Устройство фотодатчика: Фотоэлектрические датчики Autonics

Фотоэлектрические датчики: назначение, устройство, области применения

Главная
Исследования, разработки, полезная информация
Фотоэлектрические датчики

15.03.2021

Фотоэлектрические датчики применяются в закрытых помещениях для автоматизации различных видов технологических процессов в промышленности и на производстве, а также для выполнения широкого перечня других задач. Основной функцией устройства является бесконтактное получение информации о состоянии находящегося перед ним объекта: определение соответствия заданным параметрам скорости его перемещения, размеров, степени прозрачности и других данных. Полученные при помощи отраженного светового пучка данные преобразуются в электрический сигнал, который поступает на контроллер. В зависимости от принципа кодирования светового сигнала, примененного в конкретной модели датчика (амплитудной, временной или частотной модуляции), требуемый параметр отображается в виде частоты, продолжительности или количества световых импульсов.

Особенности конструкции

Основными элементами конструкции любого фотоэлектрического датчика являются:

  • Излучатель (источник светового луча). В качестве этого элемента применяют светодиод – полупроводник, излучающий свет с определенной длиной волн или цветом при прохождении через него электрического тока. Применяются инфракрасные светодиоды, позволяющие отслеживать направление луча, создающие больше света и выделяющие меньше тепла по сравнению с другими типами, а также желтые, синие и красные, оптимальные для применения в ситуациях, когда необходимо отслеживать цвет или оттенок наблюдаемого объекта. Конструкция излучателей отличается прочностью, устойчивостью к механическим повреждениям и позволяет выполнять работы в широком температурном диапазоне окружающей среды.
  • Приемник светового сигнала (фотодетектор). Фототранзистор или фотодиод чувствительный к длине волн света и его интенсивности. В зависимости от типа получаемых воздействий изменяет параметры проходящего через него тока.
  • Линза – предназначена для ограничения области принимаемого света, а также увеличения расстояния обнаружения исследуемого объекта.
  • Выходное устройство с дискретным или аналоговым выходом, осуществляющее переключение в пользовательской цепи. Применяются несколько типов таких устройств (электромеханическое реле, полевой транзистор, симистор и другие), каждое из которых имеет свои преимущества, недостатки и, соответственно, сферу применения.

Особенности конструкции определяются сферой применения и требованиями к прибору. Так, датчики, предназначенные для определения температуры или освещенности (например, датчики, управляющие автоматическим включением и отключением осветительных приборов), могут не оснащаться световым излучателем, а некоторые упрощенные модели не имеют линз.

В большинство датчиков для обеспечения искусственного светового потока применяются лампы накаливания, с целью обеспечения более долгого срока службы работающие на напряжении 70-80% от номинального. В качестве альтернативы допускается применение более экономичных и эффективных газоразрядных ламп, однако, в силу больших габаритов и меньшего ассортимента применение такого источника света не настолько популярно.

Для предотвращения искажения сигнала в результате воздействия помех в некоторых моделях устройств размещается микроэлектронный операционный усилитель выходного сигнала.

Основные разновидности фотодатчиков

В зависимости от способа передачи воздействия светового луча на фотодетектор фотодатчики подразделяют на несколько видов.

  • Фотоэлектрические датчики, воспринимающие изменение характеристик светового потока при передвижении исследуемого объекта, а также при изменении его формы или размеров. Конструкция таких устройств предусматривает создание параллельного и равномерного светового излучения при помощи излучателя и линзы. Исследуемый объект или связанная с ним механическим способом заслонка размещаются в световом потоке. В случае изменения размера или месторасположения наблюдаемого элемента, а также при изменении положения заслонки изменяется количество света, попадающего на приемник светового сигнала (фотодетектор). Для получения более точных данных о происходящих изменениях перед попаданием на фотодетектор световой поток предварительно проходит через оптическую систему. Такой тип устройств оптимален при необходимости выполнения работ связанных с измерением геометрических параметров наблюдаемого объекта (длины, ширины, площади, высоты), а также частоты вращения детали и при считывании информации с перфолент или перфокарт.

  • Фотоэлектрические датчики, работающие по принципу анализа изменений отраженного от наблюдаемого объекта светового луча. Сформированный светодиодом луч, проходя через оптическую систему, сужается и попадает на поверхность объекта. Отраженный свет проходит через фокусирующую линзу и поступает на приемник светового сигнала. Количество поступившего света зависит от особенностей поверхности исследуемого объекта: качества и вида обработки, отражающей способности, наличия защитных или декоративных покрытий и других факторов. Такие устройства применяются для определения особенностей поверхности объекта, а также считывания и шифрования графической информации (текстов, изображений) с бумажных и других носителей.

  • Фотодатчики, принимающие световой поток, создаваемый самим исследуемым объектом. Излучаемый поток света фокусируется линзой и поступает на датчик. Применяются для определения характеристик излучения, создаваемого контрольно-измерительными приборами (оптико-электронными измерителями температуры, атомно-эмиссионными спектральными анализаторами и другими).

Виды фотоэлементов и принцип их работы

  • Фотоэлементы с внешним фотоэффектом (фотоэлектронной эмиссией) преобразовывают энергию светового излучения в электрический сигнал при помощи вакуумных или наполненных газом стеклянных колб с напылением на части внутренней поверхности тонкого металлического слоя, выполняющего функцию катода и предназначенного для получения электрического тока малой мощности. В роли анода выступает размещенная внутри колбы проволочная петля или металлический диск, предназначенный для улавливания фотоэлектронов. К катоду и аноду подключается внешний источник электрического тока. При воздействии излучения на катод часть электронов получает дополнительную энергию, после чего они попадают в вакуумную среду колбы и, благодаря возникшему в результате подключения к электродам источника питания электрическому полю, направляются к аноду. Величина возникающего фототока прямо пропорциональна силе светового потока. К недостаткам таких устройств относится невысокая прочность стеклянной колбы, вероятность повреждения электродов и снижение чувствительности фотоэлементов при длительной эксплуатации.

  • Вентильные фотоэлементы (с запорным слоем) состоят из нижнего металлического электрода, электронных и запирающего слоев, а также верхнего полупрозрачного металлического электрода. Все элементы помещены в пластиковый корпус с отверстием, пропускающим световой поток. При прохождении светового потока и попадании его на фотослой проводник и полупроводник приобретают разноименные заряды. Основными преимуществами таких элементов является устойчивость к механическим повреждениям, высокая чувствительность и отсутствие потребности в источнике питания. К недостаткам относится инерционность, чувствительность к температуре окружающей среды и относительно невысокий срок службы.

  • Фотодиоды – полупроводниковые диоды, способные изменять свои свойства под воздействием светового потока. При отсутствии воздействия света диод обладает стандартными характеристиками. В зависимости от схемы расположения в электрической цепи фотодиод может выполнять различные функции. При работе в вентильном режиме потребность в дополнительном источнике питания отсутствует, а сам диод совмещает функции фотодиода и триода, являясь усилителем фототока, возникающего под воздействием светового излучения. Такой режим применяется для выполнения измерений размеров исследуемого объекта, его перемещений и температуры. Для работы в фотодиодном режиме требуется применение внешнего источника питания, при этом диод приобретает большую чувствительность, что делает возможным его применение для считывания информации с перфокарт, перфолент и других носителей.

  • Фоторезисторы – при воздействии светового потока на фотоэлемент возрастает их проводимость и увеличивается сила тока в цепи. Такие элементы компактны, прочны, высокочувствительны, а также могут работать и на переменном, и на постоянном токе. В то же время они достаточно инерционны и подвержены температурным воздействиям.

Возможные ограничения и область применения

В процессе монтажа, настройки и эксплуатации датчиков следует придерживаться ряда требований и рекомендаций:

  • Обеспечить защиту места установки датчика от воздействия лучей ярких источников света, а также люминесцентных ламп.
  • Во избежание возникновения помех использовать кабель минимально возможной для конкретных условий установки длины.
  • При установке учитывать, что расстояние срабатывания датчика зависит от материала, формы поверхности и габаритов объекта.
  • В процессе монтажа датчиков соблюдать необходимое расстояние от поверхности установки, исключающее возможность отражение света от поверхности.
  • Избегать прокладки кабеля датчика в одном канале с высоковольтным кабелем.
  • Очищать оптический элемент сухой тканью, не применяя щелочей и кислот.

Помимо промышленного производства фотоэлектрические датчики применяют и для выполнения широкого перечня других задач:

  • Управления производственным оборудованием и станками.
  • В качестве одного из основных элементов пропускной системы метрополитена.
  • Контроля площади лекал и других заготовок сложной геометрической формы.
  • В процессе плазменной резки металла для считывания заданной программы с перфокарты.
  • При выполнении ряда процессов в типографии – подсчет листов, контроль правильности резки и укладки, а также управление работой станка.

Также фотоэлектрические датчики используются в современных наукоемких отраслях (робототехнике и других).

Основные характеристики фотоэлектрических датчиков

При выборе устройства для конкретных целей и условий эксплуатации следует руководствоваться прилагаемой производителем документацией, в которой указаны все необходимые характеристики прибора:

  1. Практическая способность обнаружения наблюдаемых объектов – одна из основных характеристик, определяющая условия, в которых устройство сможет полноценно выполнять свои функции.
  2. Максимальное и минимальное расстояние до объекта. В зависимости от характеристик конкретной модели этот показатель может составлять от 5 мм до 250 м. Подбирается в зависимости от специфики применения.
  3. Ширина луча, влияющая на разрешение датчика и определяющая параметры объектов контроля.
  4. Время реагирования, скорость включения, выключения и обработки объекта. Особенно такой параметр важен при использовании датчиков на конвейерных линиях с большой скоростью движения и количеством обрабатываемых объектов.
  5. Энергопотребление датчиков. Работа устройств не должна оказывать чрезмерной нагрузки на систему электроснабжения и влиять на работу другого применяемого на предприятии оборудования.

Также стоит обратить внимание на размеры и вес устройств (подойдут ли они для эксплуатации в конкретных условиях или потребуют выполнения дополнительных работ при установке), сложность монтажа, требования к температурному режиму и влажности в помещении и другие факторы.

Как выбрать и установить фотодатчики освещения

Датчики освещенности

В последнее время для наружного освещения все чаще применяют датчики включения освещения. Ведь они позволяют не только автоматизировать процесс включения освещения, но и позволяют неплохо сэкономить.

При этом стоимость таких датчиков находится на вполне приемлемом уровне, что по заявлению торговых компаний позволяет окупить их буквально в течении года. Поэтому и мы решили более детально рассмотреть данные приборы и дать вам рекомендации по их выбору, установке и подключению.

Содержание

  • Устройство датчика освещенности и рекомендации по их выбору
    • Устройство датчика освещенности
    • Выбор датчиков освещенности
  • Установка и подключение датчиков освещённости
    • Установка датчика освещенности
    • Подключение датчика освещения
  • Вывод

Устройство датчика освещенности и рекомендации по их выбору

Устройство датчика освещенности

Прежде, чем приступать непосредственно к выбору, давайте ознакомимся с устройством и принципом действия датчиков данного типа. Они могут быть выполнены на фоторезисторе или фотодиоде, но принцип действия от этого не меняется.

На фото представлена схема датчика освещенности на фоторезисторе

Итак:

  • Датчики света для уличного освещения для своей нормальной работы должны быть подключены к электрической сети. То есть, на выводы датчика должны быть подведены фаза и ноль. Кроме этого, там есть третий провод, который подает напряжение непосредственно на сеть освещения, но о нем мы поговорим, когда будем подключать наш датчик.
  • Сразу к выводам датчика подключен диодный мост, который преобразует переменное напряжение в постоянное. Кроме того, там установлен конденсатор, который сглаживает постоянное напряжение.
  • Параллельно схеме диодного моста подключается наш фоторезистор с добавочным сопротивлением. Именно на это добавочное сопротивление вы воздействуете, вращая ручку регулятора на корпусе датчика.
  • Сопротивление фоторезистора изменяется в зависимости от уровня освещенности. Чем темнее, тем выше сопротивление нашего фоторезистора. Соответственно выше напряжение на его контактах.
  • При определенном напряжении открывается транзистор, подключенный параллельно нашим сопротивлениям. Благодаря этому образуется цепь на катушку силового реле.
  • Реле срабатывает и замыкает цепь. А благодаря тому, что к контактам этого реле подключены наши провода питания сети освещения, включается свет.
  • При увеличении уровня освещенности датчик ночного освещения размыкает контакты нашего силового реле. Происходит это по причине снижения сопротивления нашего фоторезистора, которое влечет за собой соответственно снижение напряжения и закрытие транзистора. Следствием этого является размыкание цепи, которая питает катушку силового реле.

Выбор датчиков освещенности

Имея общее представление о работе датчика, можно приступать непосредственно к его выбору. Здесь мы советуем вам обратить внимание на некоторые аспекты.

  • Как и любое коммутационное устройство, перед установкой фотодатчик для уличного освещения стоит проверить на соответствие коммутируемой нагрузки. На данный момент на рынке представлены модели с номинальным током в 6 и 10А. Чуть реже встречаются модели на 16 и 25А. Но, честно говоря, я бы не стал доверять этим цифрам и как минимум на один шаг занизил их.

Обратите внимание! Согласно п.6.2.3 ПУЭ , каждая групповая линия должна содержать не более 20 ламп. Если принять мощность каждой лампы в 100Вт, то получается, что датчика в 10А нам будет вполне достаточно. Установка большего количества ламп в одной группе , согласно п.6.3.4 ПУЭ, потребует от вас установки дополнительных автоматических выключателей или предохранителей.

Регулировка уровня освещенности, при которой происходит срабатывание датчика

  • Следующим параметром, на который стоит обратить внимание, является возможность регулирования датчика. Обычно минимальным значением является 2лк. А вот максимальное значение может колебаться. Наиболее распространенными являются значения в 50 и 2000лк. Насколько вам нужна регулировка в широком спектре — решать вам, но я бы напомнил, что возможности регулировки также отражает цена датчика. Поэтому выбор минимального регулирования, по-моему, вполне оправдан.
  • Нельзя забывать и то, что датчик освещенности предназначен для наружной установки. Поэтому защита от влаги и пыли как минимум не будет лишней. Данный параметр указывают цифры после аббревиатуры «IP». Обычно это IP44, но могут быть и более высокие значения.

Обратите внимание! Первая цифра после аббревиатуры «IP» обозначает уровень пылезащищенности. Она может варьировать от 0 до 6. Вторая цифра обозначает влагозащищенность. Она может быть от 0 до 8. Чем выше цифра, тем выше защита.

  • Ну а параметр температуры эксплуатации должен заинтересовать только жителей наиболее северных районов нашей страны. Ведь большинство «буржуйских» приборов может начать «выделываться» при температуре ниже -25⁰С.

Установка и подключение датчиков освещённости

Установить и подключить датчик освещенности своими руками не так уж сложно. Для этого не требуется каких-то особых познаний. И просто следуя рекомендациям нашей инструкции, вы с легкостью выполните все операции.

Установка датчика освещенности

Большинство моделей, представленных на рынке, имеют специальное крепление, которое идет в комплекте с датчиком. Это крепление позволяет легко прикрепить датчик практически в любом месте. Инструкция по установке предъявляет всего несколько требований.

Место установки датчика освещенности

Итак:

  • Датчик освещенности должен устанавливаться на открытой местности. Где он не может быть затенен деревом, строением или другими объектами. Иначе это может привести к его ложной работе.
  • Не забывайте, что датчик освещения ночной прибор. Поэтому не установите его в зоне освещения одного из светильников. Это может привести к его неправильной работе, когда датчик будет давать импульс на включения освещения, а после его включения сразу отключать его.
  • Устанавливайте датчик в месте, доступном для обслуживания. Ведь в зависимости от загрязнения окружающей среды и наличия пыли вам придется периодически протирать его фотоэлемент. И лазить для этого на столб или крышу не очень удобно.

Подключение датчика освещения

Датчик света для уличного освещения и схема подключения его к электросети достаточно проста. Ведь это практически тот же привычный нам выключатель. Единственным отличием является наличие нулевого провода, который необходим для работоспособности прибора.

  • Как мы уже писали выше, обычно датчик имеет три вывода. Один вывод — это нулевой провод, который необходим для работы датчика. Согласно п.1.1.29 ПУЭ, она должна быть обозначена «N» или проводом голубого света. Второй провод — это фаза, приходящая от вводного автомата. Она может быть обозначена как «L». Так же достаточно часто ее обозначают черным проводом. Третий провод — это фазный вывод с датчика, который подключается непосредственно к нагрузке. Он может быть обозначен «L1» «LOAD»или красным цветом провода.

Схема подключения датчика освещенности

  • Используя двухжильный провод, подключаем датчик освещения к нашему автоматическому выключателю, питающему наружное освещение. Подключив датчик, советую сразу проверить его работоспособность и выполнить его регулировку. Срабатывание датчика вы легко определите по появлению напряжения на третьем проводе.
  • Если испытания и настройка прошли успешно, можно снять напряжение с датчика и продолжить подключение. Третий провод делаем питающим нашей сети освещения. После подключения можно подать напряжение и проверить работоспособность всей схемы. Более же подробную информацию по подключению датчиков вы можете посмотреть на видео, представленном на нашем сайте.

Обратите внимание! Сейчас на рынке появились силовые автоматы с возможностью подключения фотоэлемента или, как их называют, датчики освещенности с выносными фотоэлементами. Их подключение выполняется по той же схеме, только подключаете вы не к силовой цепи, а к силовой части датчика.

Вывод

Сейчас датчиками включения освещения по времени суток оборудуется все большее количество сетей наружного освещения. Такие приборы находят применение в сетях подъездного, аварийного освещения.

Теперь вы знаете, что подключить такой датчик не так уж и сложно, и возможно тоже станете «двигателем» прогресса в нашей стране.

Обзор фотоэлектрических датчиков | Промышленная автоматизация OMRON

Что такое фотоэлектрический датчик?

Фотоэлектрические датчики обнаруживают объекты, изменения состояния поверхности и другие объекты с помощью различных оптических свойств.
Фотоэлектрический датчик состоит в основном из излучателя для излучения света и приемника для приема света. Когда излучаемый свет прерывается или отражается чувствительным объектом, количество света, попадающего на приемник, меняется. Приемник обнаруживает это изменение и преобразует его в электрический выходной сигнал. Источником света для большинства фотоэлектрических датчиков является инфракрасный или видимый свет (обычно красный или зеленый/синий для определения цветов).
Фотоэлектрические датчики классифицируются, как показано на рисунке ниже. (См. Классификацию.)

Датчики на пересечение луча

Датчики обратного отражения

Датчики диффузного отражения

  • Верх страницы

Характеристики

1. Большое расстояние обнаружения

A Датчик на пересечение луча, например, может обнаруживать объекты на расстоянии более 10 м. Это невозможно с магнитными, ультразвуковыми или другими методами зондирования.

2. Практически нет ограничений на объекты обнаружения

Эти датчики работают по тому принципу, что объект прерывает или отражает свет, поэтому они не ограничены, как датчики приближения, обнаружением металлических объектов. Это означает, что их можно использовать для обнаружения практически любого объекта, включая стекло, пластик, дерево и жидкость.

3. Быстрое время отклика

Время отклика чрезвычайно мало, поскольку свет распространяется с высокой скоростью, а датчик не выполняет никаких механических операций, поскольку все схемы состоят из электронных компонентов.

4. Высокое разрешение

Невероятно высокое разрешение, достигнутое с помощью этих датчиков, является результатом передовых технологий проектирования, которые позволили получить очень маленький точечный луч и уникальную оптическую систему для приема света. Эти разработки позволяют обнаруживать очень маленькие объекты, а также точно определять положение.

5. Бесконтактный датчик

Вероятность повреждения чувствительных объектов или датчиков мала, поскольку объекты можно обнаружить без физического контакта.
Это гарантирует долгие годы службы сенсора.

6. Идентификация цвета

Скорость, с которой объект отражает или поглощает свет, зависит как от длины волны излучаемого света, так и от цвета объекта. Это свойство можно использовать для обнаружения цветов.

7. Простая регулировка

Расположение луча на объекте упрощается с моделями, излучающими видимый свет, потому что луч виден.

  • Верх страницы

Принципы работы

(1) Свойства света

Прямолинейное распространение

Когда свет проходит через воздух или воду, он всегда движется по прямой. Прорезь на внешней стороне датчика на пересечение луча, которая используется для обнаружения мелких объектов, является примером того, как этот принцип применяется на практике.

Преломление

Преломление — это явление отклонения света при прохождении под углом через границу между двумя средами с разными показателями преломления.

Отражение
(обычное отражение, обратное отражение, диффузное отражение)

Плоская поверхность, такая как стекло или зеркало, отражает свет под углом, равным углу падения света. Такой вид отражения называется регулярным отражением. Угловой куб использует этот принцип, располагая три плоские поверхности перпендикулярно друг другу. Свет, излучаемый в сторону углового куба, многократно распространяется в виде регулярных отражений, и отраженный свет в конечном итоге движется прямо обратно к излучаемому свету. Это называется ретрорефлексией.
Большинство ретрорефлекторов состоят из угловых кубов размером в несколько квадратных миллиметров, расположенных в точной конфигурации.
Матовые поверхности, такие как белая бумага, отражают свет во всех направлениях. Это рассеяние света называется диффузным отражением.
Этот принцип является методом обнаружения, используемым датчиками диффузного отражения.

Поляризация света

Свет можно представить в виде волны, которая колеблется горизонтально и вертикально. Фотоэлектрические датчики почти всегда используют светодиоды в качестве источника света. Свет, излучаемый светодиодами, колеблется в вертикальном и горизонтальном направлениях и называется неполяризованным светом. Существуют оптические фильтры, ограничивающие колебания неполяризованного света только в одном направлении. Они известны как поляризационные фильтры. Свет от светодиода, проходящий через поляризационный фильтр, колеблется только в одном направлении и называется поляризованным светом (точнее, линейно поляризованным светом). Поляризованный свет, колеблющийся в одном направлении (скажем, в вертикальном направлении), не может пройти через поляризационный фильтр, ограничивающий колебания в перпендикулярном направлении (например, в горизонтальном направлении). На этом принципе работает функция MSR для датчиков с обратным отражением и дополнительный фильтр защиты от взаимных помех для датчиков на пересечение луча.

(2) Источники света

Light Generation
Свет с импульсной модуляцией

В большинстве фотоэлектрических датчиков используется импульсно-модулированный свет, который в основном испускает свет повторно через фиксированные интервалы времени.
Они могут ощущать объекты, расположенные на некотором расстоянии, потому что с помощью этой системы легко устраняются эффекты внешних световых помех. В моделях, оснащенных защитой от взаимных помех, цикл излучения варьируется в заданном диапазоне для работы с когерентным светом и внешними световыми помехами.

Немодулированный свет

Немодулированный свет представляет собой непрерывный луч света определенной интенсивности, который используется с определенными типами датчиков, такими как датчики меток. Хотя эти датчики имеют быстрое время отклика, их недостатки включают короткое расстояние срабатывания и восприимчивость к внешним световым помехам.

Цвет и тип источника света

(3) Триангуляция

Датчики с регулируемым расстоянием обычно работают по принципу триангуляции. Этот принцип иллюстрируется следующей диаграммой.
Свет от Излучателя падает на чувствительный объект и отражает рассеянный свет. Линза приемника концентрирует отраженный свет на детекторе положения (полупроводник, который выдает сигнал в зависимости от того, где на него падает свет). Когда воспринимающий объект находится в точке А рядом с оптической системой, свет концентрируется в точке а на детекторе положения. Когда воспринимающий объект находится в точке B вдали от оптической системы, свет концентрируется в точке b на датчике положения.

  • Верх страницы

Классификация

(1) Классификация по методу обнаружения

1. Датчики на пересечение луча
Метод обнаружения

Излучатель и приемник устанавливаются напротив друг друга, чтобы свет от излучателя мог попасть в приемник. Когда чувствительный объект, проходящий между излучателем и приемником, прерывает испускаемый свет, это уменьшает количество света, попадающего в приемник. Это уменьшение интенсивности света используется для обнаружения объекта.

Метод обнаружения идентичен методу датчиков на пересечение луча, а некоторые модели, называемые щелевыми датчиками, имеют встроенные излучатель и приемник.

Характеристики

Стабильная работа и большие расстояния срабатывания от нескольких сантиметров до нескольких десятков метров.

На положение обнаружения не влияют изменения траектории объекта обнаружения.

На работу не сильно влияет блеск, цвет или наклон объекта.

2. Датчики диффузного отражения

Метод обнаружения

Излучатель и приемник установлены в одном корпусе, и свет обычно не возвращается к приемнику. Когда свет от излучателя попадает на чувствительный объект, объект отражает свет, и он попадает в приемник, где интенсивность света увеличивается. Это увеличение интенсивности света используется для обнаружения объекта.

Характеристики

Расстояние срабатывания от нескольких сантиметров до нескольких метров.

Простая регулировка монтажа.

Интенсивность отраженного света, стабильность работы и расстояние обнаружения зависят от условий (например, цвета и гладкости) на поверхности объекта обнаружения.

3. Датчики обратного отражения

Метод обнаружения

Излучатель и приемник установлены в одном корпусе, и свет от излучателя обычно отражается обратно в приемник с помощью отражателя, установленного на противоположной стороне. Когда чувствительный объект прерывает свет, он уменьшает количество получаемого света. Это уменьшение интенсивности света используется для обнаружения объекта.

Характеристики

Расстояние срабатывания от нескольких сантиметров до нескольких метров.

Простая регулировка проводки и оптической оси (экономия труда).

На работу не сильно влияет цвет или угол расположения чувствительных объектов.

Свет проходит через чувствительный объект дважды, что делает эти датчики подходящими для обнаружения прозрачных объектов.

Чувствительные объекты с зеркальной отделкой могут быть не обнаружены, потому что количество света, отраженного обратно к приемнику от таких блестящих поверхностей, создает впечатление отсутствия воспринимающего объекта. Эту проблему можно решить с помощью функции MSR.

Рефлекторные Датчики имеют мертвую зону на близких расстояниях.

4. Датчики с регулировкой расстояния

Метод обнаружения

Приемник в датчике представляет собой двухкомпонентный фотодиод или детектор положения. Свет, отраженный от чувствительного объекта, концентрируется на приемнике. Зондирование основано на принципе триангуляции, который гласит, что место концентрации луча зависит от расстояния до воспринимаемого объекта.
На следующем рисунке показана система обнаружения, в которой используется двухкомпонентный фотодиод. Ближайший к корпусу конец фотодиода называется N (ближним) концом, а другой конец называется F (дальним) концом. Когда чувствительный объект достигает заданного положения, отраженный свет концентрируется посередине между концом N и концом F, и фотодиоды на обоих концах получают одинаковое количество света. Если воспринимающий объект находится ближе к датчику, то отраженный свет концентрируется на N-конце. И наоборот, отраженный свет концентрируется на F-конце, когда воспринимаемый объект находится дальше заданного расстояния. Датчик вычисляет разницу между интенсивностью света на концах N и F, чтобы определить положение чувствительного объекта.

Характеристики

Работа не сильно зависит от состояния поверхности или цвета объекта обнаружения.

Фон не сильно влияет на работу.

BGS (подавление фона) и FGS (подавление переднего плана)

При использовании E3Z-LS61, E3Z-LS66, E3Z-LS81 или E3Z-LS86 выберите функцию BGS или FGS для обнаружения объектов на конвейерной ленте.
Функция BGS предотвращает обнаружение любого фонового объекта (например, конвейера) за пределами установленного расстояния.
Функция FGS предотвращает обнаружение объектов, находящихся ближе, чем установленное расстояние, или объектов, отражающих меньше заданного количества света для приемника.
К объектам, отражающим меньше указанного количества света, относятся следующие:
(1) Объекты с чрезвычайно низким коэффициентом отражения и объекты темнее черной бумаги.
(2) Такие объекты, как зеркала, возвращающие практически весь свет обратно к Излучателю.
(3) Неровные, глянцевые поверхности, которые отражают много света, но рассеивают свет в случайных направлениях.
Отраженный свет может на мгновение вернуться к приемнику для пункта (3) из-за обнаружения движения объекта. В этом случае может потребоваться использование таймера задержки выключения или других средств для предотвращения дребезга.

Характеристики

Могут обнаруживаться небольшие различия в высоте (BGS и FGS).

Эффекты восприятия цвета объекта сведены к минимуму (BGS и FGS).

Эффекты фоновых объектов сведены к минимуму (BGS).

Неровности объекта обнаружения могут повлиять на работу (BGS и FGS).

5. Датчики ограниченного отражения

Метод обнаружения

Так же, как и датчики с диффузным отражением, датчики с ограниченным отражением принимают свет, отраженный от объекта обнаружения, для его обнаружения. Оптическая система ограничивает область излучения и приема света, поэтому могут быть обнаружены только объекты, находящиеся на определенном расстоянии (область, в которой излучение и прием света перекрываются) от Датчика. На рисунке справа чувствительный объект в точке (A) может быть обнаружен, а объект в точке (B) — нет.

Пример

Характеристики

Могут обнаруживаться небольшие различия в высоте.

Расстояние от Датчика может быть ограничено для обнаружения только объектов в определенной области.

На работу не сильно влияет распознавание цветов объектов.

На работу сильно влияет глянцевитость или наклон воспринимаемого объекта.

(2) Точки выбора методом обнаружения

Контрольные точки для датчиков пересечения луча и датчиков отраженного света

Объект обнаружения

(1) Размер и форма (вертикальная x горизонтальная x высота)
(2) Прозрачность (непрозрачная, полупрозрачная, прозрачная)
(3) Скорость V (м/с или единиц/мин)

Датчик

(1) Расстояние срабатывания (L)
(2) Ограничения по размеру и форме
    a) Датчик
    b) Световозвращатель (для световозвращающих датчиков)
(3) Необходимость установки рядом друг с другом
    a) Количество блоков
    b) Шаг установки
    c) Необходимость установки в шахматном порядке
(4) Ограничения по установке (под углом и др. )

Окружающая среда

(1) Температура окружающей среды
(2) Наличие брызг воды, масла или химикатов
(3) Прочее

Контрольные точки для датчиков диффузного отражения, датчиков с регулируемым расстоянием и датчиков ограниченного отражения

Объект обнаружения

(1) Размер и форма (вертикальная x горизонтальная x высота)
(2) Цвет
(3) Материал (сталь, нержавеющая сталь, дерево, бумага и т. д.)
(4) Состояние поверхности (текстурированная или глянцевая)
( 5) Скорость V (м/с или единиц/мин)

Датчик

(1) Расстояние срабатывания (расстояние до детали) (L)
(2) Ограничения по размеру и форме
(3) Необходимость установки рядом
    a) Количество единиц
    b) Монтажный шаг
(4) Ограничения по монтажу (наклон и т. д.)

Фон

Фон
(1) Цвет
(2) Материал (сталь, нержавеющая сталь, дерево, бумага и т. д.)
(3) Состояние поверхности (текстурированная, глянцевая и т. д.)

Окружающая среда

(1) Температура окружающей среды
(2) Наличие брызг воды, масла или химикатов
(3) Прочее

(3) Классификация по конфигурации

Фотоэлектрические датчики обычно состоят из излучателя, приемника, усилителя, контроллера и источника питания. Они классифицируются, как показано ниже, в зависимости от конфигурации компонентов.

1. Датчики с отдельными усилителями

Датчики на пересечение луча имеют отдельные излучатель и приемник, а датчики на отражение имеют встроенные излучатель и приемник. Усилитель и контроллер размещены в одном блоке усилителя.

Характеристики

Компактный размер, так как интегрированный излучатель-приемник состоит просто из излучателя, приемника и оптической системы.

Чувствительность можно регулировать дистанционно, если излучатель и приемник установлены в узком пространстве.

Сигнальный провод от блока усилителя к излучателю и приемнику чувствителен к шуму.

Типовые модели (усилители): E3NC, E3C-LDA и E3C

2. Датчики встроенного усилителя

В эти датчики встроено все, кроме источника питания. (Датчики на пересечение луча делятся на излучатель, состоящий исключительно из излучателя, и приемник, состоящий из приемника, усилителя и контроллера.) Блок питания представляет собой автономный блок.

Характеристики

Приемник, усилитель и контроллер объединены воедино, что устраняет необходимость в проводке слабого сигнала. Это делает датчик менее восприимчивым к шуму.

Требует меньше проводки, чем датчики с отдельными усилителями.

Хотя эти датчики, как правило, больше, чем датчики с отдельными усилителями, датчики с нерегулируемой чувствительностью такие же маленькие.

Типовые модели: E3Z, E3T и E3S-C

3. Датчики со встроенными источниками питания

Источник питания, излучатель и приемник установлены в одном корпусе с этими датчиками.

Особенности

Датчики могут быть подключены непосредственно к коммерческому источнику питания, чтобы обеспечить большой контрольный выход непосредственно от приемника.

Эти датчики намного больше, чем датчики других конфигураций, поскольку излучатель и приемник содержат дополнительные компоненты, такие как силовые трансформаторы.

Типовые модели: E3G-M, E3JK и E3JM

4. Зондовые датчики

Зональный датчик представляет собой датчик на пересечение луча, который состоит из пары излучателя и приемника с несколькими лучами. Выберите ширину срабатывания датчика в соответствии с приложением.

Характеристики

Зональные датчики могут обнаруживать большие площади.

Эти датчики идеально подходят для систем захвата мелких деталей.

Типовые модели: F3W-E и F3W-D

  • Скачать PDF (1900 КБ)

Основы фотоэлектрических датчиков

Резюме

Основы фотоэлектрических датчиков

Поскольку производственный мир становится все более и более автоматизированным, промышленные датчики стали ключом к повышению как производительности, так и безопасности.

Промышленные датчики — это глаза и уши нового производственного цеха, и они бывают всех размеров, форм и технологий. Наиболее распространенными технологиями являются индукционные, емкостные, фотоэлектрические, магнитные и ультразвуковые. Каждая технология имеет уникальные сильные и слабые стороны, поэтому требования самого приложения будут определять, какую технологию следует использовать. Эта статья посвящена фотоэлектрическим датчикам и определяет, что они из себя представляют, их преимущества и некоторые основные режимы работы.

Фотоэлектрические датчики широко используются в повседневной жизни. Они помогают безопасно управлять открытием и закрытием ворот гаража, включать краны в раковине взмахом руки, управлять лифтами, открывать двери продуктового магазина, обнаруживать автомобиль-победитель в гонках и многое другое.

Фотоэлектрический датчик — это устройство, определяющее изменение интенсивности света. Как правило, это означает либо необнаружение, либо обнаружение источника света, излучаемого датчиком. Тип света и способ обнаружения цели различаются в зависимости от датчика.

Фотоэлектрические датчики состоят из источника света (светодиода), приемника (фототранзистора), преобразователя сигнала и усилителя. Фототранзистор анализирует входящий свет, проверяет, исходит ли он от светодиода, и соответствующим образом запускает выходной сигнал.

Фотоэлектрические датчики предлагают множество преимуществ по сравнению с другими технологиями. Диапазоны чувствительности фотоэлектрических датчиков намного превосходят индуктивные, емкостные, магнитные и ультразвуковые технологии. Их небольшой размер по сравнению с диапазоном чувствительности и уникальное разнообразие корпусов делают их идеальными практически для любого применения. Наконец, благодаря постоянному развитию технологий фотоэлектрические датчики конкурентоспособны по цене с другими сенсорными технологиями.

Режимы обнаружения
Фотоэлектрические датчики обеспечивают три основных метода обнаружения целей: рассеянный, рефлекторный и сквозной, с вариациями каждого из них.

Рассеянный режим
В рассеянном режиме измерения, иногда называемом бесконтактным режимом, передатчик и приемник находятся в одном корпусе. Свет от передатчика попадает на цель, которая отражает свет под произвольными углами. Часть отраженного света возвращается к приемнику, и цель обнаруживается. Поскольку большая часть передаваемой энергии теряется из-за угла цели и способности отражать свет, рассеянный режим приводит к более коротким дальностям обнаружения, чем достижимые в режимах обратного отражения и сквозного луча.

Преимущество в том, что дополнительное устройство, такое как отражатель или отдельный приемник, не требуется. Факторы, влияющие на дальность обнаружения в рассеянном режиме, включают цвет, размер и отделку цели, поскольку они напрямую влияют на ее отражательную способность и, следовательно, на ее способность отражать свет обратно к приемнику датчика. В приведенной ниже таблице показано влияние цели на диапазон обнаружения для обнаружения в рассеянном режиме.

ТАБЛИЦА ОТРАЖАТЕЛЬНОЙ КОЭФФИЦИЕНТНОСТИ ДЛЯ РАССЕЯННОГО МОДА

 

* Значения в этой таблице предназначены только для справки, поскольку точный диапазон чувствительности в приложении зависит от множества факторов.

Режим рассеянного сходящегося луча
Режим сходящегося луча является более эффективным методом обнаружения диффузного режима. В режиме сходящегося луча линза передатчика фокусируется в точной точке перед датчиком, а линза приемника фокусируется в той же точке. Диапазон чувствительности фиксирован и определяется как точка фокусировки. Затем датчик может обнаружить объект в этой фокусной точке плюс-минус некоторое расстояние, известное как «сенсорное окно». Объекты перед или за этим сенсорным окном игнорируются. Окно восприятия зависит от отражательной способности цели и настройки чувствительности. Поскольку вся излучаемая энергия фокусируется в одной точке, доступно большое избыточное усиление, которое позволяет датчику легко обнаруживать узкие цели или цели с низкой отражательной способностью.

Рассеянный режим с подавлением фона
Зондирование в рассеянном режиме с подавлением фона обнаруживает цели только до определенного «граничного» расстояния, но игнорирует объекты, находящиеся дальше. Этот режим также минимизирует чувствительность к цвету цели среди вариаций рассеянного режима. Одним из основных преимуществ рассеянного режима с подавлением фона является возможность игнорировать фоновый объект, который может быть ошибочно идентифицирован как цель стандартным фотоэлектрическим датчиком рассеянного режима.

Рассеянный режим с подавлением фона может работать на фиксированном расстоянии или на переменном расстоянии. Подавление фона технически можно осуществить двумя способами: механическим или электронным.

Рассеянный режим с механическим подавлением фона
Для механического подавления фона в фотоэлектрическом датчике имеется два приемных элемента, один из которых принимает свет от цели, а другой — от фона. Когда отраженный свет на целевом приемнике больше, чем на фоновом приемнике, цель обнаруживается и активируется выход. Когда отраженный свет на фоновом приемнике больше, чем на целевом приемнике, цель не обнаруживается и выход не меняет своего состояния. Фокусная точка может быть механически отрегулирована для датчиков с переменным расстоянием.

Рассеянный режим с электронным подавлением фона
При электронном подавлении фона внутри датчика вместо механических частей используется позиционно-чувствительное устройство (PSD). Передатчик испускает световой луч, который отражается обратно в две разные точки PSD как от мишени, так и от фонового материала. Датчик оценивает свет, падающий на эти две точки PSD, и сравнивает этот сигнал с предварительно установленным значением, чтобы определить, изменяется ли состояние выхода.

Световозвращающий режим
Световозвращающий режим является вторым основным режимом фотоэлектрического зондирования. Как и при диффузном измерении, передатчик и приемник находятся в одном корпусе, но для отражения света от передатчика обратно к приемнику используется отражатель. Цель обнаруживается, когда она блокирует луч от фотоэлектрического датчика к отражателю. Режим обратного отражения обычно обеспечивает большую дальность обнаружения, чем режим рассеяния, из-за повышенной эффективности отражателя по сравнению с отражательной способностью большинства целей. Целевой цвет и отделка не влияют на дальность действия в световозвращающем режиме, как в рассеянном режиме.

Фотоэлектрические датчики с обратным отражением доступны с поляризационными фильтрами или без них. Поляризационный фильтр пропускает свет только с определенным фазовым углом обратно к приемнику, что позволяет датчику видеть блестящий объект как цель, а не как отражатель. Это связано с тем, что свет, отраженный от отражателей, сдвигает фазу света, а свет, отраженный от блестящей мишени, — нет. Поляризованный фотоэлектрический датчик с обратным отражением должен использоваться с угловым отражателем, который представляет собой тип отражателя, способного точно возвращать световую энергию по параллельной оси обратно к приемнику. Поляризованные рефлекторные датчики рекомендуются для любого применения с отражающими целями.

Неполяризованные фотоэлектрические датчики с обратным отражением обычно обеспечивают больший диапазон обнаружения, чем поляризованные версии, но могут ложно идентифицировать блестящую цель как отражатель.

Режим рефлекторного отражения для четкого обнаружения объектов
Обнаружение четких объектов может быть достигнуто с помощью рефлекторного режима для фотоэлектрического датчика обнаружения четких объектов. В этих датчиках используется схема с низким гистерезисом для обнаружения небольших изменений света, которые обычно возникают при обнаружении прозрачных объектов. Датчик режима ясного объекта использует поляризованные фильтры как на передатчике датчика, так и на приемнике, чтобы уменьшить ложные срабатывания, вызванные отражениями от цели.

Световозвращающий режим с подавлением переднего плана
Датчики обратного отражения с подавлением переднего плана не будут ложно идентифицировать глянцевые цели как отражатель, когда они находятся на определенном расстоянии или в мертвой зоне. Этот режим подходит для обнаружения поддонов, упакованных в термоусадочную пленку, поскольку датчик стандартного рефлекторного режима может принять глянцевое покрытие за отражатель и не изменить свое состояние. Оптические отверстия перед элементами передатчика и приемника в корпусе датчика создают зону для исключения ошибочного обнаружения отражающего материала.

Режим прямого луча
Режим сквозного луча, также называемый встречным режимом, является третьим и последним основным методом обнаружения для фотоэлектрических датчиков. В этом режиме используются два отдельных корпуса, один для передатчика и один для приемника. Свет от передатчика направлен на приемник, и когда цель прерывает этот световой луч, активируется выход на приемнике. Этот режим является наиболее эффективным из трех и обеспечивает максимально возможный диапазон чувствительности фотоэлектрических датчиков.

Датчики с режимом сквозного луча доступны в различных стилях. Наиболее распространенные включают один корпус передатчика, один корпус приемника и один световой луч между двумя корпусами. Другим типом являются «щелевые» или «вилочные» фотоэлектрические датчики, которые объединяют и передатчик, и приемник в одном корпусе без необходимости выравнивания. Световые решетки представляют собой массивы из множества разных передатчиков в одном корпусе и множества разных приемников в другом корпусе, которые при наведении друг на друга создают виртуальный «лист» световых лучей.

Волоконно-оптический датчик
Волоконные датчики направляют свет от передатчика по пластиковым или стеклянным кабелям, называемым оптоволоконными кабелями. В приложениях с небольшими целями или неблагоприятными условиями оптимальным решением могут быть волоконно-оптические кабели. Волоконно-оптические кабели позволяют проводить измерения либо в рассеянном режиме, либо в режиме сквозного луча.

Волоконно-оптические кабели изготавливаются из крошечных нитей стекла, которые связаны друг с другом внутри специальной оболочки. Оптоволоконные кабели из стекловолокна, как правило, более прочные, чем пластиковые версии, более эффективны в передаче света, что приводит к увеличению дальности обнаружения, и хорошо работают как с видимым красным, так и с инфракрасным светом.

Пластиковые оптоволоконные кабели изготавливаются из светопроводящего пластикового моноволокна и помещаются в защитную оболочку из ПВХ. Пластиковые оптоволоконные кабели, как правило, более гибкие и экономичные, чем стеклянные версии, их можно обрезать по длине и они работают только с видимым светом.

SIDEBAR/BOX
Специальные фотоэлектрические датчики
В дополнение к стандартным режимам работы фотоэлектрических датчиков также существует несколько датчиков для конкретных приложений. Эти датчики используются для решения многих нетрадиционных фотоэлектрических задач, таких как обнаружение изменений цвета цели, пористых целей и невидимой маркировки на продуктах.

Примеры датчиков для конкретных приложений включают:

Цвет  — Цветовые датчики доступны в самых разных стилях и вариантах. Самые простые датчики цвета представляют собой одноканальные устройства, которые можно запрограммировать на обнаружение одного цвета. Более продвинутые устройства могут обнаруживать до десяти или более уникальных цветов и позволяют запрограммировать несколько оттенков на одном канале. Типичные приложения включают контроль качества, когда на продукте отмечаются разные цвета по мере завершения этапа производства. Другим возможным применением может быть программирование нескольких оттенков цвета на одном и том же канале. Эти цвета могут указывать производителям на приемлемый диапазон цветовых отклонений для готового продукта при окрашивании или литье под давлением.

Контрастность   — датчики контрастности используются для обнаружения разницы между двумя цветами или носителями. Сначала датчик обучается двум различным условиям. Затем он оценивает текущие условия, и если отраженный свет текущей цели ближе к первому условию, выход останется выключенным. Если отраженный свет текущей цели ближе ко второму условию, выход изменит состояние. Типичное применение для обнаружения контраста — обнаружение приводных меток перед резкой или преобразованием бумаги в упаковочной промышленности.

Люминесценция  – Люминесцентные датчики используются для обнаружения чернил, жиров, клеев, красок, мела и других материалов с люминесцентными свойствами. Метки на неровном фоне, а также четкие или невидимые маркировки легко обнаруживаются с помощью источника ультрафиолетового света. Типичными приложениями для люминесцентных датчиков являются обнаружение прозрачных герметичных пломб на бутылочках с лекарствами или обнаружение дефектного продукта, отмеченного мелом (например, сучок на куске дерева).

Световые сетки  – Световые сетки используются для создания сетки или листа света. Есть много вариантов, размеров и приложений для световых решеток. Миниатюрные световые сетки с высоким разрешением можно использовать для подсчета мелких деталей. Можно использовать сетки большего размера, чтобы обеспечить выброс детали из пресса перед следующим циклом прессования. Световые решетки безопасности используются для создания безопасного «периметра» вокруг машины, чтобы операторы были защищены от потенциально опасных частей машины.

Пассивный инфракрасный порт  – Пассивные инфракрасные датчики используются для обнаружения движения объекта в пределах определенной области или зоны обнаружения. Термин «пассивный» используется потому, что датчик не излучает никакого света, а вместо этого обнаруживает инфракрасное излучение объекта, температура которого отличается от температуры окружающей среды. Типичным применением пассивных инфракрасных датчиков является управление автоматическими дверями или освещением.

Устройство фотодатчика: Фотоэлектрические датчики Autonics