирование (см. следующий раздел).

На ответвлениях сети и длинных участках линий электропередач использование ВОЛС экономически не целесообразно. Здесь технология ВЧ предлагает экономичную альтернативу для передачи речи, данных и сигналов-команд РЗ и ПА (РЗ — релейные защиты, ПА — противоаварийная автоматика) Рисунок1.

В связи c быстрым развитием систем автоматизации электроэнергетики и цифровых широкополосных сетей на магистральных линиях, изменились требования к современным системам ВЧ связи.

Сегодня на отводах сети ВЧ связь рассматривается как система, которая надежно передает данные систем защиты и обеспечивают прозрачный удобный интерфейс для данных и речи от широкополосных цифровых сетей до конечного потребителя при значительно большей пропускной способностью, по сравнению с обычными аналоговыми системами. С современной точки зрения высокая пропускная способность может быть достигнута только путем увеличения полосы частот. То, что в прошлом было невозможно из-за недостатка свободных частот, сегодня реализуется благодаря повсеместному применению оптических линий. Поэтому ВЧ системы усиленно используются только на ответвлениях сети. Также существуют варианты, когда отдельные участки сетей объединены между собой ВОЛС, что позволяет использовать одинаковые рабочие частоты гораздо чаще, чем в случае объединенных систем ВЧ связи.

В современных цифровых ВЧ системах плотность информации при использовании быстрых сигнальных процессоров и цифровых способов модуляции может быть увеличена по сравнению с аналоговыми системами с 0,3 до 8 бит/сек/Гц. Таким образом, для полосы частот 8 кГц в каждом направлении (прием и передача) может быть достигнута скорость 64 кбит/с.

В 2005 году фирма Siemens представила новую цифровую аппаратуру ВЧ связи «PowerLink», подтвердив лидирующее положение в данной области. Аппаратура PowerLink сертифицирована и для использования в России. Создавая PowerLink фирма Siemens создала мультисервисную платформу, пригодную как для аналогового, так и для цифрового применения Рисунок 2. 

Ниже приводятся уникальные особенности этой системы

Оптимальное использование выделенной частоты: лучшая аппаратура ВЧ связи позволяют передавать данные со скоростью 64 кбит/с и менее, в то время как у PowerLink данный показатель составляет 76,8 кбит в секунду, занимая полосу 8 кГц.

Больше речевых каналов: еще одной инновацией фирмы Siemens, реализованной в системе PowerLink, является возможность передачи 3-х аналоговых речевых каналов при полосе 8 кГц вместо 2-х каналов в обычной аппаратуре.

Видеонаблюдение: PowerLink — первая система ВЧ связи позволяющая передавать сигнал видеонаблюдения.

AXC (Automatic Crasstalk Canceller) Автоматическое подавление перекрестных помех: раньше сближенные полосы приема-передачи требовали сложную ВЧ настройку для минимизации влияния передатчика на свой приемник. Запатентованный AXC блок заменил сложную гибридную настройку и соответствующий модуль, а качество приема-передачи улучшилось.

OSA (Optimized Sub channel Allocation) Оптимальное распределение подканалов: еще одно запатентованное решение компании Siemens гарантирует оптимальное распределение ресурсов при конфигурировании услуг (Речь, данные, защитная сигнализация) в выделенной частотной полосе. В результате итоговая передающая емкость увеличивается до 50%.

Повышенная гибкость: для обеспечения надежности инвестиций и возможности будущего использования фирма Siemens реализовала функцию «ease-up!» для простого и надежного обновления.

Многофункциональное оборудование: выполняя проект на базе комбинированной аппаратуры PowerLink вы можете забыть об ограничениях которые были в обычных терминалах при планировании частот. С PowerLink Вы сможете спроектировать систему ВЧ связи со всем набором услуг (передача речи, данных, сигналов РЗ и ПА) в доступной полосе. Один комплект PowerLink может заменить три (3) обычных аналоговые системы Рисунок 3. 

Передача данных систем защиты

Технология ВЧ связи сейчас, как и раньше, играет важную роль в области передачи данных систем защиты. На магистральных и высоковольтных линиях с напряжением свыше 330 кВ, как правило, используются двойные системы защиты с разными способами измерения (например, дифференциальная защита и дистанционная защита). Для передачи данных систем защиты также используются различные способы передачи для обеспечения полной избыточности, включая коммуникационные каналы. Типичными каналами связи в этом случае является комбинация цифровых каналов по оптическим линиям для данных дифференциальной защиты и аналоговых ВЧ каналов для передачи сигналов-команд дистанционных защит. Для передачи сигналов защиты, технология ВЧ является самым надежным каналом. ВЧ связь является более надежным каналом передачи данных, чем другие, даже оптические линии не могут обеспечить такое качество по прошествии длительного времени. За пределами магистральных линий и на окончаниях сети, ВЧ связь часто становится единственным каналом для передачи данных систем защит.

Проверенная система SWT 3000 фирмы Siemens (Рисунок 4) является инновационным решением для передачи команд РЗ ПА с требуемой максимальной надежностью и одновременно с минимальным временем передачи команд в аналоговых и цифровых коммуникационных сетях.

Многолетний опыт в области передачи защитных сигналов позволил создать уникальную систему. Благодаря сложной комбинации цифровых фильтров и систем цифровой обработки сигналов удалось настолько подавить влияние импульсных помех — самых сильных помех в аналоговых каналах связи, что даже в сложных реальных условиях достигается надежная передача команд РЗ и ПА. Поддерживаются все известные режимы работы прямого отключения или разрешающего срабатывания с индивидуальными таймерами и скоординированной или нескоординированной передачей. Выбор режимов работы осуществляется с помощью программного обеспечения. Специфичные для российских электросетей функции про-тивоаварийной автоматики могут быть реализованы на той же аппаратной платформе SWT 3000.

При использовании цифровых интерфейсов идентификация устройства осуществляется по адресу. Таким образом возможно предотвращение случайного подключения других устройств по цифровым сетям.

Гибкая концепция два в одном позволяет использовать SWT 3000 во всех имеющихся каналах связи — медных кабелях, высоковольтных линиях, оптических линиях или цифровых в любых комбинациях Рисунок 5: 

  • цифровая + аналоговая на одной платформе;
  • 2 избыточных канала в 1 системе;
  • дублированный блок питания в 1 системе;
  • 2 системы в 1 среде.

Являясь очень экономичным решением SWT 3000 может интегрироваться в ВЧ систему PowerLink. В этой конфигурации обеспечивается возможность дублированной передачи — аналоговая по технологии ВЧ и цифровая, например, по SDH.

ВЧ связь в сетях среднего и низкого напряжения (распределительные сети)

В отличие от ВЧ связи по ЛЭП высокого напряжения, в сетях среднего и низкого напряжения системы ВЧ разработаны для режимов работы точка — много точек. Также эти системы различаются по скорости передачи данных.

Узкополосные системы (цифровые каналы связи DLC) давно используются в электросетях для определения места сбоев, дистанционной автоматики и передачи измерительных данных. Скорость передачи в зависимости от применения от 1,2 кбит/с до < 100 кбит/с. Передача сигналов в линиях среднего напряжения осуществляется емкостным способом по экрану кабеля среднего напряжения.

На рынке коммуникационных систем фирма Siemens с 2000-го года успешно предлагает цифровую систему связи DCS3000. Постоянные изменения состояния электросети, вызванные частыми переключениями или подключением различных потребляющих устройств требуют реализации сложной технологической задачи — интегрированной производительной системы обработки сигналов, реализация, которой стала возможно только сегодня.

DCS3000 использует качественную технологию передачи данных OFDM — мультиплексирование с ортогональным частотным разделением сигналов. Надежная технология обеспечивает автоматическую адаптацию к изменениям в сети передачи. При этом передаваемая информация в определенном диапазоне оптимально модулируется на нескольких отдельных несущих и передается в стандартизированном для электросетей диапазоне CENELEC (от 9 до 148 кГц). При соблюдении разрешенного диапазона частот и мощности передачи необходимо преодолеть изменения в конфигурации электросети, а также типичные для электросети помехи, например, широкополосный шум, импульсные помехи и узкополосные помехи. Дополнительно обеспечивается надежная поддержка функции передачи данных с использованием стандартных протоколов путем повторения пакетов данных в случае неисправности. Система DCS3000 была разработана для низкоскоростной передачи данных относящихся к службам электроснабжения в диапазоне от 4 кГц до 24 кГц.

Сети среднего напряжения обычно эксплуатируются с открытой схемой, обеспечивающий двусторонний доступ к каждой трансформаторной станции.

Система DCS3000 состоит из модема, базового блока (BU) и индуктивных или емкостных модулей связи. Связь осуществляется по принципу главный-подчиненный (master — slave). Главный базовый блок DCS3000 в трансформаторной подстанции через подчиненные базовые блоки DCS3000 периодически опрашивает с них данные подключенных телеметрических приборов и передает их дальше на пульт управления Рисунок 6. Передача пакетов данных на пульт управления и на телеметрические приборы может осуществляться по стандарту IEC61870-5-101 или DNP3.

Ввод и вывод информационного сигнала реализуется перед или после распределительных устройств, так как экран кабеля, заземлен только на концах ввода, с помощью простых индуктивных соединений (CDI). Разделяемые ферритовые сердечники могут монтироваться на экране кабеля или на кабеле. В зависимости от конкретных условий. При монтаже отключение линии среднего напряжения не является обязательным.

Для других кабелей или воздушных линий ввод осуществляется по фазным проводам с помощью емкостных соединений (CDC). Для различных уровней напряжений фирма Siemens предлагает разные соединения для кабельных, воздушных распределительных систем и систем с газовой изоляцией.

Распределительная сеть может создваться и с другой топологией. Система DCS3000 прекрасно подходит для сетей среднего напряжения с линейной или древовидной топологией или топологией звезда. Если между двумя трансформаторными станциями имеется экранированная линия с защитным трансформатором, то она может напрямую подключаться к DCS3000. Для обеспечения постоянного доступа к каналу желательно создать логическое кольцо. Если это невозможно из-за топологии сети, то две линии могут быть объединены в логическое кольцо с помощью встроенного модема.

Созданная фирмой Siemens система DCS3000 является единственной успешно реализованной на практике системой связи в распределительной сети. Среди прочих заказов фирма Siemens создала системы связи в Сингапуре для Singapore Power Grid и в Макао для CEM Macao. Аргументом для реализации этих проектов послужила возможность избежать крупных затрат в строительство новой инфраструктуры линии связи. Фирма Siemens в течение 25 лет поставляет Singapur PG оборудованием для коммуникационных решений для передачи данных по экранированным кабелям. В 2000 году фирма Siemens получила заказ на поставку 1100 систем DCS3000, которые используются Singapore PG в распределительной электросети с напряжением 6 кВ для автоматизации и локализации повреждений. Распределительная сеть в основном построена по кольцевой схеме.

CEM Macao эксплуатирует свою распределительную электросеть только на одном уровне напряжения. Поэтому предъявляемые здесь требования похожи на требования к сети высокого напряжения. Особые требования предъявляются к надежности создаваемой системы связи. Поэтому система DCS3000 была расширена избыточными базовыми блоками и избыточными входами на пульт управления. Сеть среднего напряжения построена в виде кольца и обеспечивает передачу данных в двух направлениях. Более 1000 систем DCS3000 на протяжении многих лет обеспечивают надежную работу созданной сети связи и служат подтверждением ее эффективности.

В Египте трансформаторные станции не были оснащены входными каналами удаленного обслуживания. Создание новых соединений требовало больших затрат. Существовала принципиальная возможность использования радиомодемов, однако количество доступных частот для отдельных трансформаторных станций было ограничено и невозможно было избежать значительных дополнительных эксплуатационных затрат. Альтернативным решением стала система DCS3000. Данные удаленных терминалов телемеханики передавались на трансформаторную подстанцию. Система телемеханики высшего уровня собирала данные и передавала их по радиосвязи в концентраторы данных, откуда они в свою очередь передавались по существующим линиям удаленного контроля в центр управления. Для двух проектов фирма Siemens поставила более 850 систем DCS3000 в MEEDCO (10 кВ) и DELTA (6 кВ).

Широкополосные системы (Broadband Power Line BPL) После многолетних экспериментальных инсталляций в разных странах мира и многочисленных коммерческих проектов второе поколение технологии BPL развилось настолько, что стало привлекательной альтернативой для других широкополосных сетях доступа.

В сетях низкого напряжения BPL дает провайдеру возможность реализовывать на «последней миле» широкополосный доступ к услугам «трипл-плей»:

  • скоростной доступ в интернет;
  • IP-телефония;
  • видео.

Пользователи могут пользоваться этими предлагаемыми услугами, подключившись к любой электророзетке. Также возможна организация в доме локальной сети для соединения компьютеров и периферийных устройств без прокладки дополнительных кабелей.

Для коммунальных предприятий BPL сегодня не рассматривается. Для единственной используемой сегодня службы — дистанционного считывания показаний счетчиков — используются экономичные решения, например, GSM или медленные системы DLC. Однако в сочетании с широкополосными службами BPL становится привлекательной и для считывания показаний счетчиков. Таким образом «трипл-плей» превращается в «квадро-плей» (Рисунок 8).

В сети среднего напряжения BPL используется для широкополосных услуг как транспортный канал до ближайшей точки доступа провайдера. Для коммунальных служб — в настоящее время дистанционного считывания показаний счетчиков приборов АСКУЭ — достаточно узкополосных систем, работающих в отведенном CENELEC для коммунальных служб диапазоне от 9 до 148 кГц. Разумеется, системы BPL среднего напряжения со смешанными службами («совместный канал») могут использоваться и для провайдера и для коммунальных служб.

Значение BPL растет, чему свидетельствует увеличение инвестиций в данный вид связи коммунальных служб, провайдеров и промышленности. В прошлом основными действующими игроками рынка BPL были преимущественно небольшие предприятия, специализирующиеся исключительно на этой технологии, однако сегодня на этот рынок выходят крупные концерны, например, Schneider Electric, Misubishi Electric, Motorola и Siemens. Это еще один признак растущего значения данной технологии. Однако значительного прорыва пока не произошло по двум ключевым причинам:

1. Отсутствии стандартизации

BPL использует диапазон частот от 2 до 40 МГц (в США до 80 МГц), в котором работают различные коротковолновые службы, государственные органы и радиолюбители. Именно радиолюбители развернули в некоторых европейских странах компанию против BPL — и эта тема активно обсуждается. Международные институты стандартизации, например, ETSI, CENELEC, IEEE в специальных рабочих группах разрабатывают стандарт, регулирующий применение BPL в сетях среднего и низкого напряжения и распределительных сетях в зданиях и гарантирующий сосуществование с другими службами.

2. Стоимость и бизнес-модель

Стоимость инфраструктуры Powerline с модемами, оборудованием присоединения и повторителями по прежнему высока по сравнению, например, технологией DSL. Высокая стоимость, с одной стороны объясняется небольшими объемами производства, а с другой стороны ранней стадией развития этой технологии. При использовании широкополосных услуг технология BPL должна быть конкурентоспособна по отношению к DSL как по производительности, так и по стоимости.

В отношении бизнес-модели роль коммунальных служб в создании стоимости может сильно варьироваться — от продажи права использования до полного предоставления провайдерских услуг. Главное отличие между различными моделями состоит в доле участия коммунальных служб.

Тенденции развития коммуникационных технологий

В телекоммуникационных сетях общего пользования сегодня более 90% трафика данных проходит через SDH/SONET. Такие каналы с фиксированной коммутацией сегодня становяться неэкономичными, так как они находятся в рабочем состоянии, даже когда не используются. Кроме того, рост рынка заметно переместился от речевых приложений (TDM) к передаче данных (пакетная ориентация). Переход от раздельных сетей мобильной и проводной связи, LAN и WAN к единой интегрированной IP-сети осуществляется в несколько этапов с учетом существующей сети. На первом этапе пакетно-ориентированный трафик данных передается в виртуальных пакетах существующей сети SDH. Это называется PoS («Пакетная передача через SDH») или EoS («Ethernet через SDH») с пониженной модульностью и, следовательно, более низкой эффективностью использования выделенной полосы. Следующий переход от TDM к IP предлагают сегодняшние системы NG SDH (SDH следующего поколения) с мультисервисной платформой, которая уже оптимизирована для пакетно-ориентированных приложений GFP (общая процедура синхронизации), LCAS (схема регулировки пропускной способности линии), RPR (гибкие пакетные кольца) и других приложений в среде SDH.

Эта эволюция в коммуникационных технологиях повлияла и на структуру управления энергосетями. Традиционно связь между управляющими центрами и подстанциями для систем диспетчерского управления и сбора данных базировалась на последовательных протоколах и выделенных каналах, обеспечивающих малое время прохождения сигнала и находящихся в состоянии постоянной готовности. Разумеется, выделенные каналы не обеспечивают гибкости, необходимой для эксплуатации современной электросети. Поэтому тенденция перехода на использование протокола TCP/IP (протокол управления передачей/межсетевой протокол) пришлась кстати. Основными стимулами перехода с последовательного протокола на протокол IP в системах диспетчерского управления и сбора данных являются:

  • распространение оптических систем обеспечивает увеличение пропускной полосы и устойчивость к электрическим помехам;
  • протокол TCP/IP и соответствующие технологии фактически стали стандартом для сетей передачи данных;
  • возникновение стандартизированных технологий, обеспечивающих требуемое качество функционирования сетей с протоколом TCP/IP (QoS качество обслуживания).

Эти технологии способные развеять технические опасения в надежности и возможности обеспечения быстрого времени реакции для приложений диспетчерского управления и сбора данных.

Этот переход к сети TCP/IP делает возможным интеграцию управления сетями диспетчерского управления и сбора данных в общее сетевое управление.

Изменение конфигурации в этом случае можно осуществлять загрузкой из центрального блока управления вместо требующего значительных затрат времени обновления микропрограмм соответствующих подстанций. Стандарты для основанных на IP протоколов телемеханических систем разрабатываются мировым сообществом и уже выпущены для связи на подстанциях (IEC61850) Рисунок 10. 

Стандарты для связи между подстанциями и центром управления и между самими подстанциями пока находятся в стадии разработки. Параллельно перевод речевых приложений с TDM на VoIP, что позволит значительно упростить кабельные соединения на подстанциях, так как все устройства и IP-телефония используют одну локальную сеть.

В старых распределительных электросетях коммуникационные соединения устанавливались редко, так как уровень автоматизации был низким, а сбор данных счетчиков производился редко. Эволюция энергетических сетей в будущем будет требовать каналов связи именно на этом уровне. Постоянно растущее потребление в мегаполисах, дефицит сырьевых ресурсов, увеличение доли возобновляемых источников энергии, выработка электроэнергии в непосредственной близости от потребителя («распределенная генерация») и надежное распределение электроэнергии с малыми потерями — вот основные факторы, определяющие управление сетями завтрашнего дня. Связь в АСКУЭ в будущем будет использоваться не только для считывания данных потребления, но и как двусторонний коммуникационный канал для гибкого формирования тарифов, подключения систем подачи газа, воды и тепла, передачи счетов и предоставления дополнительных услуг, например, охранной сигнализации. Повсеместное предоставление возможности Ethernet-соединений и достаточная пропускная способность на участке от системы управления до потребителя необходимы для управления эксплуатацией будущих сетей.

Заключение

Интеграция телекоммуникационных служб в энергосетях потребует тесной интеграции различных технологий. В одной энергосети, в зависимости от топологии и требований, будут применяются несколько типов связи.

Системы ВЧ связи по ЛЭП могут стать решением данных задач. Развитие поддержки протокола IP, в особенности для ВЧ по ЛЭП высокого напряжения, обеспечивает значительное повышение пропускной способности. Фирма Siemens также вносит свой вклад в это развитие — уже сегодня разрабатываются технологии, позволяющие увеличить полосу пропускания и, следовательно, скорость передачи до 256 кбит/с. Технология BPL является прекрасной платформой для обеспечения связи в будущих сетях среднего и низкого напряжения для предоставления потребителю всех новых услуг. Будущие BPL-системы фирмы Siemens предлагают единую аппаратную платформу для узкополосных (CENELEC) и для широкополосных приложений. В энергетических сетях следующего поколения ВЧ связь займет прочное место и станет идеальным дополнением для оптических и беспроводных широкополосных систем.

Фирма Siemens следует этой тенденции и является одним из немногих мировых производителей как в области ВЧ, так и в области коммуникационных сетей, готовым предложить единое интегрированное решение.

Литература:

  1. Energie Spektrum, 04/2005: S. Schlattmann, R. Stoklasek; Digital-Revival von PowerLine.
  2. PEI, 01/2004: S. Green; Communication Innovation. Asian Electricity 02/2004: Powerline Carrier for HV Networtk.
  3. Middle East Electricity, Feb. 2003: J. Buerger: Transmission Possible.
  4. Die Welt, April 2001; J. Buerger: Daten vom Netz ubers Netz.
  5. VDI Nachrichten 41; Oktober; 2000 M. Wohlgenannt: Stromnetz ubertrugt Daten zur eigenen Steuerung. Elektrie Berlin 54 (2000) 5-6; J. Buerger, G. Kling, S. Schlattmann: Power Line Communication-Datenubertragung auf dem Stromverteilnetz.
  6. EV Report, Marz 2000: J. Buerger, G. Kling, S. Schlattmann: Kommunikationsruckrat fur Verteilnetze.
  7. ETZ 5/2000; G. Kling: Power Line Communication Technik fur den deregulierten Markt.

Karl Dietrich, компания «Siemens AG», департамет «Передачи и распределения электроэнергии PTD», подразделение EA4 CS.  Перевод: Е. А. МАЛЮТИН.

market.elec.ru

Системы ВЧ связи по ЛЭП. Коммуникационные решения для электрических сетей

Связь по линиям электропередач снова стала активно обсуждаемой темой, на различных научных уровнях и прессе. В последние несколько лет эта технология пережила много взлетов и падений. В специальных периодических изданиях опубликовано множество статей с противоречивыми взглядами (выводами). Одни специалисты называет передачу данных по электрическим сетям технологией, умирающей, другие предсказывают блестящее будущее в сетях среднего и низкого напряжения, например, в офисах и жилых домах.

Технология, которая сегодня называется ВЧ связь по ЛЭП, на самом деле охватывает несколько различных и независящих друг от друга направлений и приложений. Это с одной стороны узкополосная передача точка-точка по ВЛ высокого напряжения (35-750 кВ), а с другой стороны широкополосная общесетевая передача данных, (BPL — Broadband Power Line), в сетях среднего и низкого напряжения (0,4-35 кВ).

Фирма Siemens является пионером в обоих направлениях. Первые ВЧ системы на высоковольтных линиях, фирмы Siemens были реализованы еще в 1926 году в Ирландии.

Привлекательность этой технологии для операторов сетей электроснабжения состоит в том, что для передачи информационных сигналов используется собственная инфраструктура электросети. Таким образом технология является не только очень экономичной — отсутствуют текущие расходы на содержание каналов связи, но и позволяет быть предприятиям энергоснабжения быть независимыми от провайдеров услуг связи, что особенно важно в аварийных случаях, и даже предписывается на законодательном уровне многих стран. ВЧ связь является универсальным технологическим решением как для предприятий занимающиеся передачей и распределением электроэнергии, так и компаний ориентированных на предоставлении услуг населению.

ВЧ связь в сетях высокого напряжения (35-750 кВ) 

Во время бурного развития информационных технологий (90-е гг.) предприятия электроснабжения в промышленно развитых странах делали значительные инвестиции в прокладку линий оптической связи (ВОЛС) по ВЛ высокого напряжения в надежде обеспечить себе прибыльную долю перегретого рынка телекоммуникаций. В это время добрую старую технологию ВЧ похоронили заново. Затем раздутый информационно-технический пузырь лопнул, и во многих регионах наступило протрезвление. И именно в энергетических сетях установка оптических линий была приостановлена по экономическим соображениям, а технология ВЧ связи по ВЛ приобрела новое значение.

В результате применения цифровых технологий на высоковольтных сетях, сформировались новые требования к ВЧ системам.

В настоящее время, передача данных, речи осуществляется по быстрым цифровым каналам, а сигналы и данные систем защиты передаются одновременно (параллельно) по ВЧ линиям, и цифровым каналам (ВОЛС), образуя надежное резервирование (см. следующий раздел).

На ответвлениях сети и длинных участках линий электропередач использование ВОЛС экономически не целесообразно. Здесь технология ВЧ предлагает экономичную альтернативу для передачи речи, данных и сигналов-команд РЗ и ПА (РЗ — релейные защиты, ПА — противоаварийная автоматика) Рисунок1.

В связи c быстрым развитием систем автоматизации электроэнергетики и цифровых широкополосных сетей на магистральных линиях, изменились требования к современным системам ВЧ связи.

Сегодня на отводах сети ВЧ связь рассматривается как система, которая надежно передает данные систем защиты и обеспечивают прозрачный удобный интерфейс для данных и речи от широкополосных цифровых сетей до конечного потребителя при значительно большей пропускной способностью, по сравнению с обычными аналоговыми системами. С современной точки зрения высокая пропускная способность может быть достигнута только путем увеличения полосы частот. То, что в прошлом было невозможно из-за недостатка свободных частот, сегодня реализуется благодаря повсеместному применению оптических линий. Поэтому ВЧ системы усиленно используются только на ответвлениях сети. Также существуют варианты, когда отдельные участки сетей объединены между собой ВОЛС, что позволяет использовать одинаковые рабочие частоты гораздо чаще, чем в случае объединенных систем ВЧ связи.

В современных цифровых ВЧ системах плотность информации при использовании быстрых сигнальных процессоров и цифровых способов модуляции может быть увеличена по сравнению с аналоговыми системами с 0,3 до 8 бит/сек/Гц. Таким образом, для полосы частот 8 кГц в каждом направлении (прием и передача) может быть достигнута скорость 64 кбит/с.

В 2005 году фирма Siemens представила новую цифровую аппаратуру ВЧ связи «PowerLink», подтвердив лидирующее положение в данной области. Аппаратура PowerLink сертифицирована и для использования в России. Создавая PowerLink фирма Siemens создала мультисервисную платформу, пригодную как для аналогового, так и для цифрового применения Рисунок 2. 

Ниже приводятся уникальные особенности этой системы

Оптимальное использование выделенной частоты: лучшая аппаратура ВЧ связи позволяют передавать данные со скоростью 64 кбит/с и менее, в то время как у PowerLink данный показатель составляет 76,8 кбит в секунду, занимая полосу 8 кГц.

Больше речевых каналов: еще одной инновацией фирмы Siemens, реализованной в системе PowerLink, является возможность передачи 3-х аналоговых речевых каналов при полосе 8 кГц вместо 2-х каналов в обычной аппаратуре.

Видеонаблюдение: PowerLink — первая система ВЧ связи позволяющая передавать сигнал видеонаблюдения.

AXC (Automatic Crasstalk Canceller) Автоматическое подавление перекрестных помех: раньше сближенные полосы приема-передачи требовали сложную ВЧ настройку для минимизации влияния передатчика на свой приемник. Запатентованный AXC блок заменил сложную гибридную настройку и соответствующий модуль, а качество приема-передачи улучшилось.

OSA (Optimized Sub channel Allocation) Оптимальное распределение подканалов: еще одно запатентованное решение компании Siemens гарантирует оптимальное распределение ресурсов при конфигурировании услуг (Речь, данные, защитная сигнализация) в выделенной частотной полосе. В результате итоговая передающая емкость увеличивается до 50%.

Повышенная гибкость: для обеспечения надежности инвестиций и возможности будущего использования фирма Siemens реализовала функцию «ease-up!» для простого и надежного обновления.

Многофункциональное оборудование: выполняя проект на базе комбинированной аппаратуры PowerLink вы можете забыть об ограничениях которые были в обычных терминалах при планировании частот. С PowerLink Вы сможете спроектировать систему ВЧ связи со всем набором услуг (передача речи, данных, сигналов РЗ и ПА) в доступной полосе. Один комплект PowerLink может заменить три (3) обычных аналоговые системы Рисунок 3. 

Передача данных систем защиты

Технология ВЧ связи сейчас, как и раньше, играет важную роль в области передачи данных систем защиты. На магистральных и высоковольтных линиях с напряжением свыше 330 кВ, как правило, используются двойные системы защиты с разными способами измерения (например, дифференциальная защита и дистанционная защита). Для передачи данных систем защиты также используются различные способы передачи для обеспечения полной избыточности, включая коммуникационные каналы. Типичными каналами связи в этом случае является комбинация цифровых каналов по оптическим линиям для данных дифференциальной защиты и аналоговых ВЧ каналов для передачи сигналов-команд дистанционных защит. Для передачи сигналов защиты, технология ВЧ является самым надежным каналом. ВЧ связь является более надежным каналом передачи данных, чем другие, даже оптические линии не могут обеспечить такое качество по прошествии длительного времени. За пределами магистральных линий и на окончаниях сети, ВЧ связь часто становится единственным каналом для передачи данных систем защит.

Проверенная система SWT 3000 фирмы Siemens (Рисунок 4) является инновационным решением для передачи команд РЗ ПА с требуемой максимальной надежностью и одновременно с минимальным временем передачи команд в аналоговых и цифровых коммуникационных сетях.

Многолетний опыт в области передачи защитных сигналов позволил создать уникальную систему. Благодаря сложной комбинации цифровых фильтров и систем цифровой обработки сигналов удалось настолько подавить влияние импульсных помех — самых сильных помех в аналоговых каналах связи, что даже в сложных реальных условиях достигается надежная передача команд РЗ и ПА. Поддерживаются все известные режимы работы прямого отключения или разрешающего срабатывания с индивидуальными таймерами и скоординированной или нескоординированной передачей. Выбор режимов работы осуществляется с помощью программного обеспечения. Специфичные для российских электросетей функции про-тивоаварийной автоматики могут быть реализованы на той же аппаратной платформе SWT 3000.

При использовании цифровых интерфейсов идентификация устройства осуществляется по адресу. Таким образом возможно предотвращение случайного подключения других устройств по цифровым сетям.

Гибкая концепция два в одном позволяет использовать SWT 3000 во всех имеющихся каналах связи — медных кабелях, высоковольтных линиях, оптических линиях или цифровых в любых комбинациях Рисунок 5: 

  • цифровая + аналоговая на одной платформе;
  • 2 избыточных канала в 1 системе;
  • дублированный блок питания в 1 системе;
  • 2 системы в 1 среде.

Являясь очень экономичным решением SWT 3000 может интегрироваться в ВЧ систему PowerLink. В этой конфигурации обеспечивается возможность дублированной передачи — аналоговая по технологии ВЧ и цифровая, например, по SDH.

ВЧ связь в сетях среднего и низкого напряжения (распределительные сети)

В отличие от ВЧ связи по ЛЭП высокого напряжения, в сетях среднего и низкого напряжения системы ВЧ разработаны для режимов работы точка — много точек. Также эти системы различаются по скорости передачи данных.

Узкополосные системы (цифровые каналы связи DLC) давно используются в электросетях для определения места сбоев, дистанционной автоматики и передачи измерительных данных. Скорость передачи в зависимости от применения от 1,2 кбит/с до < 100 кбит/с. Передача сигналов в линиях среднего напряжения осуществляется емкостным способом по экрану кабеля среднего напряжения.

На рынке коммуникационных систем фирма Siemens с 2000-го года успешно предлагает цифровую систему связи DCS3000. Постоянные изменения состояния электросети, вызванные частыми переключениями или подключением различных потребляющих устройств требуют реализации сложной технологической задачи — интегрированной производительной системы обработки сигналов, реализация, которой стала возможно только сегодня.

DCS3000 использует качественную технологию передачи данных OFDM — мультиплексирование с ортогональным частотным разделением сигналов. Надежная технология обеспечивает автоматическую адаптацию к изменениям в сети передачи. При этом передаваемая информация в определенном диапазоне оптимально модулируется на нескольких отдельных несущих и передается в стандартизированном для электросетей диапазоне CENELEC (от 9 до 148 кГц). При соблюдении разрешенного диапазона частот и мощности передачи необходимо преодолеть изменения в конфигурации электросети, а также типичные для электросети помехи, например, широкополосный шум, импульсные помехи и узкополосные помехи. Дополнительно обеспечивается надежная поддержка функции передачи данных с использованием стандартных протоколов путем повторения пакетов данных в случае неисправности. Система DCS3000 была разработана для низкоскоростной передачи данных относящихся к службам электроснабжения в диапазоне от 4 кГц до 24 кГц.

Сети среднего напряжения обычно эксплуатируются с открытой схемой, обеспечивающий двусторонний доступ к каждой трансформаторной станции.

Система DCS3000 состоит из модема, базового блока (BU) и индуктивных или емкостных модулей связи. Связь осуществляется по принципу главный-подчиненный (master — slave). Главный базовый блок DCS3000 в трансформаторной подстанции через подчиненные базовые блоки DCS3000 периодически опрашивает с них данные подключенных телеметрических приборов и передает их дальше на пульт управления Рисунок 6. Передача пакетов данных на пульт управления и на телеметрические приборы может осуществляться по стандарту IEC61870-5-101 или DNP3.

Ввод и вывод информационного сигнала реализуется перед или после распределительных устройств, так как экран кабеля, заземлен только на концах ввода, с помощью простых индуктивных соединений (CDI). Разделяемые ферритовые сердечники могут монтироваться на экране кабеля или на кабеле. В зависимости от конкретных условий. При монтаже отключение линии среднего напряжения не является обязательным.

Для других кабелей или воздушных линий ввод осуществляется по фазным проводам с помощью емкостных соединений (CDC). Для различных уровней напряжений фирма Siemens предлагает разные соединения для кабельных, воздушных распределительных систем и систем с газовой изоляцией.

Распределительная сеть может создваться и с другой топологией. Система DCS3000 прекрасно подходит для сетей среднего напряжения с линейной или древовидной топологией или топологией звезда. Если между двумя трансформаторными станциями имеется экранированная линия с защитным трансформатором, то она может напрямую подключаться к DCS3000. Для обеспечения постоянного доступа к каналу желательно создать логическое кольцо. Если это невозможно из-за топологии сети, то две линии могут быть объединены в логическое кольцо с помощью встроенного модема.

Созданная фирмой Siemens система DCS3000 является единственной успешно реализованной на практике системой связи в распределительной сети. Среди прочих заказов фирма Siemens создала системы связи в Сингапуре для Singapore Power Grid и в Макао для CEM Macao. Аргументом для реализации этих проектов послужила возможность избежать крупных затрат в строительство новой инфраструктуры линии связи. Фирма Siemens в течение 25 лет поставляет Singapur PG оборудованием для коммуникационных решений для передачи данных по экранированным кабелям. В 2000 году фирма Siemens получила заказ на поставку 1100 систем DCS3000, которые используются Singapore PG в распределительной электросети с напряжением 6 кВ для автоматизации и локализации повреждений. Распределительная сеть в основном построена по кольцевой схеме.

CEM Macao эксплуатирует свою распределительную электросеть только на одном уровне напряжения. Поэтому предъявляемые здесь требования похожи на требования к сети высокого напряжения. Особые требования предъявляются к надежности создаваемой системы связи. Поэтому система DCS3000 была расширена избыточными базовыми блоками и избыточными входами на пульт управления. Сеть среднего напряжения построена в виде кольца и обеспечивает передачу данных в двух направлениях. Более 1000 систем DCS3000 на протяжении многих лет обеспечивают надежную работу созданной сети связи и служат подтверждением ее эффективности.

В Египте трансформаторные станции не были оснащены входными каналами удаленного обслуживания. Создание новых соединений требовало больших затрат. Существовала принципиальная возможность использования радиомодемов, однако количество доступных частот для отдельных трансформаторных станций было ограничено и невозможно было избежать значительных дополнительных эксплуатационных затрат. Альтернативным решением стала система DCS3000. Данные удаленных терминалов телемеханики передавались на трансформаторную подстанцию. Система телемеханики высшего уровня собирала данные и передавала их по радиосвязи в концентраторы данных, откуда они в свою очередь передавались по существующим линиям удаленного контроля в центр управления. Для двух проектов фирма Siemens поставила более 850 систем DCS3000 в MEEDCO (10 кВ) и DELTA (6 кВ).

Широкополосные системы (Broadband Power Line BPL) После многолетних экспериментальных инсталляций в разных странах мира и многочисленных коммерческих проектов второе поколение технологии BPL развилось настолько, что стало привлекательной альтернативой для других широкополосных сетях доступа.

В сетях низкого напряжения BPL дает провайдеру возможность реализовывать на «последней миле» широкополосный доступ к услугам «трипл-плей»:

  • скоростной доступ в интернет;
  • IP-телефония;
  • видео.

Пользователи могут пользоваться этими предлагаемыми услугами, подключившись к любой электророзетке. Также возможна организация в доме локальной сети для соединения компьютеров и периферийных устройств без прокладки дополнительных кабелей.

Для коммунальных предприятий BPL сегодня не рассматривается. Для единственной используемой сегодня службы — дистанционного считывания показаний счетчиков — используются экономичные решения, например, GSM или медленные системы DLC. Однако в сочетании с широкополосными службами BPL становится привлекательной и для считывания показаний счетчиков. Таким образом «трипл-плей» превращается в «квадро-плей» (Рисунок 8).

В сети среднего напряжения BPL используется для широкополосных услуг как транспортный канал до ближайшей точки доступа провайдера. Для коммунальных служб — в настоящее время дистанционного считывания показаний счетчиков приборов АСКУЭ — достаточно узкополосных систем, работающих в отведенном CENELEC для коммунальных служб диапазоне от 9 до 148 кГц. Разумеется, системы BPL среднего напряжения со смешанными службами («совместный канал») могут использоваться и для провайдера и для коммунальных служб.

Значение BPL растет, чему свидетельствует увеличение инвестиций в данный вид связи коммунальных служб, провайдеров и промышленности. В прошлом основными действующими игроками рынка BPL были преимущественно небольшие предприятия, специализирующиеся исключительно на этой технологии, однако сегодня на этот рынок выходят крупные концерны, например, Schneider Electric, Mitsubishi Electric, Motorola и Siemens. Это еще один признак растущего значения данной технологии. Однако значительного прорыва пока не произошло по двум ключевым причинам:

1. Отсутствии стандартизации

BPL использует диапазон частот от 2 до 40 МГц (в США до 80 МГц), в котором работают различные коротковолновые службы, государственные органы и радиолюбители. Именно радиолюбители развернули в некоторых европейских странах компанию против BPL — и эта тема активно обсуждается. Международные институты стандартизации, например, ETSI, CENELEC, IEEE в специальных рабочих группах разрабатывают стандарт, регулирующий применение BPL в сетях среднего и низкого напряжения и распределительных сетях в зданиях и гарантирующий сосуществование с другими службами.

2. Стоимость и бизнес-модель

Стоимость инфраструктуры Powerline с модемами, оборудованием присоединения и повторителями по прежнему высока по сравнению, например, технологией DSL. Высокая стоимость, с одной стороны объясняется небольшими объемами производства, а с другой стороны ранней стадией развития этой технологии. При использовании широкополосных услуг технология BPL должна быть конкурентоспособна по отношению к DSL как по производительности, так и по стоимости.

В отношении бизнес-модели роль коммунальных служб в создании стоимости может сильно варьироваться — от продажи права использования до полного предоставления провайдерских услуг. Главное отличие между различными моделями состоит в доле участия коммунальных служб.

Тенденции развития коммуникационных технологий

В телекоммуникационных сетях общего пользования сегодня более 90% трафика данных проходит через SDH/SONET. Такие каналы с фиксированной коммутацией сегодня становяться неэкономичными, так как они находятся в рабочем состоянии, даже когда не используются. Кроме того, рост рынка заметно переместился от речевых приложений (TDM) к передаче данных (пакетная ориентация). Переход от раздельных сетей мобильной и проводной связи, LAN и WAN к единой интегрированной IP-сети осуществляется в несколько этапов с учетом существующей сети. На первом этапе пакетно-ориентированный трафик данных передается в виртуальных пакетах существующей сети SDH. Это называется PoS («Пакетная передача через SDH») или EoS («Ethernet через SDH») с пониженной модульностью и, следовательно, более низкой эффективностью использования выделенной полосы. Следующий переход от TDM к IP предлагают сегодняшние системы NG SDH (SDH следующего поколения) с мультисервисной платформой, которая уже оптимизирована для пакетно-ориентированных приложений GFP (общая процедура синхронизации), LCAS (схема регулировки пропускной способности линии), RPR (гибкие пакетные кольца) и других приложений в среде SDH.

Эта эволюция в коммуникационных технологиях повлияла и на структуру управления энергосетями. Традиционно связь между управляющими центрами и подстанциями для систем диспетчерского управления и сбора данных базировалась на последовательных протоколах и выделенных каналах, обеспечивающих малое время прохождения сигнала и находящихся в состоянии постоянной готовности. Разумеется, выделенные каналы не обеспечивают гибкости, необходимой для эксплуатации современной электросети. Поэтому тенденция перехода на использование протокола TCP/IP (протокол управления передачей/межсетевой протокол) пришлась кстати. Основными стимулами перехода с последовательного протокола на протокол IP в системах диспетчерского управления и сбора данных являются:

  • распространение оптических систем обеспечивает увеличение пропускной полосы и устойчивость к электрическим помехам;
  • протокол TCP/IP и соответствующие технологии фактически стали стандартом для сетей передачи данных;
  • возникновение стандартизированных технологий, обеспечивающих требуемое качество функционирования сетей с протоколом TCP/IP (QoS качество обслуживания).

Эти технологии способные развеять технические опасения в надежности и возможности обеспечения быстрого времени реакции для приложений диспетчерского управления и сбора данных.

Этот переход к сети TCP/IP делает возможным интеграцию управления сетями диспетчерского управления и сбора данных в общее сетевое управление.

Изменение конфигурации в этом случае можно осуществлять загрузкой из центрального блока управления вместо требующего значительных затрат времени обновления микропрограмм соответствующих подстанций. Стандарты для основанных на IP протоколов телемеханических систем разрабатываются мировым сообществом и уже выпущены для связи на подстанциях (IEC61850) Рисунок 10. 

Стандарты для связи между подстанциями и центром управления и между самими подстанциями пока находятся в стадии разработки. Параллельно перевод речевых приложений с TDM на VoIP, что позволит значительно упростить кабельные соединения на подстанциях, так как все устройства и IP-телефония используют одну локальную сеть.

В старых распределительных электросетях коммуникационные соединения устанавливались редко, так как уровень автоматизации был низким, а сбор данных счетчиков производился редко. Эволюция энергетических сетей в будущем будет требовать каналов связи именно на этом уровне. Постоянно растущее потребление в мегаполисах, дефицит сырьевых ресурсов, увеличение доли возобновляемых источников энергии, выработка электроэнергии в непосредственной близости от потребителя («распределенная генерация») и надежное распределение электроэнергии с малыми потерями — вот основные факторы, определяющие управление сетями завтрашнего дня. Связь в АСКУЭ в будущем будет использоваться не только для считывания данных потребления, но и как двусторонний коммуникационный канал для гибкого формирования тарифов, подключения систем подачи газа, воды и тепла, передачи счетов и предоставления дополнительных услуг, например, охранной сигнализации. Повсеместное предоставление возможности Ethernet-соединений и достаточная пропускная способность на участке от системы управления до потребителя необходимы для управления эксплуатацией будущих сетей.

Заключение

Интеграция телекоммуникационных служб в энергосетях потребует тесной интеграции различных технологий. В одной энергосети, в зависимости от топологии и требований, будут применяются несколько типов связи.

Системы ВЧ связи по ЛЭП могут стать решением данных задач. Развитие поддержки протокола IP, в особенности для ВЧ по ЛЭП высокого напряжения, обеспечивает значительное повышение пропускной способности. Фирма Siemens также вносит свой вклад в это развитие — уже сегодня разрабатываются технологии, позволяющие увеличить полосу пропускания и, следовательно, скорость передачи до 256 кбит/с. Технология BPL является прекрасной платформой для обеспечения связи в будущих сетях среднего и низкого напряжения для предоставления потребителю всех новых услуг. Будущие BPL-системы фирмы Siemens предлагают единую аппаратную платформу для узкополосных (CENELEC) и для широкополосных приложений. В энергетических сетях следующего поколения ВЧ связь займет прочное место и станет идеальным дополнением для оптических и беспроводных широкополосных систем.

Фирма Siemens следует этой тенденции и является одним из немногих мировых производителей как в области ВЧ, так и в области коммуникационных сетей, готовым предложить единое интегрированное решение.

Литература:

  1. Energie Spektrum, 04/2005: S. Schlattmann, R. Stoklasek; Digital-Revival von PowerLine.
  2. PEI, 01/2004: S. Green; Communication Innovation. Asian Electricity 02/2004: Powerline Carrier for HV Networtk.
  3. Middle East Electricity, Feb. 2003: J. Buerger: Transmission Possible.
  4. Die Welt, April 2001; J. Buerger: Daten vom Netz ubers Netz.
  5. VDI Nachrichten 41; Oktober; 2000 M. Wohlgenannt: Stromnetz ubertrugt Daten zur eigenen Steuerung. Elektrie Berlin 54 (2000) 5-6; J. Buerger, G. Kling, S. Schlattmann: Power Line Communication-Datenubertragung auf dem Stromverteilnetz.
  6. EV Report, Marz 2000: J. Buerger, G. Kling, S. Schlattmann: Kommunikationsruckrat fur Verteilnetze.
  7. ETZ 5/2000; G. Kling: Power Line Communication Technik fur den deregulierten Markt.

Karl Dietrich, компания «Siemens AG», департамет «Передачи и распределения электроэнергии PTD»,подразделение EA4 CS. Перевод: Е. А. МАЛЮТИН.

www.elec.ru

ВЧ связь по ЛЭП / Zelax

Высокочастотная (ВЧ) связь по линиям электропередачи (ЛЭП), как и любая другая технология телекоммуникаций, работает по принципу модулирования передаваемой информации для последующей ее передачи и демодуляции. Принципиальное отличие ВЧ связи по ЛЭП заключается в том, что для транспортировки информации она использует тот же кабель, который применяется для передачи и распределения электроэнергии.

Особенности каналов ВЧ связи по ЛЭП заключается в том, что они организуются на базе линий, находящихся под высоким напряжением – 35 кВ и выше, с промышленной частотой переменного тока равной 50 Гц. Дополнительная сложность заключается в том, что в электроустановках часто возникают импульсные перенапряжения (грозовые, коммутационные и от коротких замыканий) с максимальным напряжением до нескольких сотен кВ.

Поэтому для построения стабильного канала ВЧ связи по ЛЭП требуется специальное оборудование, устойчивое к сильным шумам, неравномерной амплитудно-частотной характеристике и характеристике ГВП, обладающее высокой линейностью амплитудной характеристики и способное работать в широком частотном диапазоне.

Оборудование ВЧ связи можно условно разделить на активное и пассивное. Первое (или аппаратура уплотнения/обработки) применяется для обработки и передачи сигналов телефонной и диспетчерской связи, с поддержкой сигнализации АДАСЭ, телемеханики (МЭК-101, МЭК-104) и Ethernet в аналоговых или цифровых системах связи.

Пассивное оборудование каналов ВЧ связи по ЛЭП (или аппаратура присоединения) – устройства, с помощью которых, высокочастотный сигнал транспортируется от передатчика к линиям электропередачи и затем от них – к приемнику.

Так как оборудование ВЧ связи работает в условиях высокого напряжения промышленной частоты, важно обеспечить гальваническую изоляцию приемопередатчиков и согласование волновых сопротивлений линий электропередачи и высокочастотного кабеля.

ВЧ связь по ЛЭП продолжает быть одной из самых надежных с точки зрения управления объектами электроэнергетических систем. Поэтому линии электропередачи поныне используются межрегиональными распределительными сетевыми компаниями (МРСК) для высокочастотной передачи данных. Кроме того, ВЧ связь экономически эффективна в случаях передачи небольших объемов информации на дальние расстояния. Большое преимущество ВЧ по ЛЭП заключается еще и в том, что высоковольтные линии, как и построенные на их базе каналы связи, принадлежат энергосистемам.

Автор: ZelaxИсточник: www.zelax.ru

www.zelax.ru

К-ЛЭП Аппаратура ВЧ связи / Zelax

Комплекс К-ЛЭП в стандартной комплектации позволяет организовать до 4-х телефонных каналов (FXS/FXO/ТЧ), 6 каналов ТМ/ММО (RS-232) и канал Ethernet.

Целевая модель организации каналов передачи телеметрической информации требует, чтобы между узлами связи было два канала — основной и резервный, организованные по разным средам передачи данных и, желательно, оба цифровые. Замена существующих систем ВЧ связи с помощью оборудования Zelax — эффективное и экономически выгодное решение для организации цифрового канала по высоковольтным линиям электропередач.

Высоковольтные линии электропередач (ВЛ) в течение многих лет используются в энергосистемах МРСК для передачи информации на высоких частотах (ВЧ). ВЧ связь остается одной из самых надёжных видов связи, используемых для управления объектами электроэнергетических систем. ВЧ связь экономически выгодна при передаче малых объемов информации на большие расстояния. Немаловажную роль играет и тот факт, что ВЛ, а также организуемые по ним каналы связи принадлежат энергосистемам.

Технические преимущества применения комплекса К-ЛЭП:

  • адаптация линейной скорости к соотношению сигнал/шум в линии
  • гибкое распределение пропускной способности между пользовательскими каналами в зависимости от назначенных приоритетов
  • возможность работы на сближенных (смежных) частотах передачи и приёма
  • поддержка передачи данных ТМ и ММО со скоростью до 9,6 кбит/с в надтональном диапазоне канала ТЧ с сохранением передачи речевого сигнала
  • преобразование 2-х проводного FXS в 4-хпроводный ТЧ
  • поддержка сигнализации АДАСЭ
  • отсутствие влияния на системы релейной защиты и противоаварийной автоматики
  • наличие эхокомпенсатора и эхозаградителя
  • встроенный тестер качества цифрового канала по Рекомендации G.821

Наличие аналогового режима позволяет сохранить голосовую связь даже в случаях существенного ухудшения помеховой обстановки. Например, при обледенении ЛЭП. Аналоговый режим работы комплекса необходим также в случаях, когда существующее оборудование ВЧ-обработки не позволяет организовать передачу данных (по причине износа и/или не проведения регламентных работ). В аналоговом режиме обеспечивается возможность работы модемов ТМ. Переход между аналоговым и цифровым режимами может быть осуществлен по мере необходимости из меню без переустановки ПО.

ВЧ связь, модернизированная с помощью аппаратуры К-ЛЭП, особенно выгодна на малоканальных системах, где организация ВОЛС или РРЛ экономически нецелесообразна из-за небольшого количества передаваемой информации. Использование аппаратуры К-ЛЭП также оправдано на протяженных линиях электропередач, где построение нового канала связи оказывается слишком дорогостоящим мероприятием.

Каналы телемеханики аппаратуры К-ЛЭП позволяют использовать его и со старыми, и с новыми системами телеметрии. Таким образом, ВЧ связь может быть цифровизована заблаговременно, до появления новых систем телеметрии.

Аппаратуры К-ЛЭП позволяет снизить эксплуатационные расходы за счет возможности удалённой конфигурации и диагностики аппаратуры, что, помимо всего прочего, позволяет увеличить число необслуживаемых либо малообслуживаемых подстанций.

www.zelax.ru

Связь по ЛЭП - это... Что такое Связь по ЛЭП?

Связь через ЛЭП, PLC (англ. Power line communication) — термин, описывающий несколько разных систем для использования линий электропередачи (ЛЭП) для передачи голосовой информации или данных. Сеть может передавать голос и данные, накладывая аналоговый сигнал поверх стандартного переменного тока частотой 50 Гц или 60 Гц. PLC включает BPL (англ. Broadband over Power Lines — широкополосная передача через линии электропередачи), обеспечивающий передачу данных со скоростью более 1 Мбит/с, и NPL (англ. Narrowband over Power Lines — узкополосная передача через линии электропередачи) со значительно меньшими скоростями передачи данных.

Использование связи через ЛЭП для управления энергосистемой

Еще на заре развития энергосетей встал вопрос о передаче диспетчерской информации от одного энергоузла к другому.

Использование для этих целей телефонных и телеграфных линий, прокладываемых параллельно ЛЭП, считалось нерациональным, поэтому уже в начале 20-го века в сетях постоянного тока (см. война токов) в США применялась передача телеграфных сигналов непосредственно по проводам ЛЭП. Позже, с развитием средств радиосвязи, подобная методика стала применима и для сетей переменного тока.

Передача диспетчерской информации по проводам линий электропередач широко применяется, как один из основных видов связи. Приемопередатчик подключается к ЛЭП через фильтр присоединения, образованный из конденсатора малой емкости (4700 — 6800 пикофарад) и высокочастотного трансформатора (автотрансформатора). Подобная система позволяет передавать как голосовую информацию, так и данные телеметрии и телеуправления.

Использование ЛЭП для других целей связи

Технология PLC базируется на использовании силовых электросетей для высокоскоростного информационного обмена. Эксперименты по передаче данных по электросети велись достаточно давно, но низкая скорость передачи и слабая помехозащищенность были наиболее узким местом данной технологии. Но появление более мощных DSP-процессоров (цифровые сигнальные процессоры) дали возможность использовать более сложные способы модуляции сигнала, такие как OFDM-модуляция, что позволило значительно продвинуться вперед в реализации технологии PLC.

В 2000 году несколько крупных лидеров на рынке телекоммуникаций объединились в HomePlug Powerline Alliance с целью совместного проведения научных исследований и практических испытаний, а также принятия единого стандарта на передачу данных по системам электропитания. Прототипом PowerLine является технология PowerPacket фирмы Intellon, положенная в основу для создания единого стандарта HomePlug1.0 (принят альянсом HomePlug 26 июня 2001 года), в котором определена скорость передачи данных до 14 Мб/сек.

Технические основы технологии PLC

Основой технологии PowerLine является использование частотного разделения сигнала, при котором высокоскоростной поток данных разбирается на несколько относительно низкоскоростных потоков, каждый из которых передается на отдельной поднесущей частоте с последующим их объединением в один сигнал. Реально в технологии PowerLine используются 84 поднесущие частоты в диапазоне 4—21 Мгц.

При передаче сигналов по бытовой электросети могут возникать большие затухания в передающей функции на определенных частотах, что может привести к потере данных. В технологии PowerLine предусмотрен специальный метод решения этой проблемы — динамическое включение и выключение передачи сигнала (dynamically turning off and on data-carrying signals). Суть данного метода заключается в том, что устройство осуществляет постоянный мониторинг канала передачи с целью выявления участка спектра с превышением определенного порогового значения затухания. В случае обнаружения данного факта, использование этих частот на время прекращается до восстановления нормального значения затухания.

Существует также проблема возникновения импульсных помех (до 1 микросекунды), источниками которых могут быть галогенные лампы, а также включение и выключение мощных бытовых электроприборов, оборудованных электрическими двигателями.

Применение PLC-технологии

Подключение к Интернету

В настоящее время подавляющее большинство конечных подключений осуществляется посредством прокладки кабеля от высокоскоростной линии до квартиры или офиса пользователя. Это наиболее дешевое и надежное решение, но если прокладка кабеля невозможна, то можно воспользоваться имеющейся в каждом здании системой силовых электрических коммуникаций. При этом любая электрическая розетка в здании может стать точкой выхода в Интернет. От пользователя требуется только наличие PowerLine-модема для связи с аналогичным устройством, установленным, как правило, в электрощитовой здания и подключенным к высокоскоростному каналу. Однако, нужно быть готовым к нестабильности и низкому качеству работы сети.

Малый офис (SOHO)

PowerLine-технология может быть использована при создании локальной сети в небольших офисах (до 10 компьютеров), где основными требованиями к сети являются простота реализации, мобильность устройств и легкая расширяемость. При этом как вся офисная сеть, так и отдельные ее сегменты могут быть построены с помощью PowerLine-адаптеров. Часто встречается ситуация, когда необходимо включить в уже существующую сеть удаленный компьютер или сетевой принтер, расположенный в другой комнате или в другом конце здания. Такая проблема легко решается с помощью PowerLine-адаптеров.

Домашние коммуникации

PowerLine-технология может быть использована при реализации идеи «умного дома», где вся бытовая электроника связана в единую информационную сеть с возможностью централизованного управления.

Преимущества

  • Простота использования.
  • Не требуется прокладка отдельного кабеля.

Недостатки

  • Крайне уязвима со стороны радиопередающих устройств коротковолнового диапазона (включая легальные радиовещательные и радиолюбительские радиостанции).
  • Пропускная способность сети по электропроводке делится между всеми ее участниками.
  • Требуются специальные совместимые сетевые фильтры и ИБП. Через обычные не работает.
  • Современные Powerline-адаптеры заметно греются.[источник не указан 154 дня]
  • Нарушается радиоприём, особенно на средних и коротких волнах.
  • На качество связи оказывают отрицательное влияние энергосберегающие лампы, импульсные блоки питания, зарядные устройства, выключатели освещения и т.п. и т.д.(снижение скорости около от 5 до 50%).
  • На качество и скорость связи оказывает отрицательное влияние исполнения/топология/качество электропроводки, тип/режим/мощность бытовых электроприборов и устройств, наличие скруток (снижение скорости до полного пропадания).
  • Монтаж требует работы под напряжением.
  • Поскольку стандарт пересекается с коротковолновым диапазоном частот, то создаются взаимные помехи для связной и радиовещательной аппаратуры. Повсеместное распространение стандарта делает невозможным прием коротковолновых передач на расстоянии от сотен метров до километров от зданий и вблизи ЛЭП, где применяется данная технология.
  • В связи с вышеперечисленным, а также широкой доступностью помехоустойчивых Ethernet и DSL технологий, PLC не может серьезно рассматриваться как техническое решение для Интернет-доступа из-за высокой уязвимости к помехам и их излучениям. Поэтому, Федеральной комиссией по коммуникациям США (Federal Communications Commission, FCC) PLC-технология не рекомендована к использованию на территории США.

Ссылки

dikc.academic.ru

Связь по ЛЭП - это... Что такое Связь по ЛЭП?

Связь через ЛЭП, PLC (англ. Power line communication) — термин, описывающий несколько разных систем для использования линий электропередачи (ЛЭП) для передачи голосовой информации или данных. Сеть может передавать голос и данные, накладывая аналоговый сигнал поверх стандартного переменного тока частотой 50 Гц или 60 Гц. PLC включает BPL (англ. Broadband over Power Lines — широкополосная передача через линии электропередачи), обеспечивающий передачу данных со скоростью более 1 Мбит/с, и NPL (англ. Narrowband over Power Lines — узкополосная передача через линии электропередачи) со значительно меньшими скоростями передачи данных.

Использование связи через ЛЭП для управления энергосистемой

Еще на заре развития энергосетей встал вопрос о передаче диспетчерской информации от одного энергоузла к другому.

Использование для этих целей телефонных и телеграфных линий, прокладываемых параллельно ЛЭП, считалось нерациональным, поэтому уже в начале 20-го века в сетях постоянного тока (см. война токов) в США применялась передача телеграфных сигналов непосредственно по проводам ЛЭП. Позже, с развитием средств радиосвязи, подобная методика стала применима и для сетей переменного тока.

Передача диспетчерской информации по проводам линий электропередач широко применяется, как один из основных видов связи. Приемопередатчик подключается к ЛЭП через фильтр присоединения, образованный из конденсатора малой емкости (4700 — 6800 пикофарад) и высокочастотного трансформатора (автотрансформатора). Подобная система позволяет передавать как голосовую информацию, так и данные телеметрии и телеуправления.

Использование ЛЭП для других целей связи

Технология PLC базируется на использовании силовых электросетей для высокоскоростного информационного обмена. Эксперименты по передаче данных по электросети велись достаточно давно, но низкая скорость передачи и слабая помехозащищенность были наиболее узким местом данной технологии. Но появление более мощных DSP-процессоров (цифровые сигнальные процессоры) дали возможность использовать более сложные способы модуляции сигнала, такие как OFDM-модуляция, что позволило значительно продвинуться вперед в реализации технологии PLC.

В 2000 году несколько крупных лидеров на рынке телекоммуникаций объединились в HomePlug Powerline Alliance с целью совместного проведения научных исследований и практических испытаний, а также принятия единого стандарта на передачу данных по системам электропитания. Прототипом PowerLine является технология PowerPacket фирмы Intellon, положенная в основу для создания единого стандарта HomePlug1.0 (принят альянсом HomePlug 26 июня 2001 года), в котором определена скорость передачи данных до 14 Мб/сек.

Технические основы технологии PLC

Основой технологии PowerLine является использование частотного разделения сигнала, при котором высокоскоростной поток данных разбирается на несколько относительно низкоскоростных потоков, каждый из которых передается на отдельной поднесущей частоте с последующим их объединением в один сигнал. Реально в технологии PowerLine используются 84 поднесущие частоты в диапазоне 4—21 Мгц.

При передаче сигналов по бытовой электросети могут возникать большие затухания в передающей функции на определенных частотах, что может привести к потере данных. В технологии PowerLine предусмотрен специальный метод решения этой проблемы — динамическое включение и выключение передачи сигнала (dynamically turning off and on data-carrying signals). Суть данного метода заключается в том, что устройство осуществляет постоянный мониторинг канала передачи с целью выявления участка спектра с превышением определенного порогового значения затухания. В случае обнаружения данного факта, использование этих частот на время прекращается до восстановления нормального значения затухания.

Существует также проблема возникновения импульсных помех (до 1 микросекунды), источниками которых могут быть галогенные лампы, а также включение и выключение мощных бытовых электроприборов, оборудованных электрическими двигателями.

Применение PLC-технологии

Подключение к Интернету

В настоящее время подавляющее большинство конечных подключений осуществляется посредством прокладки кабеля от высокоскоростной линии до квартиры или офиса пользователя. Это наиболее дешевое и надежное решение, но если прокладка кабеля невозможна, то можно воспользоваться имеющейся в каждом здании системой силовых электрических коммуникаций. При этом любая электрическая розетка в здании может стать точкой выхода в Интернет. От пользователя требуется только наличие PowerLine-модема для связи с аналогичным устройством, установленным, как правило, в электрощитовой здания и подключенным к высокоскоростному каналу. Однако, нужно быть готовым к нестабильности и низкому качеству работы сети.

Малый офис (SOHO)

PowerLine-технология может быть использована при создании локальной сети в небольших офисах (до 10 компьютеров), где основными требованиями к сети являются простота реализации, мобильность устройств и легкая расширяемость. При этом как вся офисная сеть, так и отдельные ее сегменты могут быть построены с помощью PowerLine-адаптеров. Часто встречается ситуация, когда необходимо включить в уже существующую сеть удаленный компьютер или сетевой принтер, расположенный в другой комнате или в другом конце здания. Такая проблема легко решается с помощью PowerLine-адаптеров.

Домашние коммуникации

PowerLine-технология может быть использована при реализации идеи «умного дома», где вся бытовая электроника связана в единую информационную сеть с возможностью централизованного управления.

Преимущества

  • Простота использования.
  • Не требуется прокладка отдельного кабеля.

Недостатки

  • Крайне уязвима со стороны радиопередающих устройств коротковолнового диапазона (включая легальные радиовещательные и радиолюбительские радиостанции).
  • Пропускная способность сети по электропроводке делится между всеми ее участниками.
  • Требуются специальные совместимые сетевые фильтры и ИБП. Через обычные не работает.
  • Современные Powerline-адаптеры заметно греются.[источник не указан 154 дня]
  • Нарушается радиоприём, особенно на средних и коротких волнах.
  • На качество связи оказывают отрицательное влияние энергосберегающие лампы, импульсные блоки питания, зарядные устройства, выключатели освещения и т.п. и т.д.(снижение скорости около от 5 до 50%).
  • На качество и скорость связи оказывает отрицательное влияние исполнения/топология/качество электропроводки, тип/режим/мощность бытовых электроприборов и устройств, наличие скруток (снижение скорости до полного пропадания).
  • Монтаж требует работы под напряжением.
  • Поскольку стандарт пересекается с коротковолновым диапазоном частот, то создаются взаимные помехи для связной и радиовещательной аппаратуры. Повсеместное распространение стандарта делает невозможным прием коротковолновых передач на расстоянии от сотен метров до километров от зданий и вблизи ЛЭП, где применяется данная технология.
  • В связи с вышеперечисленным, а также широкой доступностью помехоустойчивых Ethernet и DSL технологий, PLC не может серьезно рассматриваться как техническое решение для Интернет-доступа из-за высокой уязвимости к помехам и их излучениям. Поэтому, Федеральной комиссией по коммуникациям США (Federal Communications Commission, FCC) PLC-технология не рекомендована к использованию на территории США.

Ссылки

dic.academic.ru

Связь по ЛЭП - это... Что такое Связь по ЛЭП?

Связь через ЛЭП, PLC (англ. Power line communication) — термин, описывающий несколько разных систем для использования линий электропередачи (ЛЭП) для передачи голосовой информации или данных. Сеть может передавать голос и данные, накладывая аналоговый сигнал поверх стандартного переменного тока частотой 50 Гц или 60 Гц. PLC включает BPL (англ. Broadband over Power Lines — широкополосная передача через линии электропередачи), обеспечивающий передачу данных со скоростью более 1 Мбит/с, и NPL (англ. Narrowband over Power Lines — узкополосная передача через линии электропередачи) со значительно меньшими скоростями передачи данных.

Использование связи через ЛЭП для управления энергосистемой

Еще на заре развития энергосетей встал вопрос о передаче диспетчерской информации от одного энергоузла к другому.

Использование для этих целей телефонных и телеграфных линий, прокладываемых параллельно ЛЭП, считалось нерациональным, поэтому уже в начале 20-го века в сетях постоянного тока (см. война токов) в США применялась передача телеграфных сигналов непосредственно по проводам ЛЭП. Позже, с развитием средств радиосвязи, подобная методика стала применима и для сетей переменного тока.

Передача диспетчерской информации по проводам линий электропередач широко применяется, как один из основных видов связи. Приемопередатчик подключается к ЛЭП через фильтр присоединения, образованный из конденсатора малой емкости (4700 — 6800 пикофарад) и высокочастотного трансформатора (автотрансформатора). Подобная система позволяет передавать как голосовую информацию, так и данные телеметрии и телеуправления.

Использование ЛЭП для других целей связи

Технология PLC базируется на использовании силовых электросетей для высокоскоростного информационного обмена. Эксперименты по передаче данных по электросети велись достаточно давно, но низкая скорость передачи и слабая помехозащищенность были наиболее узким местом данной технологии. Но появление более мощных DSP-процессоров (цифровые сигнальные процессоры) дали возможность использовать более сложные способы модуляции сигнала, такие как OFDM-модуляция, что позволило значительно продвинуться вперед в реализации технологии PLC.

В 2000 году несколько крупных лидеров на рынке телекоммуникаций объединились в HomePlug Powerline Alliance с целью совместного проведения научных исследований и практических испытаний, а также принятия единого стандарта на передачу данных по системам электропитания. Прототипом PowerLine является технология PowerPacket фирмы Intellon, положенная в основу для создания единого стандарта HomePlug1.0 (принят альянсом HomePlug 26 июня 2001 года), в котором определена скорость передачи данных до 14 Мб/сек.

Технические основы технологии PLC

Основой технологии PowerLine является использование частотного разделения сигнала, при котором высокоскоростной поток данных разбирается на несколько относительно низкоскоростных потоков, каждый из которых передается на отдельной поднесущей частоте с последующим их объединением в один сигнал. Реально в технологии PowerLine используются 84 поднесущие частоты в диапазоне 4—21 Мгц.

При передаче сигналов по бытовой электросети могут возникать большие затухания в передающей функции на определенных частотах, что может привести к потере данных. В технологии PowerLine предусмотрен специальный метод решения этой проблемы — динамическое включение и выключение передачи сигнала (dynamically turning off and on data-carrying signals). Суть данного метода заключается в том, что устройство осуществляет постоянный мониторинг канала передачи с целью выявления участка спектра с превышением определенного порогового значения затухания. В случае обнаружения данного факта, использование этих частот на время прекращается до восстановления нормального значения затухания.

Существует также проблема возникновения импульсных помех (до 1 микросекунды), источниками которых могут быть галогенные лампы, а также включение и выключение мощных бытовых электроприборов, оборудованных электрическими двигателями.

Применение PLC-технологии

Подключение к Интернету

В настоящее время подавляющее большинство конечных подключений осуществляется посредством прокладки кабеля от высокоскоростной линии до квартиры или офиса пользователя. Это наиболее дешевое и надежное решение, но если прокладка кабеля невозможна, то можно воспользоваться имеющейся в каждом здании системой силовых электрических коммуникаций. При этом любая электрическая розетка в здании может стать точкой выхода в Интернет. От пользователя требуется только наличие PowerLine-модема для связи с аналогичным устройством, установленным, как правило, в электрощитовой здания и подключенным к высокоскоростному каналу. Однако, нужно быть готовым к нестабильности и низкому качеству работы сети.

Малый офис (SOHO)

PowerLine-технология может быть использована при создании локальной сети в небольших офисах (до 10 компьютеров), где основными требованиями к сети являются простота реализации, мобильность устройств и легкая расширяемость. При этом как вся офисная сеть, так и отдельные ее сегменты могут быть построены с помощью PowerLine-адаптеров. Часто встречается ситуация, когда необходимо включить в уже существующую сеть удаленный компьютер или сетевой принтер, расположенный в другой комнате или в другом конце здания. Такая проблема легко решается с помощью PowerLine-адаптеров.

Домашние коммуникации

PowerLine-технология может быть использована при реализации идеи «умного дома», где вся бытовая электроника связана в единую информационную сеть с возможностью централизованного управления.

Преимущества

  • Простота использования.
  • Не требуется прокладка отдельного кабеля.

Недостатки

  • Крайне уязвима со стороны радиопередающих устройств коротковолнового диапазона (включая легальные радиовещательные и радиолюбительские радиостанции).
  • Пропускная способность сети по электропроводке делится между всеми ее участниками.
  • Требуются специальные совместимые сетевые фильтры и ИБП. Через обычные не работает.
  • Современные Powerline-адаптеры заметно греются.[источник не указан 154 дня]
  • Нарушается радиоприём, особенно на средних и коротких волнах.
  • На качество связи оказывают отрицательное влияние энергосберегающие лампы, импульсные блоки питания, зарядные устройства, выключатели освещения и т.п. и т.д.(снижение скорости около от 5 до 50%).
  • На качество и скорость связи оказывает отрицательное влияние исполнения/топология/качество электропроводки, тип/режим/мощность бытовых электроприборов и устройств, наличие скруток (снижение скорости до полного пропадания).
  • Монтаж требует работы под напряжением.
  • Поскольку стандарт пересекается с коротковолновым диапазоном частот, то создаются взаимные помехи для связной и радиовещательной аппаратуры. Повсеместное распространение стандарта делает невозможным прием коротковолновых передач на расстоянии от сотен метров до километров от зданий и вблизи ЛЭП, где применяется данная технология.
  • В связи с вышеперечисленным, а также широкой доступностью помехоустойчивых Ethernet и DSL технологий, PLC не может серьезно рассматриваться как техническое решение для Интернет-доступа из-за высокой уязвимости к помехам и их излучениям. Поэтому, Федеральной комиссией по коммуникациям США (Federal Communications Commission, FCC) PLC-технология не рекомендована к использованию на территории США.

Ссылки

biograf.academic.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта