Eng Ru
Отправить письмо

Управление по двум проводам. Управление сетевым светильником по двум проводам. Управление люстрой по двум проводам схема


схемы с использованием полупроводников и реле

Покупка новой люстры – риск привлечь столько попутных проблем, что проще продолжать жить под девственно голой лампочкой под потолком. И это не цветовая гармония со шторами, а полноценная электрическая эпопея.

Вы не согласны с утверждением? И мы тоже так не считаем. Потому сегодня научимся крепить бесконечное число проводов люстры к двум стандартным проводам.

Релейная система подключения

управление люстрой по двум проводам схемаРелейный способ имеет весомый недостаток: система быстро изнашивается. Максимум несколько тысяч раз использования приведут к поломке схемы. Как известно, она расположена в декоративном колпачке под потолком. Вряд ли кого-то воодушевит ежегодные процедуры разборки люстры «в корне».

Ознакомимся с системой релейного подключения. Ее основные элементы:

  • терморезистор R1, R2;
  • конденсатор C1;
  • реле К1;
  • диодная сборка.

При включении лампы холодный терморезистор (R2) обладает высокой силой сопротивления. На реле поступает высокое напряжение, контакты размыкаются и первые 3 лампы в цепи загораются. После 1-2 секунд терморезистор нагревается, что дает постоянное, но пониженное сопротивление в цепи.

люстры с пультом управления светодиодныеОдним из самых популярных современных осветительных потолочных конструкций является светодиодная люстра с пультом управления. Чтобы правильно подключить такой прибор, необходимо детально ознакомиться с инструкцией и придерживаться определенных правил установки.

Как соединить провода к двойному выключателю при установке люстры с тремя кабелями — можно прочитать в отдельной статье.

Выключение питания на полсекунды будет достаточным, чтобы терморезистор не остыл, а все контакты остались замкнутыми. Теперь все 6 ламп зажжены.

Вернуть освещение в прежнюю позицию 50/50 можно при помощи отключения напряжения на несколько секунд.

Система несколько непроработанная, но все же имеет право на жизнь.

Способы использования полупроводников в управлении освещением люстры

Использование транзисторов пользуется значительно большей популярностью. Их работоспособность отличается долгосрочностью, высокой частотой переключения. Несколько видов управления предоставлены для обзора и выбора.Управление на базе счетчика

Счетные импульсы лежат в основе управления освещением. Первый обычно отвечает за сброс счетчика. Повторный – за последовательное подключение ламп.управление люстрой по двум проводам схемаКаждое новое нажатие на выключатель активизирует новую пару или группу ламп. Чтобы сбросить со счетчика импульсы, достаточно выдержать паузу в треть минуты.

Сдвиговый регистр в системе управления

Принцип уже содержится в самом названии. Импульс, попадая на начальную точку С, передается далее по цепочке на D и 1.управление люстрой по двум проводам схема

Цепь ламп накаливания подключена и работает по принципу, как на примере со счетчиком.

прибор для обнаружения скрытой проводкиДля поиска обрывов неисправной электросети используют специальные приборы для обнаружения скрытой проводки. Как альтернативный метод — это можно сделать с помощью радиоприемника или смартфона.

Рассчитать уровень освещения помещений можно, зная показатели светового потока используемых ламп. На что обратить внимание при выборе стабилизатора напряжения, можно выяснить здесь.

Система управления с тиристором

Выпрямитель VD6-VD9 питает всю схему управления. Когда выключатель переходит в положение «Вкл», загорается первая лампа в цепи EL3.управление люстрой по двум проводам схемаДалее заряжаются конденсаторы и накапливают высокий и низкий сигнал таким образом, чтобы DD1 держал транзистор и тиристор закрытыми.Когда выключатель переключают в положение «Выкл», конденсатор перезаряжается.

Микроконтролирование люстры

Микропроцессор оснащен программным обеспечением. Благодаря этому принцип работы может быть уникален. Ведь такая схема может обладать дополнительными заложенными функциональными возможностями помимо обычного освещения. Тем не менее за основу взята та же схема, что и в предыдущих случаях.управление люстрой по двум проводам схемаСхемы подключения и управления люстрой имеют не такие уж и весомые отличия.

Даже электронная система остается верна первозданному принципу.

Но что действительно не сходится – качество и длительность эксплуатации.

Как работает люстра, подключенная по схеме из двух проводов, на видео

elektrik24.net

Управление люстрой по двум проводам (схема подключения)

 Какую большую роль для нас играет зрение, а вместе с тем и свет, с помощью которого мы видим, говорить излишне. Именно поэтому для нас столь значительную роль в оформлении интерьера играют световые приборы. Где-то они совсем простые, вроде БРА или потолочных светильников, а  где-то и более изящные. А чем сложнее световой прибор, тем более сложную схему подключения он и потребует, что само по себе вполне разумеющееся заключение. Вот например люстра, она обычно подразумевают возможность подключения двух цепей  с лампами, тем самым изменяя освещенность в комнате от приглушенной, так скажем интимной, до яркого света. Управление люстрой по трем проводам

 Все мы уже привыкли, что люстра с двумя режимами управляется по трем проводам. Фактически в этом случае реализованы две  параллельные цепи для каждой из группы ламп люстры. Каждая из цепей начинается с выключателя, чтобы тем самым коммутировать нужную цепь и включать желаемые лампы.  Такой вариант можно назвать общепринятым. Он прост и при его реализации можно обойтись минимальными вложениями – одним дополнительным проводом от  выключателя до люстры. О таком варианте подробно рассказано в одной из наших статей «Подключение люстры».  Однако у такого варианта есть и недостатки, это как раз третий провод, который мы упомянули как достоинство минимизировать вложения в схему подключения. Ведь представьте такой вариант,  когда стены заштукатурены, а обои наклеены. Здесь пробросить третий провод быстро и беспроблемно уже вряд ли получиться.  Здесь два варианта. Это купить люстру, которая будет иметь несколько режимов подсветки, и управляться с пульта управления. Второй вариант это реализовать схему, которая бы обеспечила пошаговое включение для каждой из групп ламп, в зависимости от количество переключений управляющего выключателя.  Именно о таких вариантах мы и расскажем далее…

Управление люстрой по двум проводам (схемы)

 В нашем случае будет приведено несколько вариантов управления люстрой по двум проводам. Каждый из вариантов будет иметь свои плюсы и минусы, про которые мы расскажем в процессе описания каждого из возможных случаев подключения. А теперь по порядку…

1 Вариант управление люстрой по двум проводам

 Первый вариант самый простой, но и самый «ущербный».  Он не потребует высокой квалификации от человека, который будет его реализовывать, а также применения множества радиодеталей. Но минус его в том, что уровень эксплуатационных характеристик при этом будет также не высок. Все дело в том, что в схеме используется особенность нашей сети питания, которая как мы знаем выдает переменный ток, с частотой 50 Гц.   Также свойство диодов, которые пропускают этот самый ток лишь в одном направлении. Взгляните на схему.

Когда полуволна проходит в одном из направлений, то ток идет через диод до лампы и через диод за выключателем, но при этом расположенный в том же направлении. То есть ток может пройти только через диоды работающие в паре, если так можно сказать. Аналогичная ситуация при прохождении полуволны в обратном направлении. Теперь ток идет через диод перед выключателем и через диод за лампой, при этом диоды также установлены в одном и том же направлении. Итак, как вы уже поняли схема очень простая, смонтировать ее очень просто. Минусов является то, что лампы будут светить в пол накала, так как это будет одна полуволна, то есть напряжение 110 вольт. Также будет присутствовать эффект мерцания, ведь в этом случае частота питания станет также половинной – 25 Гц. Именно об этих низких эксплуатационных характеристиках мы и упоминали ранее.

2 Вариант управление люстрой по двум проводам

Этот вариант можно назвать несколько инновационным. А вот почему!? Это вы поймете из описания принципа работы данной схемы. Прежде взгляните на нее…

При замыкании цепи включаются все лампы HL4-6 включенные напрямую и HL1-3 включенные через контакты реле. Но здесь сразу срабатывает само реле, тем самым отключая лампы HL1-3. Далее в работу вступает терморезистор, который при протекании через него тока начинает менять свое сопротивление, оно уменьшается.  В итоге сопротивление меняется до того, что при следующем срабатывании выключателя, ток уже проходит преимущественно через него, а не через обмотку реле. В этом случае реле не срабатывает, и горят все 6 ламп. Здесь важно с помощью резистора R1 найти такое напряжение, чтобы при холодном терморезисторе напряжения хватало на срабатывания реле, а при нагретом его было достаточно для удержания, но не хватало для срабатывания… Применяемые радиодетали:  Реле К1 - малогабаритное с сопротивлением обмотки порядка 300 Ом, напряжением срабатывания 7 В и напряжением отпускания 3 В. резистор R2 - три соединенных параллельно терморезистора СТ3-17 сопротивлением около 330. Резистор R1 типа МЛТ-0,25 сопротивлением несколько десятков Ом. Придется подобрать. Диодный мостик типа КЦ407А. Конденсатор C1 - 50мкФ х 16 В. Если говорить недостатках этой схемы, то это во первых необходимость настройки под параметры реле и терморезистора. Второе, что вы не сможете переключить свет вновь на меньший, пока не остынет терморезистор. Третья схема лишена этих недостатках, при этом не сложнее…

3 Вариант управление люстрой по двум проводам

Третий вариант заимствован из журнала «Радио», аж за 1984 год. Но эта схема до сих пор актуальна! Давайте взглянем на нее…

Здесь все очень просто и логично. Первоначально включаем лампу h2 и при этом срабатывает реле К1, которое через свои контакты и диод начинает заряжать конденсатор. При кратковременном отключении контакты реле К1 размыкаются, тем самым конденсатор начинает питать обмотку реле К2. Пока реле сработало, это несколько долей секунды или секунд. Здесь все зависит от потребления реле и емкости конденсатора. Вы должны вновь включить выключатель. В этом случае реле самоподхватится и в итоге загорятся все лампы. Минусом схемы является то, что надо вовремя включать выключатель, когда реле К2 еще питает конденсатор. Только в этом случае можно будет обеспечить включение всех ламп.

4 Вариант управление люстрой по двум проводам

Этот вариант кроме того что не предусматривает никакой настройки, так он еще и не имеет каких либо ограничение по временному алгоритму включения ламп. Как схемы 2 , где есть зависимость от температуры резистора и схема 3, где надо успеть включить выключатель второй раз, пока еще не отключилось реле K2. Смотрим схему…

Здесь для срабатывания реле применен тот же самый принцип, что мы рассматривали для схемы 1. Только в этом случае срабатывает реле, а не лампы. В итоге реле в состоянии коммутировать уже «полноценный» ток и напряжение для свечения ламп. Кроме того, если реле имеют сдвоенные коммутируемый контакты, то можно реализовать и третий канал, для подключения третей группы ламп. Через  контакты К1.2 и К2.2. Схема не имеет практически никаких недостатков. Разве что нужны будут пару реле на 110 вольт. Конденсаторы ставятся для уменьшения влияния индукционного тока на обмотки реле и для стабилизации тока от перепадов переменного напряжения сети.

Резюмируя реализацию возможности управление люстрой по двум проводам

 Итак, резюмируя все вышеприведенное можно акцентировать внимание на двух вариантах. Это вариант 1, когда подключение максимально простое. Его стоит попробовать со светодиодными лампами, где есть встроенные конденсаторы, что несколько смягчит моргание.  Второй вариант, если вы чувствуете в себе силы, что сможете реализовать несложную радиоэлектрическую схему, это использование 4 случая. Вариант лишен каких-либо недостатков, не требует наладки и определенных алгоритмов по включению ламп люстры.

xn-----7kcglddctzgerobebivoffrddel5x.xn--p1ai

Управление люстрой по двум проводам | Электрика и слаботочка

Занимаясь ремонтом, всякими отделками-переделками, не каждый мастер в состоянии предусмотреть все нюансы и «мелочи». Да и работы по ремонту-отделке не всегда включают в себя комплекс капитальных переустройств.

Так очень часто происходит со светом. Точнее – с электропроводкой. Например: забыли прокинуть дополнительный провод на освещение гостиной, или: поменяли в спальне обои, но стены штробить не стали, чтобы «грязь не разводить», зато «вечернее» освещение комнаты отсутствует напрочь! Подобных ситуаций немало, а современное представление о комфорте уже неразрывно связано с широкими возможностями светового оформления, с различными вариантами освещения. Так что давайте подумаем, ведь безвыходных ситуаций не бывает!

Начнём с самого обычного случая. В старых квартирах к центральной люстре подведено всего два провода, то есть даже простое освещение в «два режима» сделать не выходит. Долбить потолок? Вешать несколько бра на стены? Необязательно. Существует немало различных «схем» управления люстрой по двум проводам – совсем простых, средней сложности реализации и довольно серьёзных электронных устройств. Мы рассмотрим самую несложную и доступную для повторения схему включения.

Сам принцип «двухпозиционного» освещения очень прост, достаточно уменьшить ток на лампах светильника или люстры, и с помощью включения в цепь диода достаточной мощности реализовать два режима освещения не составит труда.

r1.jpg

Используя обычный двухклавишный выключатель, мы можем включить нашу люстру на «половинную» мощность (S1), или на полную (S1 и S2 вместе). Куда уже проще?

r2.jpg

Но если добавить ещё один такой-же диод в нашу схему, только включив его «во встречном направлении», то свет будет включаться при нажатии на любую клавишу «вполнакала», а вторая клавиша вновь включает полную мощность освещения. Дополнительным плюсом такой схемы станет то, что включая освещение сперва «вполнакала», мы подогреваем нить ламы, увеличивая её сопротивление, и при подаче полного напряжения не происходит резкого скачка тока, как при обычном включении холодных ламп. Все помнят, что лампочки перегорают как правило, в момент включения? Так вот, наша схемка продлит срок службы ламп накаливания на неопределённое время!

Однако на этом возможности двухпроводной схемы не исчерпаны. Всего пара новых элементов в схеме даёт возможность включать-выключать отдельные группы ламп.

r3.gif

Совсем просто? А функциональность такого включения вполне на уровне – включая одну клавишу выключателя, мы подаём «уполовиненное» напряжение на Л1, Л2, Л3, а лампы Л4 и Л5 вовсе не включаются, поскольку диод «выпрямляет» напряжение питания, а конденсатор не «пропускает» постоянный ток.

Читайте также

Как видим, не нужно быть большим специалистом и профессионально заниматься электротехникой, чтобы зажечь свет в различной конфигурации, имея в распоряжении всего двухпроводную линию. Упростит задачу ещё больше, примерное соотношение мощности подключаемых лампочек и ёмкости «управляющих» конденсаторов:

Конечно, цифры эти приблизительны, можно ставить конденсаторы с ёмкостью ±1,2 мкФ, важно чтобы рабочее напряжение этих приборов было НЕ МЕНЕЕ 250В, а лучше, пусть будет 400В. Это, к примеру, керамические конденсаторы К73-11, диоды же следует подобрать исходя из соотношения – 500 Вт ? 2,5 А, то есть прямой номинальный ток диодов должен быть не менее 2,5 А для 5-ти рожковой люстры со 100 ваттными лампочками, и максимальное обратное напряжение диодов должно быть не менее 250 В. Практически можно использовать диоды КД202 с буквенным

индексом Ж, К, М, Р, или любые диоды КД203, КД206.

Для люстры меньшей мощности (скажем 3 лампочки по 75 Ватт) можно использовать диод КД226 В, Г, Д, Е с прямым током пропускания 1,7-2 А.

r4.gif

Диоды для представленных схем монтируются непосредственно в корпус выключателя, или в установочной коробке, следующим образом: Из рисунка 4 видно, что диоды подключены «навстречу» друг другу к общей клемме двойного выключателя, куда обычно подводится напряжение, а «вход» и «выход» схемы находятся на противоположных разъёмах. Ничего сложного. А вот конденсаторы придётся «прятать» в кожухе или корпусе самой люстры, где подключаются провода электропитания.

Хочется надеяться, что благодаря этому материалу, одной «безвыходной» ситуацией во время ремонта станет меньше!

 

Мощность одной лампочки, Вт Ёмкость конденсатора в цепи, мкФ 100 10 75 7,5 60 6,5 40 4,5

 

homemasters.ru

Управление сетевым светильником по двум проводам

Светотехника

Главная  Радиолюбителю  Светотехника

При наличии в сетевом светильнике, например люстре, нескольких осветительных ламп желательно включать и выключать их по отдельности или группами. Если питание такого светильника трёхпроводное, организовать независимое управление двумя группами ламп не составит большого труда, достаточно применить сдвоенный выключатель. При двухпроводном питании это оказывается невозможным. В то же время способ управления по двум проводам двумя группами ламп в светильнике известен не один десяток лет. Он подходит для случая, когда нет возможности заменить двухпроводную проводку натрёхпроводную. В нём применены выпрямительные диоды, а схема показана на рис. 1. Такая простая схема позволяет, в зависимости от положения выключателей, включить одну, две или три лампы (группы ламп). Однако ранее этот способ не находил широкого применения из-за того, что основным источником света были лампы накаливания. При питании однопо-лупериодным выпрямленным напряжением их яркость свечения существенно снижается и появляются заметные пульсации светового потока.

Рис. 1

Но если в светильнике применить компактные люминесцентные лампы (КЛЛ), которые в настоящее время находят всё более широкое распространение, эти недостатки будут устранены. Обусловлено это тем, что в КЛЛ применён так называемый электронный балласт (более правильное название - ЭПРА - электронный пускорегулирую-щий аппарат) - специализированный импульсный блок питания, который питается от сети 220 В через встроенный выпрямитель со сглаживающим конденсатором. Это позволяет питать маломощные КЛЛ однополупериодным напряжением, причём в большинстве случаев яркость свечения уменьшается незначительно. Поэтому для управления люстрой с КЛЛ можно применить схему, показанную на рис. 1. Правда, редко, но попадаются маломощные КЛЛ, в которых производители с целью экономии применяют в ЭПРАнедвухпо-лупериодный мостовой выпрямитель, а однополупериодный, на одном диоде. Это следует учитывать при применении КЛЛ в светильнике. Кроме того, в выпрямителе ЭПРА (особенно маломощных КЛЛ) применены, как правило, сглаживающие конденсаторы небольшой ёмкости (2,2...3 мкФ), что может привести к заметному росту пульсаций светового потока с частотой 50 Гц. Чтобы устранить этот недостаток, питать КЛЛ следует от дополнительных одно-полупериодных выпрямителей.

Рис. 2

Схема управления двумя группами осветительных КЛЛ по двум проводам показана на рис. 2 (часть схемы левее разъёмов XT1, XT2 такая же, как и на рис. 1). Здесь каждый из выключателей SA1, SA2 подаёт питающее напряжение на "свою" группу ламп. Резисторы R1, R3 ограничивают бросок зарядного тока конденсаторов C1, C2 при включении, R2, R4 обеспечивают их разрядку после выключения светильника. Дополнительное удобство такого решения - возможность применения КЛЛ с различной световой температурой, которые удобнее использовать в том или ином случае или совместно.

Большинство элементов для сборки устройства можно извлечь из вышедших из строя КЛЛ, обязательно проверив каждую деталь перед монтажом на исправность. Оксидные конденсаторы должны быть с номинальным напряжением не менее 400 В, а их ёмкость - не менее 8.10 мкФ, причём чем больше ламп в группе, тем больше должна быть ёмкость (можно использовать несколько конденсаторов, соединив их параллельно). Разъёмы XT1-XT5 - любые винтовые клеммники, рассчитанные на работу в сети 220 В.

Диоды VD1, VD2 монтируют в выключателе, остальные детали - в светильнике. Изготавливать печатную плату нет необходимости, все элементы можно разместить на пластине из листовой пластмассы толщиной 1.1,5 мм, предварительно определив её размеры по имеющемуся в люстре свободному месту. Конденсаторы крепят к ней термоклеем, клеммники - винтами, остальные элементы монтируют на их выводах. Внешний вид одного из вариантов платы показан на рис. 3.

Рис. 3

После установки смонтированной платы внутри светильника и проверки работоспособности её закрывают пластмассовой крышкой.

В люстре с описанной схемой управления можно применить и светодиодные лампы, но только те из них, в которые встроен импульсный блок питания, а не выпрямитель с балластным конденсатором.

Следует помнить, что в соответствии с ГОСТ Р 51317.3.2-2006 методы однополупериодного выпрямления потребляемого от сети тока допустимо применять, "если управляемая активная мощность технического средства не превышает 100 Вт".

Автор: И. Нечаев, г. Москва

Дата публикации: 12.08.2013

Мнения читателей
  • Василий / 26.10.2013 - 12:36Здравствуйте! Не прошло и месяца, резистор 12 Ом МЛТ-2 сгорел - не выдержал пусковых токов емкости 147 мкФ, поставил три параллельно включенных МЛТ-2 по 56 Ом.
  • Василий / 11.10.2013 - 05:20Здравствуйте! Чтобы полностью исключить мерцание, даже заметное только боковым зрением, пришлось установить емкость из расчета 2 мкФ/Вт (так для 3 ламп по 23 Вт потребовалось 147 мкФ). При установке емкости 100 мкФ, китайский резистор 0,5 Вт(не говоря уже о 0,25 Вт изображенных на схеме) сгорел сразу при включении(с емкостью 22 мкФ работал нормально), поэтому поставил по 2 Вт МЛТ, 36 Ом для лампы 23 Вт, и 12 Ом для 3х23 Вт. Диоды установил FR207. За идею спасибо! Всем удачи!

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

схемы с использованием полупроводников и реле

Для успешного подключения любого осветительного прибора требуется не менее двух проводов – нулевой и фазный. Если будет использоваться светильник на несколько лампочек, то нередко возникает желание настроить разные режимы работы (со свечением одного, двух или всех источников света).

В этих целях пригодятся парные выключатели или несколько отдельных устройств, подключенных к разным группам ламп. В таком случае требуется дополнительная проводка и коммутация отдельной фазы к каждому выключателю. Все это актуально на этапе проектирования, но если в квартире уже сделан ремонт и появилась необходимость заменить обычный светильник на многофункциональный, то придется действовать одним из двух методов.

Устройство для управления режимами освещения одним выключателем

Первый вариант – купить «умную» люстру с пультом дистанционного управления. В ее блок-схеме уже заложена поддержка разных режимов. Второй вариант – воспользоваться определенными схемами, обеспечивающими управление люстрой по двум проводам.

Схемы подключения

Существует сразу несколько вариантов подключения люстры для управления по двум проводам. Во всех случаях нет необходимости штробить стены или портить потолок для прокладки нового кабеля.

Релейная система подключения

Такой вариант прост в реализации, но его существенным недостатком является быстрый износ деталей. После тысячекратных включений и выключений света схема выйдет из строя. Элементы спрятаны под декоративным колпачком, расположенным у потолка. Приблизительно раз в год придется «потрошить» содержимое и заменять перегоревшие детали.

На картинке ниже вы можете увидеть схему релейного подключения и управления осветительным прибором:

Релейная схема управления люстрой по двум проводам

Главные элементы здесь — два терморезистора, один конденсатор, реле К1 и диодный мост.

Когда включается лампа, то холодный терморезистор R2 увеличивает свое сопротивление. Напряжение поступает на реле K1, что приводит к размыканию контактов и включению трех ламп в цепи. Спустя пару секунд происходит нагрев терморезистора, благодаря чему сопротивление в цепи понижается и стабилизируется.

При выключении питания на полсекунды терморезистор не успевает остыть, контакты остаются замкнутыми. Загораются все шесть имеющихся ламп. Чтобы заставить светильник работать в первом режиме (три лампы), потребуется отключить напряжение на несколько секунд. Как видите, данный вариант недоработанный, но все же может быть реализован в домашних условиях.

Способы использования полупроводников в управлении освещением люстры

Наиболее распространенным методом является применение транзисторов в схемах подключения люстры по двум проводам. Электротехнические элементы долговечны, допускаются частые переключения. На выбор дается несколько видов управления.

Управление на базе счетчика

Для управления люстрой используются счетные импульсы. Первый сбрасывает счетчик, второй – приводит к последовательному включению лампочек. При каждом следующем щелчке выключателя вступает в действие или выключается новая группа источников света. Чтобы выполнить сброс импульсов, потребуется пауза на 15-20 секунд.

Система управления люстрой на базе счетчиков

Сдвиговый регистр

В самом названии заложен принцип действия схемы. Попадающий на ее начало импульс передается по цепи на нужные выходы. В дальнейшем принцип работы идентичен варианту, описанному выше.

Тиристор

Для питания схемы управления используется диодный мост, выполняющий функции выпрямителя тока. При активации выключателя загорается первая лампочка в цепи. Происходит постепенная зарядка конденсаторов, при этом дополнительный мост удерживает транзистор и тиристор в закрытом положении. При смене положения выключателя конденсатор перезаряжается.

Микроконтролирование люстры

Для реализации схемы на микроконтроллере требуется небольшой процессор с программным обеспечением. С его помощью можно выбрать любой принцип работы с различными вариациями дополнительных функций. В качестве основы берется аналогичная схема.

Микроконтроллер для переключения режимов работы люстры

Задействуем диоды

Другая идея управления люстрой по двум кабелям связана с применением диодной схемы. Выполняется подключение нескольких выключателей, соединенных параллельно друг другу. Для включения лампочек они используют диоды, которые размещаются и перед выключателями, и перед лампами. Полупроводник способен пропускать всего лишь одну полуволну синусоидального напряжения в промышленной сети. Поэтому происходит включение того источника света, который расположен непосредственно перед диодом.

Недостатком такого варианта является то, что для каждой группы светильников выполняется подача половины напряжения от сети питания. Это уместно для обычных ламп накаливания, но не подходит для светодиодных и люминесцентных источников света. Даже если они включатся, то в дальнейшем намного быстрее выйдут из строя.

Что касается ламп накаливания, они будут мерцать с частотой 50 Гц (аналогичная частота в бытовой электросети). Это негативно сказывается на самочувствии находящегося в помещении человека, поэтому в жилых домах такой свет использовать не рекомендуется.

При помощи диода можно обеспечить включение всех лампочек с разной мощностью. При щелчке по первому выключателю подается первая полуволна, по второму – все напряжение. Вариант уместен для ламп накаливания и светодиодных источников с диммерами. Дополнительно схема должна включать конденсаторы, обеспечивающие включение первой группы источников. Достаточно емкости на 1 мкФ и напряжения свыше 300 В. В качестве диодов можно взять отечественные КД202, КД203, КД206 или зарубежные 1n4007.

Управление люстры по двум проводам с помощью диодной схемы

Схема на терморезисторе и реле

Другой вариант подключения и управления светильником подразумевает наличие в схеме реле и терморезистора. Когда происходит включение, то напряжение подается на первую часть схемы, и подключенные к ней лампы зажигаются. Еще одна группа ламп питается обычным замкнутым реле. При подаче питания контакты размыкаются.

Параллельно реле подключаются резистор и терморезистор. Когда ток проходит через второй элемент, то он постепенно нагревается. Повышение температуры приводит к снижению сопротивления.

Ток включения всегда больше тока удержания. Поэтому при уменьшенном сопротивлении терморезистора ток пройдет дальше, а на реле питания будет достаточно для того, чтобы удерживать его во включенном состоянии. Для включения всех ламп нужно выключить и включить схему повторно и без паузы. В таком случае терморезистор останется нагретым, ток продолжит следовать через него, а тока на катушке будет недостаточно для ее размыкания. Чтобы вновь включить первую группу лампочек, придется отключить свет, подождать 20-30 секунд и нажать на выключатель повторно.

Используем счетчик

Для реализации данной схемы нужно задействовать несколько логических элементов. При подаче импульсов на выходе возникают логические единицы и нули. Они необходимы для активации полупроводниковых транзисторов (или других подобных элементов).

Ниже можно ознакомиться с функциональной схемой:

Схема управления освещением на терморезисторе

Чтобы отключить первую группу и включить другую, следует быстро щелкнуть выключателем.

Алгоритм действия следующий:

  1. EL1 EL.
  2. EL1 EL3 EL.
  3. EL1 EL2 EL3.

Когда питающий сигнал попадает на вход R, то выполняется сброс счетчика. Чтобы это произошло, следует отключить SA1 на 15-20 секунд. Для формирования счетных импульсов используется элемент DD3.

Как видно, существует огромное количество различных схем для коммутации люстры, работающей от нулевого и фазного проводов. Выбирать тот или иной вариант следует в зависимости от знаний электротехники, опыта работы и наличия комплектующих. Чем дешевле схема подключения, тем ниже ее долговечность и функциональность.

220.guru

Управление по двум проводам. Управление сетевым светильником по двум проводам

Замена устаревшей люстры зачастую ставит в затруднительное положение лиц мужского пола. Чаще всего возникает недоумение каким образом подключить два торчащих провода из потолка к трем, четырем или даже пяти проводам, торчащим из люстры, и управлять всеми пятью, а то и десятком лампочек от одного выключателя. Простым решением управления освещением кажется увеличить количество проводников до необходимого, а также количество контактов выключателя. Однако такое решение подразумевает в первом случае замену скрытой проводки, а во втором замену выключателя, что связано с выполнением определенных строительных работ (снятие обоев, удаление штукатурки, работа с перфоратором).

Для решения проблемы управления люстрой по двум проводам можно прибегнуть к любительским схемам электриков и радиолюбителей. Большинство таких схем опробовано на практике и, как правило, не одним человеком. По сложности схемы могут выполняться как на простейших элементах релейно-контакторной аппаратуры, так и с применением микропроцессоров для управления освещением.

Одной из наиболее популярных является схема управления люстрой по двум проводам, опубликованная в журнале «Радио» еще в 1984 году.

Схема управления освещением строится на базе двух реле (К1 и К2), питание которых осуществляется через трансформатор (WT1). Схема работает следующим образом: замыкание контакта выключателя SA1 приводит к включению лампы Н1 и подаче напряжения в цепь катушек управления. На выходе диодного моста VD1-VD4 выпрямленное постоянное напряжение через нормально замкнутый контакт реле К2.1 поступает на катушку реле К1, тем самым подключая к выпрямителю конденсатор С1. Происходит заряд конденсатора. Для включения лампочки Н2 необходимо быстрым движением перевести выключатель SA1 из положения ВКЛ в положение ВЫКЛ и обратно. За это время происходит отключение реле К1 и перевода контакта реле К1.1 в нормально замкнутое положение. В результате получаем контур протекания тока разряда конденсатора через катушку реле К2. Контактом реле К2.1 катушка становится на самопитание. Подключение лампочки Н2 осуществляется через нормально разомкнутый контакт реле К2.2. За время разряда конденсатора, т.е. время удержания напряжения на катушке К2 и замыкания контакта К2.2, необходимо перевести выключатель SA1 в положение ВКЛ, дабы произошло включение лампочек Н1 и Н2.

На данной схеме показан принцип построения схем управления люстрой по двум проводам. Современная элементная база позволяет существенно уменьшить как количество элементов, так и габаритные показатели системы управления. Однако принцип работы схемы остается неизменным.

Рассмотрим еще один вариант релейной схемы управления люстрой по двум проводам.

Главными преимуществами данной схемы можно считать отсутствие трансформатора, а также наличие только одного реле. Работа схемы: принцип работы схемы основан на изменении сопротивления терморезистора R1. При первом включении срабатывает реле К1 и размыкает свой контакт К1/1 в цепи питания лампочек HL1-HL3. Во включенном состоянии часть тока протекает через терморезистор R1, вызывая тем самым его нагрев. С нагревом R1 происходит уменьшение его сопротивления. За счет этого напряжение на конденсаторе С1 падает. При кратковременном отключении питания происходит отключение реле К1 и подключение через нормально замкнутый контакт К1/1 лампочек HL1-HL3. При повторном подключении питания конденсатор С1 заряжается, однако уровень напряжения заряда будет ограничиваться терморезистором R1. Этот уровень не должен позволить включиться реле К1. Приведенная схема является более сложной, по сравнению с первым вариантом. Для корректной работы необходимо произвести расчет номинального значения терморезистора R1 (рекомендуемый тип СТ3-17 сопротивлением 330 Ом), а также подобрать емкость конденсатора (рекомендуется электролитический конденсатор 50мкФ*25В).

При наличии в сетевом светильнике, например люстре, нескольких осветительных ламп желательно включать и выключать их по отдельности или группами. Если питание такого светильника трёхпроводное, организовать независимое управление двумя группами ламп не составит большого труда, достаточно применить сдвоенный выключатель. При двухпроводном питании это оказывается невозможным. В то же время способ управления по двум проводам двумя группами ламп в светильнике известен не один десяток лет. Он подходит для случая, когда нет возможности заменить двухпроводную проводку натрёхпроводную. В нём применены выпрямительные диоды, а схема показана на рис. 1. Такая простая схема позволяет, в зависимости от положения выключателей, включить одну, две или три лампы (группы ламп). Однако ранее этот способ не находил широкого применения из-за того, что основным источником света были лампы накаливания. При питании однопо-лупериодным выпрямленным напряжением их яркость свечения существенно снижается и появляются заметные пульсации светового потока.

Но если в светильнике применить компактные люминесцентные лампы (КЛЛ), которые в настоящее вре

levevg.ru

Схемы управления люстрой по двум проводам с использованием полупроводников

Главным недостатком схем управления люстрой по двум проводам с помощью релейных элементов является небольшой срок службы самого реле. По своей коммутационной износостойкости реле выдерживает всего несколько сотен срабатываний. В первую очередь это обусловлено большим количеством механических звеньев в конструкции реле. Для устранения этого недостатка обычное реле часто заменяют на транзисторы, способные переключаться с частотой более 1кГц.

Схема управления люстрой по двум проводам на базе счетчика К561ТМ2

В приведенной схеме подключение новой группы ламп происходит при кратковременном переводе выключателя SA1 из положения ВКЛ в положение ВЫКЛ и обратно. Схема строится на базе двоичного двухразрядного счетчика на микросхеме К561ТМ2. Алгоритм работы счетчика представляет собой последовательности импульсов на его выходах: 00b, 01b, 10b и 11b. При появлении на выходе логической «1» (переключении выключателя SA1) подключается одна из групп ламп. Лампа EL1 зажигается при включении выключателя SA1. Дальнейшее подключение ламп осуществляется по следующему алгоритму: EL1 & EL2; EL1 & EL3 & EL4; EL1 & EL2 & EL3 & EL4. Управление счетчиком осуществляется счетным импульсом, поступающем на вход С при каждом переключении выключателя. Сброс счетчика осуществляется подачей импульса на вход сброса R. Сброс счетчика происходит при включении выключателя, при условии что временной интервал от предыдущего выключения превысил 15 секунд. Формирование счетных импульсов осуществляется логическим элементом DD1.3. При первом включении схемы на выходе элемента DD1.3 формируется сигнал низкого уровня, поддерживаемый конденсатором С2. При непродолжительном размыкании выключателя SA1 конденсатор С2 разряжается и на выходе элемента DD1.3 формируется сигнал высокого уровня. Переключение элемента DD2.1 происходит по переднему фронту сигнала на счетном входе. Формирование счетного импульса происходит при каждом размыкании выключателя SA1.

Схема управления люстрой по двум проводам на базе сдвигового регистра К561ИР2

Алгоритм работы сдвигового регистра: при поступлении импульса на счетный вход С происходит передача сигнала на входе D на выход 1 и сдвиг информации к последующим триггерам. В представленной схеме на вход всегда поступает логическая «1», поэтому на выходе микросхемы будет формироваться число в двоичном коде: 0000, 0001, 0011, 0000. Алгоритм подключения ламп аналогичен предыдущей схеме. Сброс микросхемы происходит при четвертом переключении выключателя S1.

Схема управления люстрой по двум проводам на базе тиристоров

Лампа EL3 загорается при первом включении выключателя SA1. Питание схемы осуществляется через выпрямитель VD6-VD9. Выпрямленное напряжение поступает на стабилизатор (стабилитрон VD1 и конденсатор С1). Через резистор R2 происходит заряд конденсатора С2, поддерживающий высокий уровень сигнала на выходе DD1.1. При этом происходит заряд конденсатора С3. При заряде конденсатора С3 до необходимого уровня напряжения на выходе DD1.1 появится низкий уровень сигнала, а на выходах элементов DD1.2 и DD1.3 – высокий. Таким образом элемент DD1 удерживает транзистор VT1 и тиристор VS1 в закрытом состоянии. При переключении выключателя SA1 происходит перезаряд конденсатора С3. При этом на выходе DD1.1 – высокий уровень, на выходах DD1.2 и DD1.3 – низкий уровень сигналов. Выходные сигналы логического элемента DD1 формируют импульс открытия транзистора VT1. В результате на управляющем электроде тиристора появляется напряжение, переводя его в открытое состояние, зажигая лампы EL1 и EL2.

Схема управления люстрой по двум проводам на базе микроконтроллера

Применение микропроцессорной техники позволяет существенно упростить схемотехнику, а также расширить функциональные возможности системы. Побочным же эффектом можно считать необходимость разработки программного обеспечения для самого контроллера.

Алгоритм работы схемы подобен предыдущим вариантам реализации схем управления люстрой по двум проводам. Однако разработчик программного обеспечения можете заложить расширенные функциональные возможности в эту схему, такие как плавное включение и отключение ламп, регулировка яркости свечения, включать и отключать освещение в определенное время.

ukrelektrik.com


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта