Ток в физике обозначение: Ошибка: 404 Категория не найдена

Что такое сила тока, формула

Что такое сила тока

Представим обычный водопроводный кран. Открываем вентиль — бежит вода. Чем больше мы будем поворачивать ручку, тем сильнее станет напор и тем больше воды будет выливаться из крана за определённое время. 

Похоже обстоит дело и с электрическим током. Только вместо крана — проводник, молекулы воды — заряженные частицы, напор — напряжение, а расход воды — сила тока.  

Сила тока (I) — это отношение электрического заряда (

q), прошедшего через поперечное сечение проводника, ко времени его прохождения (t).

Единица измерения силы тока — Ампер (A). Она названа в честь Андре-Мари Ампера — французского физика, который совершил несколько важных открытий, связанных с электричеством. 

Андре-Мари Ампер (1775-1836)

Один Ампер — это сила тока, при которой за одну секунду через поперечное сечение проводника проходит заряд, равный одному Кулону, то есть заряд чуть больше, чем шести квинтиллионов (миллиард миллиардов) электронов.  

Чтобы понять, Ампер — много это или мало, обратимся к фактам. 

Ток силой в 0,05 Ампер вызывает неприятные ощущения, а ток в 0,1 Ампер может убить человека за несколько секунд. В светодиодных лампочках течёт ток в 0,02 Ампер, мобильный телефон при максимальной нагрузке потребляет до 0,5 Ампер, автомобильный аккумулятор способен выдавать несколько сотен Ампер, а ток в молнии достигает 200 000 Ампер. 

<<Форма демодоступа>>

Сила тока и сопротивление

Как усилить поток воды из шланга? Можно добавить напор (увеличить давление), но не слишком сильно, иначе шланг разорвёт. А можно взять шланг большего диаметра. 

То же справедливо и для проводника: чем больше он в сечении, тем больший поток электронов может пропустить. Но если сила тока окажется слишком большой, проводник перегреется и сгорит.

Именно так работают плавкие предохранители в электронных приборах: при резком скачке силы тока тонкий проводок перегорает, и устройство отключается от сети.  

Плавкие предохранители: новый и отработанный

Чем короче и шире шланг, тем большее количество воды он способен пропустить за единицу времени. Также и с электричеством: сила тока, проходящего через проводник за секунду, зависит от сопротивления проводника. Только кроме длины и площади сечения на сопротивление влияет материал, из которого проводник сделан. 

Формула сопротивления выглядит так:

l — это длина проводника, S — площадь его сечения, а ρ — удельное сопротивление, у каждого материала оно своё. 

Вещества с низким удельным сопротивлением называются проводниками, они проводят электричество наиболее эффективно. Вещества с высоким удельным сопротивлением называют диэлектриками — их можно использовать в качестве изоляторов. Среднее положение занимают полупроводники — они проводят электричество, но не так хорошо, как проводники.  

Сопротивление измеряется в Омах. Проводник обладает сопротивлением в 1 Ом, если на его концах возникает напряжение в 1 Вольт при силе тока в 1 Ампер. 

Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS82021 вы получите бесплатный доступ к курсу физики 8 класса, в котором изучается сила тока! 

Как измерить силу постоянного тока

Существует специальный прибор для измерения силы тока — амперметр. Он подключается последовательно к проводнику, в котором нужно измерить силу тока. Для этого один из концов нужного проводника отсоединяют от электрической цепи и в получившийся разрыв включают амперметр с помощью двух клемм — со знаками «+» и «−». Клемму со знаком «+» подключают к точке разрыва, которая сохранила связь с положительным полюсом источника тока. 

Поскольку сила тока на всех последовательных участках цепи одинакова (он нигде не «застаивается»), амперметр можно включать как до потребителя тока, так и после.        

На схемах амперметр изображается буквой «А» в круге. 

Существует много разных видов амперметров, различающихся по принципу действия. Проще всего устроен тепловой амперметр. Между двумя зажимами натянута проволока, соединённая нитью с пружиной. Нить охватывает петлёй неподвижную ось со стрелкой. Когда к зажимам подаётся ток, он проходит через проволоку и нагревает её. Нагретая проволока становится немного длиннее, из-за этого нить сильнее оттягивается пружиной. При движении нить поворачивает ось, и стрелка на ней показывает, чему равна сила тока. 

Схема работы теплового амперметра

Современные электрики пользуются мультиметрами — приборами, которые позволяют измерить и силу тока, и напряжение, и сопротивление.

Цифровой мультиметр

Формула силы тока в физике

Содержание:

  • Определение и формула силы тока
  • Некоторые виды силы тока
  • Плотность тока
  • Сила тока в соединениях проводников
  • Закон Ома
  • Единицы измерения силы тока
  • Примеры решения задач

Определение и формула силы тока

Определение

Электрическим током называют упорядоченное движение носителей зарядов. В металлах таковыми являются электроны, отрицательно
заряженные частицы с зарядом, равным элементарному заряду. Направлением тока считают направление движения положительно заряженных частиц.

Силой тока (током) через некоторую поверхность S называют скалярную физическую величину, которую обозначают I, равную:

$$I=\frac{d q}{d t}$
(1)$

где q – заряд, проходящий сквозь поверхность S, t – время прохождения заряда. Выражение (1) определяет величину силы тока в
момент времени t (мгновенное значение величины силы тока).

Некоторые виды силы тока

Ток носит название постоянного, если его сила и направление с течением времени не изменяются, тогда:

$$I=\frac{q}{t}(2)$$

Формула (2) показывает, что сила постоянного тока равна заряду, который проходит сквозь поверхность S в единицу времени.

Если ток является переменным, то выделяют мгновенную силу тока (1), амплитудную силу тока и эффективную силу тока. {2} d t}(3)$$

Если переменный ток можно представить как синусоидальный:

$$I=I_{m} \sin \omega t$$

то Im – амплитуда силы тока ($\omega$ – частота силы переменного тока).

Плотность тока

Распределение электрического тока по сечению проводника характеризуют при помощи вектора плотности тока
($\bar{j}$). При этом:

$$j_{n}=j \cos \alpha=\frac{d I}{d S}(5)$$

где $\alpha$ – угол между векторами
$\bar{j}$ и
$\bar{n}$ (
$\bar{n}$ – нормаль к элементу поверхности dS),
jn – проекция вектора плотности тока на направление нормали ($\bar{n}$).

Сила тока в проводнике определяется при помощи формулы:

$$I=\int_{S} j d S(6)$$

где интегрирование в выражении (6) проводится по всему поперечному сечению проводника S
($\alpha \equiv 0$)

Для постоянного тока имеем:

$I = jS (7)$

Если рассматривать два проводника с сечениями S1 и S2 и постоянными токами, то выполняется соотношение:

$$\frac{j_{1}}{j_{2}}=\frac{S_{2}}{S_{1}}(8)$$

Сила тока в соединениях проводников

При последовательном соединении проводников сила тока в каждом из них одинакова:

$$I=I_{1}=I_{2}=\cdots=I_{i}(9)$$

При параллельном соединении проводников сила тока (I) вычисляется как сумма токов в каждом проводнике (Ii):

$$I=\sum_{i=1}^{n} I_{i}(10)$$

Закон Ома

Сила тока входит в один из основных законов постоянного тока – закон Ома (для участка цепи):

$$I=\frac{\varphi_{1}-\varphi_{2}+\varepsilon}{R}(11)$$

где $\varphi_{1}$ —
$\varphi_{2}$ – разность потенциалов на концах, рассматриваемого участка,
$\varepsilon$ — ЭДС источника, который входит в участок цепи, R – сопротивление участка цепи. {6}=(30-6)=24$ (Кл)

Ответ. q=24 Кл

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Плоский конденсатор составлен из двух квадратных пластин со стороной A,
находящихся на расстоянии dдруг от друга. Этот конденсатор подключен к источнику постоянного напряжения U.
Конденсатор погружают в сосуд с керосином (пластины конденсатора вертикальны) со скоростью v=const. Какова сила тока,
которая будет течь по подводящим проводам в описанном выше процессе. Считать, что диэлектрическая проницаемость керосина равна
$\varepsilon$.

Решение. Основой для решения задачи станет формул для вычисления силы тока вида:

$$I=\frac{d q}{d t}(2.1)$$

При погружении в керосин на глубину xописанной выше системы мы получаем два конденсатора, соединенных параллельно (над керосином и в керосине)
рис. {2}-A v t\right) \rightarrow C_{2}=\frac{\varepsilon \varepsilon_{0}(A v t)}{d}(2.4)$$

где $\varepsilon_{0}$ – электрическая постоянная, переменной величиной при погружении
системы в керосин является площадь обкладок S:

$$S_{2}=A \cdot v \cdot t ; S_{1}=A \cdot(A-v t)$$

Из выражений (2.4), (2.5) и условий задачи имеем:

$$d C=d C_{1}+d C_{2}=\frac{\varepsilon \varepsilon_{0} A v d t}{d}-\frac{\varepsilon_{0}}{d} A v d t(2.6)$$

Тогда подставив dC в формулу для силы тока (2.1) получаем:

$$I=U\left(\frac{\varepsilon \varepsilon_{0} A v}{d}-\frac{\varepsilon_{0}}{d} A v\right)=\frac{\varepsilon_{0} U A v}{d}(\varepsilon-1)$$

Ответ. $I=\frac{\varepsilon_{0} U A v}{d}(\varepsilon-1)$

Читать дальше: Формула силы.

электрического тока | Формула и определение

магнитное поле, создаваемое электрическим током

См. все средства массовой информации

Связанные темы:
переменный ток
ток смещения
электродвижущая сила
теллурический ток
постоянный ток

См. весь связанный контент →

электрический ток , любое движение носителей электрического заряда, таких как субатомные заряженные частицы (например, электроны с отрицательным зарядом, протоны с положительным зарядом), ионы (атомы, которые потеряли или приобрели один или несколько электронов ) или дырки (дефицит электронов, который можно рассматривать как положительные частицы).

Электрический ток в проводе, где носителями заряда являются электроны, является мерой количества заряда, проходящего через любую точку провода в единицу времени. В переменном токе движение электрических зарядов периодически меняется на противоположное; на постоянном токе нет. Во многих контекстах направление тока в электрических цепях принимается за направление потока положительного заряда, направление, противоположное фактическому дрейфу электронов. При таком определении ток называется обычным током.

Britannica Quiz

27 правильных или неверных вопросов из самых сложных научных викторин Britannica

Как много вы знаете о Марсе? Как насчет энергии? Думаете, будет проще, если вам придется выбирать только правду или ложь? Узнайте, что вы знаете о науке с помощью этой сложной викторины.

Узнайте, почему низкое сопротивление меди делает ее отличным проводником электрического тока

Посмотреть все видео к этой статье

Ток обычно обозначается символом я . Закон Ома связывает ток, протекающий по проводнику, с напряжением В и сопротивлением Р ; то есть В = I R . Альтернативная формулировка закона Ома: I = V / R .

Ток в газах и жидкостях обычно состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных ионов в противоположном направлении. Чтобы учесть общее влияние тока, его направление обычно принимают за направление положительного носителя заряда. Ток отрицательного заряда, движущийся в противоположном направлении, эквивалентен положительному заряду той же величины, движущемуся в обычном направлении, и должен учитываться как вклад в общий ток. Ток в полупроводниках состоит из движения дырок в обычном направлении и электронов в противоположном направлении.

Существуют токи многих других видов, например, пучки протонов, позитронов или заряженных пионов и мюонов в ускорителях частиц.

Электрический ток создает сопровождающее магнитное поле, как в электромагнитах. Когда электрический ток течет во внешнем магнитном поле, на него действует магнитная сила, как в электродвигателях. Тепловые потери или энергия, рассеиваемая электрическим током в проводнике, пропорциональны квадрату силы тока.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Распространенной единицей электрического тока является ампер, который определяется как поток заряда в один кулон в секунду, или 6,2 × 10 18 электронов в секунду. Сантиметр-грамм-секунда единиц силы тока является электростатической единицей заряда (эсу) в секунду. Один ампер равен 3 × 10 9 эсу в секунду.

Коммерческие линии электропередач обеспечивают около 100 ампер для обычного дома; 60-ваттная лампочка потребляет около 0,5 ампер тока, а комнатный кондиционер — около 15 ампер. (Подробнее об электрическом токе см. см. электричество: постоянный электрический ток и электричество: переменный электрический ток.) ​​

Редакторы Британской энциклопедии Эта статья была недавно отредактирована и обновлена ​​Эриком Грегерсеном.

Электрический ток – Гиперучебник по физике

[закрыть]

определений

текущий

Электрический ток определяется как скорость, с которой заряд протекает через поверхность (например, поперечное сечение провода). Несмотря на то, что оно относится ко многим разным вещам, слово ток часто используется сам по себе вместо более длинного и формального «электрического тока». Прилагательное «электрический» подразумевается контекстом описываемой ситуации. Фраза «ток через тостер» определенно относится к потоку электронов через нагревательный элемент, а не к потоку ломтиков хлеба через прорези.

Как и для всех величин, определяемых как скорость, есть два способа записать определение электрического тока — средний ток для тех, кто заявляет о незнании исчисления…

I = Q
T

и Мгновенный мгновенный текущий для тех, с но. Но. Но. Но., Страх,

,

и Мгновенный мгновенный текущий для тех, с но. но. но. Н. нет.

I  = 
лим
т →0
q  =  дк
т дт

Единицей силы тока является ампер [А], названный в честь французского ученого Андре-Мари Ампера (1775–1836). В письменных языках без ударных букв (а именно в английском) стало принято записывать единицу измерения как ампер , а в неформальном общении сокращать слово до ампер . У меня нет проблем ни с одним из этих написаний. Только не используйте заглавную «А» в начале. Ампер относится к физике, а ампер (или ампер, или ампер) относится к единице измерения.

Поскольку заряд измеряется в кулонах, а время измеряется в секундах, ампер равен кулону в секунду.



А = С

с

Элементарный заряд точно равен…

e = 1,602176634 × 10 −19  C

Количество элементарных зарядов в кулоне было бы обратным этому числу — повторяющейся десятичной дробью с периодом 778 716 цифр. Я напишу первые 19цифр, и это максимум, что я могу написать (поскольку произвольных долей элементарного заряда не существует).

C ≈ 6 241 509 074 460 762 607 e

А потом я напишу его снова с более разумным количеством цифр, чтобы его было легче читать.

C ≈ 6,2415 × 10 18  e

Ток в один ампер представляет собой передачу примерно 6,2415 × 10 18 элементарных зарядов в секунду. Для тех, кто любит совпадения, это примерно то же самое, что десять микромолей.

плотность тока

Когда я визуализирую течение, я вижу движущиеся предметы. Я вижу, как они движутся в определенном направлении. Я вижу вектор. Я вижу неправильное. Ток не является векторной величиной, несмотря на мою хорошо развитую научную интуицию. Ток является скаляром. И причина в том… потому что это так.

Но подождите, дальше будет еще страннее. Отношение силы тока к площади данной поверхности называется плотностью тока.

J  =  I
A

Единицей плотности тока является ампер на квадратный метр , которая не имеет специального названия.



А  =  А

м 2 м 2

Несмотря на то, что плотность тока является отношением двух скалярных величин, плотность тока является вектором. И причина в том, что это так.

Ну… на самом деле, это потому, что плотность тока определяется как произведение плотности заряда и скорости для любого места в космосе…

J  = ρ  v

Два уравнения эквивалентны по величине, как показано ниже.

Дж  =  р   против  
 
Дж  =  д   дс  =  с   дк  =  1   я
В дт СА дт А
 
Дж  =  я  
А

Есть еще что рассмотреть.

I  =  JA  = ρ v A

Читатели, знакомые с гидромеханикой, могли бы узнать правую часть этого уравнения, если бы она была написана немного по-другому.

I  = ρ Ав

Этот продукт является величиной, которая остается постоянной в уравнении неразрывности массы .

р 1 A 1 v 1  = ρ 2 A 2 v 2

Точно такое же выражение применимо к электрическому току с символом ρ, меняющим значение в зависимости от контекста. В гидромеханике ρ обозначает плотность массы, а в электрическом токе — плотность заряда.

описание микроскопа

Ток – это поток заряженных частиц. Это дискретные сущности, а значит, их можно сосчитать.

n  =  N / В

q  =  нкв

В  =  Ad  =  Av t

I  =  q  =  nqAv т
т т

I  =  nqAv

Аналогичное выражение можно записать для плотности тока. Вывод начинается со скалярной формы, но в конечном выражении используются векторы.

Дж  =  я  =  нкАв
А А

J  =  nq v

твердые вещества

проводимость по сравнению с валентными электронами, проводники по сравнению с изоляторами

Дрейфовое движение, наложенное на тепловое движение

Увеличить

Текст моста.

Тепловая скорость электронов в проводе довольно высока и изменяется случайным образом из-за атомных столкновений. Поскольку изменения хаотичны, средняя скорость равна нулю.

Когда проволоку помещают в электрическое поле, свободные электроны равномерно ускоряются в промежутках между столкновениями. Эти периоды ускорения поднимают среднюю скорость выше нуля. (Эффект сильно преувеличен на этой диаграмме.)

тепловая скорость электрона в меди при комнатной температуре (классическое приближение)…

v среднеквадратичное значение  = √ 3 кт
м е
v среднеквадратичное значение  = √ 3(1,38 × 10 −23 Дж/К)(300 К)
(9,11 × 10 −31  кг)
v среднеквадратичное значение 100 км/с  
 

Ферми-скорость электрона в меди (квантовая величина)…

v ферми  = √ 2 E ферми
м е
v ферми  = √ 2(7,00 эВ)(1,60×10 −19 Дж/эВ)
(9,11 × 10 −31  кг)
v ферми 1500 км/с  
 

дрейфовая скорость электрона в 10 м медного провода, подключенного к автомобильному аккумулятору 12 В, при комнатной температуре (среднее время свободного пробега между столкновениями при комнатной температуре τ = 3 × 10 −14  с)…

v дрейф  =  1 против  =  1   a τ = 1   Ф τ = 1   EE τ
2 2 2 м е 2 м е
v дрейф  =  эВ τ
2 дм е
v дрейф  =  (1,60 × 10 −19 °C) (12 В) (3 × 10 −14  с)
2(10 м)(9,11 × 10 −31 кг)
v дрейф 3 мм/с  
 

Тепловая скорость на несколько порядков превышает скорость дрейфа в типичной проволоке. Время прохождения круга около часа.

жидкости

ионы, электролиты

газы

ионов

, плазмы

  • 14:02 — Отключение линии электропередачи на юго-западе Огайо
    4. Стюарт — Атланта 345 кВ
    Эта линия является частью пути передачи из юго-западного Огайо в северный Огайо. Он отключился от системы из-за возгорания кустов под частью линии. Горячие газы от пожара могут ионизировать воздух над линией электропередачи, в результате чего воздух проводит электричество и вызывает короткое замыкание проводников.
    Источник

исторический

Символ I был выбран для обозначения силы тока 19французский физик и математик Андре-Мари Ампер.

Увеличить
     
Pour exprimer en nombre l’intensité d’un courant quelconque, on concevra qu’on ait choisi un autre courant арбитраж для срока сравнения…. Désignant donc par i et i les rapports des intensités des deux courants donnés à l’intensité du courant pris pour unite….   Чтобы выразить интенсивность тока в виде числа, предположим, что для сравнения выбран другой произвольный ток…. Примем i и i для отношений интенсивностей двух заданных токов к напряженности эталонного тока, принятой за единицу….
Андре-Мари Ампер, 1826 г.   Андре-Мари Ампер, 1826 г. (платная ссылка)

Термин интенсивность теперь имеет несвязанное значение в физике. Текущая скорость, с которой заряд протекает через поверхность любого размера — например, через клеммы аккумулятора или штыри электрической вилки. Интенсивность — это средняя сила на единицу площади, передаваемая каким-либо лучистым явлением — например, звуком оживленного шоссе, светом Солнца или частицами брызг, испускаемыми радиоактивным источником.

Ток в физике обозначение: Ошибка: 404 Категория не найдена