Eng Ru
Отправить письмо

Разновидности полупроводниковых диодов. Устройство полупроводникового диода


I.Общая информация

Полупроводниковые

диоды

Полупроводниковый диод – прибор, имеющий два вывода для включения в электрическую цепь и обладающий способностью хорошо пропускать через себя электрический ток одного направления и плохо - противоположного направления. Это свойство диода используют, например, в выпрямителях для преобразования переменного тока в постоянный (ток одного направления).

Слово "диод" образовалось от греческой приставки "ди" - "дважды" и сокращения слова "электрод".

Строение и принцип действия

Полупроводниковый диод представляет собой полупроводниковую пластинку с двумя областями разной проводимости: электронной (n- типа) и дырочной (p- типа). Между ними - разделяющая граница, называемаяp-n – переходом (область на границе двух полупроводников с различными типами электропроводности). Рабочий элемент - кристалл германия, обладающий проводимостью n–типа за счёт небольшой добавки донорной примеси.

Полупроводники стали настоящей золотой жилой техники, когда из них научились делать слоистые структуры.

Выращивая слой n-полупроводника на пластинкеp-полупроводника, мы получим двухслойный полупроводник сp-n-переходом между ними. Если к каждой половине припаять по соединительному проводу, то получится полупроводниковый диод, который действует на ток как вентиль: в одну сторону хорошо пропускает ток, а в другую сторону почти не пропускает.

П

Рисунок 1

олупроводниковые диоды изготовляют из германия, кремния, селена и других веществ.

Как возникает выпрямляющий запирающий слой? Образование слоя начинается с того, что вp-половине больше дырок, а вn-половине больше электронов. Разность плотности носителей зарядов начинается уравновешиваться через переход: дырки проникают вn-половину, электроны вp-половину. Рассмотрим, как создаетсяp-nпереход при использовании донорной примеси.

Этот переход не удастся получить путем механического соединения двух полупроводников различных типов, т.к. при этом получается слишком большой зазор между полупроводниками. Эта толщина должна быть не больше межатомных расстояний. Поэтому в одну из поверхностей образца вплавляют индий. Вследствие диффузии атомов индия в глубь монокристалла германия у поверхности германия преобразуется область с проводимостью р-типа. Остальная часть образца германия, в который атомы индия не проникли, по-прежнему имеет проводимость n-типа. Между областями возникаетp-nпереход. В полупроводниковом диоде германий служит катодом (отрицательным электродом), а индий - анодом (положительным электродом). На рисунке 1 показано прямое (б) и обратное (в) подсоединение диода.

Процессы в зоне проводимости

Электронно-дырочный переход обладает свойством несимметричной проводимости, т.е. представляет собой нелинейное сопротивление. Работа почти всех полупроводниковых приборов, применимых в радиоэлектронике, основана на использовании свойств одного или нескольких p-n переходов.

Существенная особенность полупроводников состоит в том, что в них при наличии примесей наряду с собственной проводимостью возникает дополнительная — примеснаяпроводимость. Вp–n– переходе носители заряда образуются при введении в кристалл акцепторной илидонорнойпримеси. Изменяя концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

С помощью внешнего источника тока можно повысить или понизить внешний потенциальный барьер. Если к диоду приложить прямое напряжение, т.е. положительный полюс соединить сp-половиной, то внешняя электрическая сила начнёт действовать против двойного слоя, и диод пропускает ток, который быстро растёт с увеличением напряжения. Если же изменить полярность проводников, то напряжение падает почти до нулевой отметки. Если диод подключить в цепь переменного напряжения, то он будет служить как выпрямитель, т.е. на выходе будет постоянное пульсирующее напряжение, по направлению в одну сторону (от плюса к минусу). Для того чтобы сгладить амплитуду, или как её ёщё называют "пиковое значение" пульсации тока, эффективно добавить параллельно диоду конденсатор.

Диод хорошо пропускает ток, когда его отрицательный электрод соединен с отрицательным полюсом источника напряжения (батареи), а положительный с положительным полюсом, т.е. когда на диод подается напряжение прямой полярности, или, короче, прямое напряжение. В этом случае электроны в n- области полупроводниковой пластинки будут двигаться к положительному полюсу батареи, т.е. к границе сp- областью; в то же время "дырки" вp- области будут двигаться к отрицательному полюсу батареи и, следовательно, к границе сn- областью.

В результате вблизи p-nперехода произойдет накопление положительных и отрицательных зарядов, и поэтому сопротивление перехода уменьшится. При напряжении противоположной (обратной) полярности, когда положительный полюс батареи соединен сn- областью, а отрицательный сp- областью, электроны вn- области и "дырки" вp- области движутся от границыp-n– перехода. Вследствие этого происходит уменьшение положительных и отрицательных зарядов вблизиp-nперехода, и его сопротивление увеличивается. Это и означает, что при переменном напряжении ток через диод в одном направлении будет большей силы, чем в другом, т.е. в цепи появится практически ток одного направления - произойдет выпрямление переменного тока.

Наряду с выпрямительными свойствами p-nпереход обладает емкостью, зависящей от значения и полярности приложенного напряжения. При прямом напряжении емкость диода больше, чем при обратном. С увеличением обратного напряжения емкость диода уменьшается.

Изготовление

Один из способов изготовления диода состоит в следующем. На поверхности квадратной пластинки площадью 2-4 см2и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника сn-проводимостью, например, германия, расплавляют кусочек индия и помещают в печь. При высокой температуре (около 5000С) индий вплавляется в пластинку германия, образуя в ней область дырочной проводимости. К самой пластине германия и к затвердевшей "капле" индия припаивают два проволочных вывода электродов и прибор заключают в герметический и непрозрачный корпус, чтобы защититьp-nпереход от воздействия влаги и света. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной проводимости. Получается полупроводниковый прибор с двумя областями различного типа проводимости, а между ними p-n-переход. Чем тоньше пластинка полупроводника, чем меньше сопротивление диода в прямом направлении, тем больше выправленный диодом ток. Контактами диода служат капелька индия и металлический диск или стержень с выводными проводниками.

Область с электропроводностью р-типа имеет более высокую концентрацию примеси, нежели основная пластинка сравнительно высокоомного германия, и поэтому является эмиттером. К основной пластинке германия и к индию обычно припаиваются проволочки из никеля. Если за исходный материал взят высокоомный германий р-типа, то в него вплавляют сурьму и тогда получается эмиттерная область n-типа. Следует отметить, что сплавным методом получают так называемые резкие или ступенчатые р-n– переходы, в которых толщина области изменения концентрации примесей значительно меньше толщины области объемных зарядов, существующих в переходе.

После сборки транзистора для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметический корпус. Устройство и схематическое изображение полупроводникового диода:

VD

Большинство полупроводниковых диодов выполняют на основе несимметричных р-n– переходов. Низкоомную область диодов называютэмиттером, а высокоомную –базой. Для создания переходов с вентильными свойствами используютp-n-,p-i-,n-i– переходы, а также переходы металл-полупроводник. На рисунке 3 представлены структуры планарно-эпитаксиального (а) и сплавного (б) диодов.

а) б)

Структуры планарно-эпитаксиального (а) и сплавного (б) диодов.

Рисунок 3.

Общие сведения (по назначению и характеристикам)

Выпрямительные приборы довольно часто требуются в промышленности. Например выпрямители нужны для правильной работы бытовой техники (т.к. почти все электроприборы потребляют постоянное напряжение. Это телевизоры, радиоприёмники, видеомагнитофоны и т.д.). Также полупроводниковые диоды нужны для расшифровки видео, радио, фото и других сигналов в частотно-электрические сигналы, для детектирования слабых радиосигналов, например, в радиоприемниках, для выделения и обработки электрических сигналов в различных автоматических устройствах и ЭВМ. С помощью этого свойства полупроводников мы смотрим телевизор или слушаем радио.

Служат для преобразования и генерирования электрических колебаний. Диоды обладают большой надежностью, но граница их применения от –70 до 125 С. Их используют в основном для модуляции колебаний высокой частоты и для измерительных приборов. Для любого диода существуют некоторые предельно допустимые пределы прямого и обратного тока, зависящие от прямого и обратного напряжения, и определяющие его выпрямляющие и прочностные свойства.

В радиосхемах наряду с двухэлектродными лампами в настоящее время для выпрямления электрического тока все больше применяют полупроводниках диоды, так как они обладают рядом преимуществ.

_______________________________________________________________________________

В электронной лампе носители заряда электроны возникают за счет нагревания катода. В p-n переходе носители заряда образуется при введении в кристалл акцепторной или донорной примеси. Таким образом, здесь отпадает необходимость источника энергии для получения носителей заряда. В сложных схемах экономия энергии, получается за счет этого, оказывается весьма значительной. Кроме того, полупроводниковые выпрямители при тех же значениях выпрямленного тока более миниатюрны, чем ламповые.

По сравнению с электронными лампами у полупроводниковых диодов имеются существенные достоинства:

  1. Малый вес и малые размеры.

  2. Отсутствие затраты энергии на накал.

  3. Большой срок службы (до десятков тысяч часов).

  4. Большая механическая прочность (стойкость к тряске, ударам и другим видам механических перегрузок).

  5. Различные устройства (выпрямители, усилители, генераторы) с полупроводниковыми приборами имеют высокий КПД, так как потери энергии в самих приборах незначительны.

Вместе с тем полупроводниковые диоды в настоящее время обладают следующими недостатками:

  1. Параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс.

  2. Свойства приборов сильно зависят от температуры.

  3. Работа полупроводниковых диодов резко ухудшается под действием радиоактивного излучения.

Вольтамперная характеристика и параметры

Нелинейные свойства диода видны при рассмотрении его вольтамперной характеристики (ВАХ). В отличие от характеристики идеального р-n– перехода, описываемой соотношением

(пунктирная кривая на рис.4), характеристика реального диода (сплошная кривая на рис.4) в области прямых напряжений Uрасполагается несколько ниже из-за падения части приложенного напряжения на объемном сопротивлении базы диодаr. Токназываюттепловым током илиоб- ратным током насыщения. Это отличие от идеализированной кривой обусловлено тем, что тепловой токпри обратном включении составляет лишь часть обратного тока диода. При прямом включении существенное влияние на ход ВАХ оказывает падение напряжения на сопротивлении базы диода, которое начинает проявляться уже при токах, превышающих 2-10 мА.

Прямой ток в десятки миллиампер получается при прямом напряжении порядка десятых долей вольта. Поэтому прямое сопротивление имеет величину не выше десятков Ом. Для более мощных диодов прямой ток составляет сотни миллиампер и больше при таком же малом напряжении, а сопротивление соответственно снижается до единиц Ом и меньше. Обратный ток при обратном напряжении до сотен вольт у диодов небольшой мощности составляет лишь единицы и десятки микроампер. Это соответствует обратному сопротивлению до сотен кОм и больше.

При практическом использовании диодов выделять составляющие, которые искажают идеализированную ВАХ, сложно и нецелесообразно.

Поэтому у реальных диодов в качестве одного из основных параметров используют обратный ток , который измеряют при определенном значении обратного напряжения.

У германиевых диодов , у кремниевых. Так как значения обратного тока у диодов изменяются в широких пределах (от экземпляра к экземпляру), в паспортных данных на каждый вид диода указывается его максимально допустимое значение.

Тепловой ток и остальные составляющие обратного тока сильно зависят от температуры. Для теплового тока справедлива зависимость

(*)

где тепловой ток при температурепостоянный коэффициент (для германияпри, для кремнияпри). С помощью выражения (*) можно ориентировочно определить обратный ток при разных температурах у германиевых диодов. В кремниевых диодах в диапазоне рабочих температур доля теплового тока в полном обратном токе невелика. Для инженерных расчетов обратного тока в зависимости от температуры окружающей среды пользуются упрощенным выражением

,

где T* - приращение температуры, при котором обратный токудваивается (T*810oCдля германия иT*67oCдля кремния). В практике часто считают, что обратный ток германиевых диодов увеличивается в два раза, а кремниевых – в 2,5 раза при увеличении температуры на каждые 10оС. При этом фактическое изменение обратного тока обычно занижается. Так как обратный ток в кремниевых диодах на несколько порядков меньше, чем в германиевых, им часто пренебрегают.

С учетом падения напряжения на базе диода запишем уравнение прямой ветви ВАХ диода:

где rб– омическое сопротивление базы диода. ВАХ кремниевого и германиевого диодов:

В области обратных напряжений можно пренебречь падением напряжения в объеме полупроводника. При достижении обратным напряжением определенного критического значения ток диода начинает резко возрастать. Это явление называют пробоем диода.

Падение напряжения на диоде зависит от токаI, протекающего через него, и имеет большее значение у диодов с малым. Так как у кремниевых диодов тепловой токмал, то и начальный участок прямой ветви ВАХ значительно более пологий, чем у германиевых. При увеличении температуры прямая ветвь ВАХ становится более крутой из-за увеличенияи уменьшения сопротивления базы. Падение напряжения, соответствующее тому же значению прямого тока, при этом уменьшается, что оценивается с помощью температурного коэффициента напряжения:

.

показывает, насколько должно измениться напряжение на р-n– переходе при изменении температуры на 1оС приI=const,=2,2 мВ/град.

Классификация

В зависимости от технологических процессов, использованных при их изготовлении:

- точечные диоды,

- сплавные,

- микросплавные,

- с диффузной базой,

- с эпитаксиальныеи др.

По функциональному назначениюдиоды делят на:

- выпрямительные

- универсальные

- импульсные

- смесительные

- детекторные

-модуляторные

- переключающие

- умножительные

- стабилитроны (опорные)

- туннельные

- параметрические

- фотодиоды

- светодиоды

- магнитодиоды

- высокочастотные

- диоды Ганна и т.д.

Существует много разновидностей полупроводниковых диодов, обладающих специальными свойствами. Стабилитрон- диод, у которого сопротивление в обратном направлении уменьшается с увеличением силы тока, так что напряжение на диоде практически не меняется.Варикап- диод, емкостьp-nперехода которого зависит от значения приложенного к нему напряжения. Он может быть использован в качестве конденсатора, емкостью которого управляют, изменяя приложенное напряжение.

Есть еще и необычные полупроводниковые диоды – это светодиоды и фотодиоды. Фотодиоды пропускают ток только при попадании на их корпус света. А светодиоды при прохождении через них тока, начинают светиться. Цвет свечения светодиодов зависит от того, к какой разновидности он принадлежит. Фотодиод- полупроводниковый диод, в корпусе которого имеется окно для освещенияp-nперехода. Под действием света изменяется сопротивление диода и, следовательно, сила тока в его цепи. Кроме того, под действием света в диоде возникает электродвижущая сила, так, что освещенный фотодиод является источником электрической энергии.

Обозначения полупроводниковых диодов состоят из шести элементов. Первый элемент – буква, указывающая, на основе какого полупроводникового материала выполнен диод. Германий или его соединения обозначают буквой Г, кремний и его соединения – буквой К, соединения галлия – А. В приборах специального назначения буквы заменяются соответствующими цифрами: германий – 1, кремний – 2, соединения галлия – 3. Второй элемент – буква, обозначающая подклассы диода: выпрямительные, импульсные, универсальные – Д, варикапы – В, туннельные и обращенные диоды – И, стабилитроны – С, сверхвысокочастотные – А. Третий элемент – цифра, определяющая назначение диода: от 101 до 399 – выпрямительные; от 401 до 499 – универсальные; от 501 до 599 - импульсные. У стабилитронов эта цифра определяет мощность рассеяния. Четвертый и пятый элементы – цифры, определяющие порядковый номер разработки (у стабилитронов эти цифры показывают номинальное напряжение стабилизации). Шестой элемент – буква, показывающая деление технологического типа на параметрические группы (приборы одного типа по значениям параметров подразделяются на группы). У стабилитронов буквы от А до Я определяют последовательность разработки, например: КД215А, ГД412А, 2Д504А, КВ101А, КС168А и т. д.

Полупроводниковые диоды подразделяются на группы в зависимости от их мощности, диапазона рабочих частот и напряжения.

По типу мощности различают выпрямительные диоды малой, средней и большой мощности.

Выпрямительные диоды малой мощности. К ним относятся диоды, поставляемые промышленностью на прямой ток до 300мА. Справочным параметром выпрямительных диодов малой мощности является допустимый выпрямительный ток (допустимой среднее значение прямого тока), который определяет в заданном диапазоне температур допустимое среднее за период значение длительно протекающих через диод импульсов прямого тока синусоидальной формы при паузах в 180 (полупериод) и частоте 50 Гц. Максимальное обратное напряжения этих диодов лежит в диапазоне от десятков до 1200В.

Выпрямительные диоды средней мощности. К этому типу относятся диоды, допустимое среднее значение прямого тока которых лежит в пределах 300мА-10мА. Большой прямой ток этих по сравнению с маломощными диодами достигается увеличением размеров кристалла, в частности рабочей площади p-n перехода. Диоды средней мощности выпускаются преимущественно кремниевыми. В связи с этим обратный ток этих диодов при сравнительно большой плоскости p-n перехода достаточно мал(несколько десятков микроампер). Теплота, выделяемая в кристалле от протекания прямого и обратного токов в диодах средней мощности, уже не может быть рассеяна корпусом прибора.

Мощные (силовые) диоды. К данному типу относятся диоды на токи от 10А и выше. Промышленность выпускает силовые диоды на токи 10,16,25,40 и т.д. и обратные напряжения до3500 В. Силовые диоды имеют градацию по частоте охватывают частотный диапазон до десятков килогерц. Мощные диоды изготовляют преимущественно из кремния. Кремниевая пластинка с p-n переходом, создаваемым диффузным методом, для таких диодов представляет собой диск диаметром 10-100мм и толщиной 0,3-0,6 мм.

studfiles.net

Диод характеристика и применение. Работа полупроводникового диода. Применение диода.

Диодами называют двухэлектродные элементы электрической цепи, обладающие односторонней проводимостью тока. В полупроводниковых диодах односторонняя проводимость обуславливается применением полупроводниковой структуры, сочетающей в себе два слоя, один из которых обладает дырочной (p), а другой – электронной (n) электропроводностью. Обозначение диода на электронных схемах представлено на рис 4.Изображение диода на схемах
Рис. 4 Изображение диода на схемахПринцип действия полупроводникового диода основывается на специфике процессов, протекающих на границе раздела p- и n-слоев, в так называемом электронно-дырочном переходе. Электронно-дырочный переход обладает нессиметричной проводимостью, т. е. имеет нелинейное сопротивление. Работа большинства полупроводниковых приборов основана на свойствах одного или нескольких p-n-переходов.Электронно-дырочный переход при отсутствии внешнего напряженияРис. 5 Электронно-дырочный переход при отсутствии внешнего напряженияДопустим, внешнее напряжение на переходе отсутствует. Так как носители заряда в каждом полупроводнике совершают беспорядочное тепловое движение, т. е. имеют собственные скорости, то происходит их диффузия из одного полупроводника в другой. Как и при любой другой диффузии носители перемещаются оттуда, где их концентрация больше, туда, где их концентрация меньше. Таким образом, из полупроводника n-типа в полупроводник p-типа диффундируют электроны, а в обратном направлении — дырки. Соответственно, на рисунке 1 светлые кружки со стрелками дырки, темные — электроны. Кружки побольше обозначают атомы акцепторной и донорной примеси, соответственно заряженные отрицательно и положительно.В результате диффузии носителей по обе стороны границы раздела двух полупроводников с различным типом электропроводности создаются объемные заряды обоих знаков. В области n создается положительный объемный заряд. Он образован главным образом положительно заряженными атомами донорной примеси и в небольшой степени — пришедшими в эту область дырками. Аналогично в области p.Между образовавшимися объемными зарядами возникает так называемая контактная разность потенциалов uk= ?n — ?p и электрическое поле (вектор напряженности Ek). На том же рисунке изображена потенциальная диаграмма. На этой диаграмме, показывающей распределение потенциала вдоль оси x, перпендикулярной плоскости раздела двух полупроводников, за нулевой потенциал принят потенциал граничного слоя.Следует отметить, что объемные заряды возникают вблизи границы n- и p-областей, а положительный потенциал ?n или отрицательный потенциал ?p создается одинаковым по всей области n или p. Если бы в различных частях области потенциал был различным, т. е. была бы разность потенциалов, то возник бы ток, в результате которого все равно произошло бы выравнивание потенциала в данной области.Как видно, в p-n-переходе возникает потенциальный барьер, препятствующий диффузионному переходу носителей. На рис. 5 изображен барьер для электронов, стремящихся за счет диффузии перемещаться слева направо (из области n в область p).Высота барьера равна контактной разности потенциалов и обычно составляет десятые доли вольта. Чем больше концентрация примесей, тем выше концентрация основных носителей и тем большее число их диффундирует через границу. Плотность объемных зарядов возрастает, и увеличивается контактная разность потенциалов uk, т. е. высота потенциального барьера. При этом толщина p-n-перехода d уменьшается, так как соответствующие заряды образуются в приграничных слоях меньшей толщины.Одновременно с диффузионным перемещением основных носителей через границу происходит и обратное перемещение носителей под действием электрического поля контактной разности потенциалов. Это поле перемещает дырки из n-области обратно в p-область и аналогично электроны из p-области обратно в n-область. При постоянной температуре p-n-переход находится в состоянии динамического равновесия. Ежесекундно через границу в противоположных направлениях перемещаются электроны и дырки, а под действием поля столько же их дрейфует в обратном направлении.Полный ток через переход при динамическом равновесии равен нулю, так как диффузионный ток и ток дрейфа компенсируют друг друга. Если диффузионный ток возрастет, то через переход будет диффундировать больше носителей. Это вызовет увеличение объемных зарядов и потенциала по обе стороны границы. Значение uk возрастет, т. е. усилится электрическое поле в переходе и повысится потенциальный барьер. Но усиление поля вызовет соответствующее увеличение тока дрейфа, т. е. обратного перемещения носителей. Пока диффузионный ток больше тока дрейфа высота барьера растет, но в конце концов за счет увеличения тока дрейфа наступит равенство токов и дальнейшее повышения барьера прекратится.Таким образом, в p-n-переходе возникает слой, называемый запирающим и обладающий большим сопротивлением по сравнению с сопротивлением остальных объемов n- и p-полупроводников.Электронно-дырочный переход при прямом напряжении

Рис. 6 Электронно-дырочный переход при прямом напряженииЭлектрическое поле, создаваемое в p-n-переходе прямым напряжением, действует навстречу полю контактной разности потенциалов. Это показано на рисунке векторами Eк и Eпр. Результирующее поле становится слабее, и разность потенциалов в переходе уменьшается, т. е. высота потенциального барьера понижается, возрастает диффузионный ток, так как большее число носителей может преодолеть пониженный барьер. Ток дрейфа при этом почти не изменяется, т. к. он зависит главным образом от числа неосновных носителей, попадающих за счет своих тепловых скоростей на p-n-переход из p- и n-областей. Если пренебречь падением напряжения на сопротивлении областей n и p, то напряжение на переходе можно считать равным uк — uпр. Для сравнения на рис. 6 штриховой линией показана потенциальная диаграмма при отсутствии внешнего напряжения.Как известно, в этом случае ток дрейфа и диффузионный ток компенсируют друг друга. При прямом напряжении диффузионный ток становится больше тока дрейфа и поэтому полный ток через переход , т. е. прямой ток, уже не равен нулю.Если барьер значительно понижен, то iдиф>>iдр и можно считать, что iпр?iдиф, т. е. прямой ток в переходе является чисто диффузионным.При прямом напряжении не только уменьшается потенциальный барьер, но уменьшается толщина запирающего слоя (dпрЭлектронно-дырочный переход при обратном напряженииРис. 7 Электронно-дырочный переход при обратном напряженииПод действием обратного напряжения uобр через переход протекает очень небольшой обратный ток iобр, что объясняется следующим образом. Поле, создаваемое обратным напряжением, складывается с полем контактной разности потенциалов. На рис. 4 это показывают одинаковые направления векторов Eк и Eобр. Результирующее поле усиливается, и высота потенциального барьера теперь равна uк+uобр. Уже при небольшом повышении барьера диффузионное перемещение основных носителей через переход прекращается, т. е. iдиф=0, т. к. собственные скорости носителей недостаточны для преодоление барьера. А ток проводимости остается практически неизменным, поскольку он определяется главным образом число неосновных носителей, попадающих на p-n-переход из n- и p-областей.Таким образом, обратный ток iобр представляет собой ток проводимости, вызванный перемещением неосновных носителей. Обратный ток получается очень небольшим, так как неосновных носителей мало и, кроме того, сопротивление запирающего слоя при обратном напряжении очень велико. Действительно, при повышении обратного напряжения поле в месте перехода становится сильнее и под действием этого поля больше основных носителей «выталкивается» из пограничных слоев вглубь из n- и p-областей. Поэтому с увеличением обратного напряжения увеличивается не только высота потенциального барьера, но и толщина запирающего слоя (dобр>Rпр.Уже при сравнительно небольшом обратном напряжении обратный ток становится практически постоянным. Это связано с тем, что число неосновных носителей ограничено. С повышением температуры концентрация их возрастает и обратный ток увеличивается, а обратное сопротивление уменьшается.Посмотрим, как устанавливается обратный ток при включении обратного напряжения. Сначала возникает переходный процесс, связанный с движением основных носителей. Электроны в n-области движутся по направлению к положительному полюсу источника, т. е. удаляются от p-n-перехода. А в p-области, удаляясь от перехода, движутся дырки. У отрицательного электрода они рекомбинируют с электронами, которые приходят из проводника, соединяющего этот электрод с отрицательным полюсом источника.Поскольку из n-области уходят электроны, она заряжается положительно, так как в ней остаются положительно заряженные атомы донорной примеси. Подобно этому p-область заряжается отрицательно, т. к. дырки заполняются пришедшими электронами и в ней остаются отрицательно заряженные атомы акцепторной примеси. Рассмотренное движение основных носителей в противоположные стороны продолжается лишь малый промежуток времени. По обе стороны p-n-перехода возникают два разноименных объемных заряда, и вся система становится аналогичной заряженному конденсатору с диэлектриком, в котором имеется значительный ток утечки (его роль играет обратный ток). Но ток утечки конденсатора в соответствии с законом Ома пропорционален приложенному напряжению, а обратный ток p-n-перехода сравнительно мало зависит от напряжения.В зависимости от структуры различают точечные и плоскостные диоды.У точечных диодов линейные размеры, определяющие площадь p-n-перехода, такие же, как толщина перехода, или меньше ее. У плоскостных диодов эти размеры значительно больше толщины перехода.Точечные диоды имеют малую емкость перехода (обычно менее 1 пФ) и поэтому применяются на любых частотах, вплоть до СВЧ. Но они могут пропускать токи не более единиц или десятков миллиампер. Плоскостные диоды в зависимости от площади перехода обладают емкостью в десятки пикофарад и, соответственно, их применяют на частотах не выше десятков килогерц, а допустимый ток бывает до сотен ампер. На рисунке представлена конструкция точечных и плоскостных диодов.

Принцип устройства точечного диодаРис. 8 Принцип устройства точечного диода

Принцип устройства плоскостных германиевых диодовРис. 9 Принцип устройства плоскостных германиевых диодов, изготовленных сплавным (а) и диффузионным методом(б)Диоды бывают различного назначения.Выпрямительные диоды. Как видно из названия их основное предназначение — выпрямление переменного тока (напряжения). Процесс этот весьма важен в радиоэлектронике, поскольку питание практически всех устройств осуществляется постоянным напряжением. Для переменного напряжения характерно изменение полярности с плюса на минус во времени по определенному закону. Рассмотрим выпрямление переменного тока упрощенно.Наглядно это показано на рисунке (начальная фаза равна нулю).Обобщенный вид переменного напряжения

Рис. 9 Обобщенный вид переменного напряженияПоскольку диод обладает однонаправленными свойствами, т. е. пропускает ток только в одном направлении, соответственно, положительные полуволны входного напряжения будут проходить через диод, отрицательные — нет. В данном случае при отрицательной полуволне диод оказывается включенным при обратном напряжении. Весь процесс выглядит примерно так:Процесс выпрямления напряжения

Рис. 10 Процесс выпрямления напряженияНа второй части графика небольшое отрицательное напряжение есть не что иное, как воздействие обратного тока, но этим можно пренебречь. Таким образом, на нагрузке выделяются только положительные полуволны входного переменного напряжения. Соответственно, задача выпрямителя состоит в преобразовании переменного напряжения в однонаправленное пульсирующее. Самая простая схема выглядит так:

 Простейшая схема выпрямителяРис. 11 Простейшая схема выпрямителяДля того, чтобы на нагрузке не было таких пульсаций, параллельно резистору ставят конденсатор большой емкости. Потом стабилизатор и так далее. Об этом потом.Широко распространены низкочастотные выпрямительные диоды, предназначенные для работы на частотах до нескольких килогерц. НЧ диоды являются плоскостными, изготавливаются из германия или кремния и делятся на диоды малой, средней и большой мощности.Для выпрямления высоких напряжений, например, несколько киловольт, выпускают кремниевые столбы в прямоугольных пластмассовых корпусах, залитых изолирующей смолой. Эти диоды рассчитаны на обратное напряжение в несколько киловольт и ток в несколько миллиампер. Вообще же, главной характеристикой выпрямительных диодов является допустимое обратное напряжение, поскольку, как было указано выше, отрицательные полуволны переменного напряжения являются для диода обратным напряжением, поэтому, если неправильно подобрать диод по обратному напряжению, может возникнуть пробой и диод выйдет из строя.Выпрямительные точечные диоды широко применяются на высоких частотах, иногда на СВЧ, хотя успешно работают на низких частотах. Эти диоды работают во многих устройствах, поэтому их называют еще универсальными. Естественно, для таких диодов характерен небольшой прямой ток, в отличие от плоскостных (всего до сотен миллиампер).Импульсные диоды. При работе диода в импульсном режиме для него характерны некоторые особенности. Ну, например, диод включен в цепь импульсного напряжения с длительностью импульсов в несколько микросекунд. Положительные импульсы проходят через диод, при этом прямым сопротивлением диода мы пренебрегаем. Когда полярность напряжения на диоде меняется на противоположную, диод закрывается не сразу, а в течении некоторого времени, за которое через переход протекает обратный ток, значительно превосходящий по амплитуде обратный ток в установившемся режиме. Основной причиной возникновения обратного тока является разряд диффузионной емкости, т. е. рассасывание зарядов, образованных подвижными носителями в p- и n-областях. Поскольку концентрации примесей в этих областях весьма различны, то практически импульс обратного тока создается рассасыванием заряда, накопленного в базе, т. е. в области с относительно малой проводимостью.Стабилитроны. При рассмотрении вольт-амперной характеристики полупроводникового диода видно, что в области электрического пробоя имеется участок, который может быть использован для стабилизации напряжения. Такой участок у кремниевых плоскостных диодов соответствует изменениям обратного тока в широких пределах. При этом до наступления пробоя обратный ток очень мал, а в режиме пробоя, в данном случае в режиме стабилизации, он становится такого же порядка, как и прямой ток. Стабилитроны изготавливаются исключительно из кремния, их также еще называют опорными диодами, т. к. в ряде случаев получаемое от них стабильное напряжение используется в качестве опорного. На рисунке показана ВАХ стабилитрона.

Вольт-амперная характеристика стабилитронаРис. 12 Вольт-амперная характеристика стабилитронаИз рисунка видно, что при обратном токе напряжение стабилизации меняется незначительно. Стабилитрон работает при обратном напряжении. Принцип работы поясняет простейшая схема включения стабилитрона. Эта схема называется параметрическим стабилизатором напряжения и несмотря на свою простоту используется довольно широко. Такая схема позволяет получить ток в нагрузке в несколько миллиампер.Схема включения стабилитрона

Рис. 13 Схема включения стабилитронаНагрузка включена параллельно стабилитрону, поэтому в режиме стабилизации, когда напряжение на стабилитроне постоянно, такое же напряжение будет и на нагрузке. Все изменение входного напряжения будет поглощаться резистором Rогр, которое еще называют балластным. Если входное напряжение будет изменяться, то будет изменяться ток стабилитрона, но напряжение на нем, следовательно и на нагрузке, будет оставаться постоянным.Следует отметить, что если имеют место пульсации входного напряжения, то стабилитрон неплохо сглаживает их. Это объясняется тем, что стабилитрон обладает малым сопротивлением переменному току.Стабисторы. Это полупроводниковые диоды, аналоги стабилитронов, но в отличие от последних у стабисторов используется не обратное напряжение, а прямое. Значение этого напряжение мало зависит от тока в некоторых пределах. Напряжение стабилизации стабисторов обычно не более 2 вольт, чаще всего 0,7 В при токе до нескольких десятков мА. Особенность стабисторов — отрицательный температурный коэффициент напряжения, т. е. напряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их с обычными стабилитронами, имеющими положительный ТКН.Варикапы. Эти плоскостные диоды, иначе называемые параметрическими, работают при обратном напряжении, от которого зависит барьерная емкость. Другими словами, варикап — это конденсатор переменной емкости, управляемый не механически, а электрически.Варикапы применяются главным образом для настройки колебательных контуров, а также в некоторых специальных схемах, например, в так называемых параметрических усилителях. Вот простейшая схемка включения варикапа в колебательный контур:

Схема включения варикапа в колебательный контур Рис. 14 Схема включения варикапа в колебательный контурИзменяя с помощью потенциометра R обратное напряжение на варикапе, можно менять резонансную частоту контура. Добавочный резистор R1 с большим сопротивлением включен для того, чтобы добротность контура не снижалась заметно от шунтирующего влияния потенциометра R. Конденсатор Cр является разделительным. Без него варикап был бы для постоянного напряжения замкнут накоротко катушкой L.В качестве варикапов можно использовать стабилитроны с напряжением ниже напряжения стабилизации, когда обратный ток еще очень мал, а обратное сопротивление очень велико.Мы рассмотрели основные типы полупроводниковых диодов. Существуют еще и туннельные диоды, диоды Ганна, фотодиоды и пр.

morez.ru

Полупроводниковые диоды.

Полупроводниковым диодом называют электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода. В качестве выпрямляющего электрического перехода используется электронно-дырочный (р-n) переход (П), разделяющий р- и n-области кристалла полупроводника (рис. 10.2).

К р- и n-области кристалла привариваются или припаиваются металлические выводы, и вся система заключается в металлический, металлокерамический, стеклянный или пластмассовый корпус.

По конструктивному выполнению различают точечные и плоскостные диоды. Широкое применение диоды получили в источниках вторичного электропитания (выпрямителях).

Одна из полупроводниковых областей кристалла, имеющая более высокую концентрацию примесей (а следовательно, и основных носителей заряда), называется эмиттером, а вторая, с меньшей концентрацией — базой. Если эмиттером является p-область, для которой основными носителями заряда служат дырки pp, а базой n-область (основные носители заряда — электроны nn), то выполняется условие pp≥nn.

pp — обозначение дырок в p-области; тогда обозначение дырок в n-области, для которой они являются неосновными носителями зарядов, будет соответственно pn.

 

Принцип работы. При отсутствии внешнего напряжения, приложенного к выводам диода, в результате встречной диффузии дырок (из р- в n-область) и электронов (из n- в р-область) в объеме полупроводникового кристалла, расположенного вблизи границы раздела двух областей с различной проводимостью, окажутся некомпенсированными заряды неподвижных ионов примесей (акцепторов для р-области и доноров для n-области), которые по обе стороны раздела полупроводникового кристалла создадут область объемного заряда (рис. 10.2). Для сохранения электрической нейтральности полупроводниковой структуры количество диффундируемых через р-n-переход основных носителей заряда из одной области должно равняться количеству диффундируемых основных носителей заряда из другой области. С учетом того, что концентрация электронов nn в базе значительно меньше концентрации дырок pp в эмиттере, область объемного заряда со стороны базы будет больше, чем со стороны эмиттера, как это показано на рис. 10.2. Образованный в результате встречной диффузии объемный заряд создает напряженность Eзар электрического поля, препятствующего дальнейшей встречной диффузии основных носителей зарядов.

Рис. 10.2. Схема включения полупроводникового диода и пространственное распределение объемных зарядов р-n-перехода в отсутствие внешнего напряжения

 

Диффузия практически прекращается, когда энергия носителей заряд недостаточна, чтобы преодолеть созданный потенциальный барьер.

Если к выводам диода приложить прямое напряжение, как это показано на рис. 10.2, то создаваемая им напряженность Е электрического поля будет противоположна направлению напряженности Eзар объемного заряда и в область базы (по мере возрастания напряжения U) будет вводиться (инжектировать) все большее количество дырок, являющихся не основными для n-области базы носителями заряда, которые и образуют прямой ток диода I. Встречной инжекцией nn в область эмиттера можно пренебречь, учитывая, что pp≥nn.

Если к выводам диода приложить обратное напряжение (-U), то создаваемая им напряженность (-Е) электрического поля, совпадая по направлению с напряженностью Eзар объемного заряда, повышает потенциальный барьер и препятствует переходу основных носителей заряда в соседнюю область. Однако суммарная напряжеяностъ электрических полей способствует извлечению (экстракции) неосновных носителей заряда: np- из р- в n-область и pn- из n- в р-область, которые и образуют обратный ток p-n-перехода. Количество неосновных носителей заряда значительно изменяется при изменении температуры, возрастая с ее повышением. Поэтому обратный ток, образованный за счет неосновных носителей, называют тепловым током (I0).

 

Вольт-амперная характеристика (ВАХ) диода имеет вид, приведенный на рис. 10.3 (сплошная линия), и описывается выражением

(10.1)

где UД - напряжение на р-n-переходе;

k - постоянная Больцмана; T - абсолютная температура; q - заряд электрона. Выражение (10.1) соответствует ВАХ идеального р-n-перехода и не отражает некоторых свойств реального диода.

При определенном значении напряжения Uобр начинается лавинообразный процесс нарастания тока Iобр, соответствующий электрическому пробою р-n-перехода (отрезок АВ на рис. 10.3). Если в этот момент ток не ограничить, электрический пробой переходит в тепловой (участок ВАХ после точки В). Такая последовательность лавинообразного процесса нарастания тока Iобр характерна для кремниевых диодов. Для германиевых диодов с увеличением обратного напряжения тепловой пробой р-n-перехода наступает практически одновременно с началом лавинообразного процесса нарастания тока Iобр. Электрический пробой обратим, т. е. после уменьшения напряжения Uобр работа диода соответствует пологому участку обратной ветви ВАХ. Тепловой пробой необратим, так как разрушает р-n-переход.

Прямой ток диода также зависит от температуры окружающей среды, возрастая с ее повышением, хотя и в значительно меньшей степени, чем обратный ток. Характер изменения прямой ветви ВАХ при изменении температуры показан на рис. 10.3. Для оценки температурной зависимости прямой ветви ВАХ диода служит температурный коэффициент напряжения (ТКН), °K-1.

Этот коэффициент показывает относительное изменение прямого напряжения за счет изменения температуры на 1 ̊К при некотором значении прямого тока.

Рис. 10.3. Вольт-амперные характеристики полупроводникового диода

 

Сопротивления и емкости диода. Полупроводниковый диод характеризуется статическим и дифференциальным (динамическим) сопротивлениями, легко определяемыми по ВАХ. Дифференциальное сопротивление численно равно отношению бесконечно малого приращения напряжения к соответствующему приращению тока в заданном режиме работы диода и может быть определено графически как тангенс угла наклона касательной в рассматриваемой рабочей точке Е к оси абсцисс (см. рис. 10.3):

 

(10.2)

где ∆U и ∆I- конечные приращения напряжения и тока вблизи рабочей точки Е; mI и mU - масштабы осей тока и напряжения.

Часто представляют интерес не приращения напряжения и тока в окрестности некоторой заданной точки, а сами напряжение и ток в данном элементе. При этом совершенно безразлично, какова характеристика диода вблизи выбранной рабочей точки. В этом случае удобно пользоваться статическим сопротивлением, которое равно отношению напряжения на элементе UE к протекающему через него току IE (рис. 10.3). Как видно из рисунка, это сопротивление равно тангенсу угла наклона прямой, проведенной из начала координат через заданную рабочую точку ВАХ, к оси абсцисс:

В зависимости от того, на каком участке ВАХ расположена заданная рабочая точка, значение Rст, может быть меньше или больше значения Rдиф или равно ему. Однако Rст всегда положительно, в то время как Rдиф может быть и отрицательным. У элементов, имеющих линейные ВАХ, статическое и дифференциальное сопротивления равны.

При работе на высоких частотах и в импульсных режимах начинает играть роль емкость диода СД, измеряемая между выводами диода при заданных значениях напряжения и частоты. Эта емкость включает диффузионную емкость Сдиф, зарядную (барьерную) емкость Сзар и емкость Ск корпуса диода:

Диффузионная емкость возникает при прямом напряжении диода в приконтактном слое р-n-перехода за счет изменения количества диффундируемых дырок и электронов при изменении прямого напряжения. Зарядная емкость возникает при обратном напряжении и обусловлена изменением объемного заряда.

Значение емкости СД определяется режимом работы диода. При прямом напряжении

при обратном напряжении

Классификация диодов представлена в табл. 10.1.

Таблица 10.1 Классификация диодов

Признак классификации Наименование диода
Площадь перехода Плоскостной Точечный
Полупроводниковый материал Германиевый Кремниевый Из арсенида галлия
Назначение Выпрямительный Импульсный Сверхвысокочастотный Стабилитрон (стабистор) Варикап
Принцип действия Лавинно-пролетный Туннельный Диод Шотки Излучающий Диод Ганна

 

Рассмотрим некоторые из них, наиболее широко применяемые в практике.

 

Выпрямительный диод, условное графическое обозначение которого приведено на рис. 10.4, 1, использует вентильные свойства р-n-перехода и применяется в выпрямителях переменного тока. В качестве исходного материала при изготовлении выпрямительных диодов используют германий и кремний.

Выпрямительный диод представляет собой электронный ключ, управляемый приложенным к нему напряжением. При прямом напряжении ключ замкнут, при обратном — разомкнут. Однако в обоих случаях этот ключ не является идеальным. При подаче прямого напряжения Uпр ключ обладает небольшим дифференциальным сопротивлением. Поэтому за счет падения напряжения Uпр на открытом диоде выпрямленное напряжение, снимаемое с нагрузочного устройства, несколько ниже входного напряжения (Uпр не превышает у германневых диодов 0,5 В, а у кремниевых 1,5 В; часто за величину Uпр для кремниевых диодов принимается напряжение 0,7 В).

Основными параметрами выпрямительных диодов являются:

Iпр ср max — максимальное (за период входного напряжения) значение среднего прямого тока диода;

Uобр.доп — допустимое наибольшее значение постоянного обратного напряжения диода;

fmax — максимально допустимая частота входного напряжения;

Uпр — значение прямого падения напряжения на диоде при заданном прямом токе.

Выпрямительные диоды классифируют также по мощности и частоте.

По мощности: маломощные Iпр ср max <0,3 A; средней мощности 0,3 A<Iпр ср max <10 A; большой мощности Iпр ср max>10 A.

По частоте: низкочастотные fmax <1000 Гц; высокочастотные fmax >1000 Гц.

В качестве выпрямительных применяются также диоды, выполненные на выпрямляющем переходе металл-полупроводник (диоды Шотки). Их отличает меньшее, чем у диодов с р-n-переходом, напряжение Uпр и более высокие частотные характеристики.

 

Импульсный диод — полупроводниковый диод, имеющий малую длительность переходных процессов и использующий, так же как и выпрямительный диод, при своей работе прямую и обратную ветви ВАХ.

Длительность переходных продресов в диоде (рис. 10.4) обусловлена тем, чтo изменeние направления и значения тока через него при изменении подводимого к нему напряжения не может происходить мгновенно в связи с перезарядом емкости выпрямляющего перехода и инерционными процессами рассасывания инжектированных в базу неосновных носителей заряда. Последнее явление определяет быстродействие диодов и характеризуется специальным параметром — временем восстановления tвос его обратного сопротивления. Время восстановления равно интервалу времени между моментом переключения напряжения на диоде с прямого на обратное и моментом, когда обратный ток, который в момент переключения напряжения paвен прямому току, достигнет своего минимального значения.

Рис. 10.4. Переходные процессы в полупроводниковом диоде

 

Поэтому кроме параметров Iпр ср max, Uобр, Uпр характеризующих выпрямительные свойства, для импульсных диодов вводится параметр tвос, характеризующий быстродействие.

Для повышения быстродействия (уменьшения tвос) импульсные диоды изготовляют в виде точечных структур, что обеспечивает минимальную площадь, р-n-перехода, а следовательно, и минимальное значение зарядной емкости Cзар. Одновременно толщину базы делают минимально возможной для достижения минимального времени восстановления диодов.

В качестве импульсных находят применение и диоды Шотки.

 

Сверхвысокочастотный диод (СВЧ-диод) — полупроводниковый диод, предназначенный для преобразования и обработки высокочастотного сигнала (до десятков и сотен ГГц). Сверхвысокочастотные диоды широко применяются при генерации и усилении электромагнитных колебаний СВЧ-диапазона, умножении частоты, модуляции, регулировании и ограничении сигналов и т. д. Типичными представителями данной группы диодов являются смесительные (получение сигнала суммы или разности двух частот), детекторные (выделение постоянной составляющей СВЧ-сигнала) и переключательные (управление уровнем мощности сверхвысокочастотного сигнала) диоды. Условное графическое обозначение импульсных и СВЧ-диодов аналогично обозначению выпрямительных диодов (рис. 10.0, 1).

 

Стабилитрон и стабистор применяются в нелинейных цепях постоянного тока для стабилизации напряжения. Отличие стабилитрона от стабистора заключается в используемой ветви ВАХ для стабилизации напряжения. Как видно из рис. 10.3, ВАХ диода имеет участки АВ и CD, на которых значительному изменению тока соответствует незначительное изменение напряжения при сравнительно линейной их зависимости. Для стабилизации высокого напряжения (>3 В) используют обратную ветвь (участок АВ) ВАХ. Применяемые для этой цели диоды называют стабилитронами. Для стабилизации небольших значений напряжений (< 1 В —например, в интегральных схемах) используют прямую ветвь (участок CD) ВАХ, а применяемые в этом случае диоды называют стабисторами. Условное обозначение стабилитрона и стабистора показано на рис. 10.0, 2.

Стабилитроны и стабисторы изготовляют, как правило, из кремния. При использовании высоколегированного кремния (высокая концентрация примесей, а следовательно, и свободных носителей заряда) напряжение стабилизации понижается, а с уменьшением степени легирования кремния — повышается. Соответственно различают низко- и высоковольтные стабилитроны с напряжением стабилизации от 3 до 400 В.

К основным параметрам стабилитрона относятся:

Uст — напряжение стабилизации при заданном токе;

Rдиф — дифференциальное сопротивление при заданном токе;

Iст min — минимально допустимый ток стабилизации;

Iст max — максимально допустимый ток стабилизации;

Pmax — максимально допустимая рассеиваемая мощность;

где ∆Uст — отклонение напряжения Uст от номинального значения при изменении температуры в интервале ∆T.

В схемах двуполярной стабилизации напряжения применяется симметричный стабилитрон, условное графическое обозначение которого показано на рис. 10.0, 3.

 

Варикап — полупроводниковый диод, действие которого основано на использовании зависимости зарядной емкости Cзар от значения приложенного напряжения. Это позволяет применять варикап в качестве элемента с электрически управляемой емкостью.

Основной характеристикой варикапа служит вольт-фарадная характеристика (рис. 10.5) — зависимость емкости варикапа CВ, состоящей из зарядной емкости и емкости корпуса прибора, от значения приложенного обратного напряжения. В выпускаемых промышленностью варикапах значение емкости CВ может изменяться от единиц до сотен пикофарад.

Рис. 10.5. Вольт-фарадная характеристика варикапа

 

Основными параметрами варикапа являются:

CВ — емкость, измеренная между выводами варикапа при заданном обратном напряжении;

KС — коэффициент перекрытия по емкости, используемый для оценки зависимости CВ=f(Uобр)и равный отношению емкостей варикапа при двух заданных значениях обратного напряжения (KC=2...20).

Зависимость параметров варикапа от температуры характеризуется температурным коэффициентом емкости

где ∆CВ/CВ — относительное изменение емкости варикапа при изменении температуры ∆T окружающей среды.

Условное графическое обозначение варикапа приведено на 10.0, 4.

 

Излучающий диод — полупроводниковый диод, излучающий из области р-n-перехода кванты энергии. Излучение испускается через прозрачную стеклянную пластину, размещенную в корпусе диода.

По характеристике излучения излучающие диоды делятся на две группы: диоды с излучением в видимой области спектра, получившие название светодиоды; диоды с излучением в инфракрасной области спектра, получившие, в свою очередь, название ИК-диоды. Принцип действия обеих групп диодов одинаков и базируется на самопроизвольной рекомбинации носителей заряда при прямом токе через выпрямляющий электрический переход. Из курса физики известно, что рекомбинация носителей заряда сопровождается освобождением кванта энергии. Спектр частот последней определяется типом исходного полупроводникового материала.

Основными материалами для изготовления светодиодов служат фосфид галлия, арсенид-фосфид галлия, карбид кремния. Большую часть энергии, выделяемой в этих материалах при рекомбинации носителей заряда, составляет тепловая энергия. На долю энергии видимого излучения в лучшем случае приходится 10...20%. Поэтому кпд светодиодов невелик.

Исходными материалами для изготовления ИК-диодов являются арсенид и фосфид галлия. Полная мощность излучения этой группы диодов лежит в пределах от единиц до сотен милливатт при напряжении на диоде 1,2...3 В и прямом токе от десятков до сотен миллиампер.

Условное графическое обозначение излучающих диодов показано на рис. 10.0, 5.

Светодиоды применяют в качестве световых индикаторов, а ИК-диоды — в качестве источников излучения в оптоэлектронных устройствах.

 

Похожие статьи:

poznayka.org

Полупроводниковые диоды

Полупроводниковый диод - это полупроводниковый прибор с одним электронно-дырочным переходом (основная часть) и двумя выводами. Примеры внешнего вида диодов приведены на рис. 1.

Полупроводниковые диоды

Рис. 1. Полупроводниковые диоды.

По конструкции полупроводниковые диоды могут быть плоскостными и точечными. Устройство плоскостного диода показано на рис. 2. К кристаллодержателю припаивается пластинка полупроводника n-типа. Кристалложержатель – это металлическое основание плоскостного диода. Сверху в пластинку полупроводника вплавляется капля трёхвалентного металла, обычно индия. Атомы индия диффундируют (проникают) в полупроводниковую пластинку и образуют у её поверхности слой р-типа. Между слоями р- и n-типов образуется электронно-дырочный переход (ЭДП). К кристаллодержателю и индию припаиваются проводники, которые служат выводами диода. Для предохранения диода от механических повреждений, попадания света, пыли и влаги на полупроводник, его помещают в герметичный корпус.

На рис. 2 позиция 1 – это вывод р-области, позиция 2 – вывод n-области.

Устройство плоскостного диода

Рис. 2. Устройство плоскостного диода.

Точечный полупроводниковый диод состоит из пластинки полупроводника n-типа и заострённой пружинки из вольфрама или фосфористой бронзы диаметром около 0,1 мм. Через прижатую к полупроводниковой пластинке пружинку пропускают электрический ток большой силы, в результате чего металлическая пружинка сваривается с полупроводниковой пластинкой, образуя под своим остриём р-область. Между р-областью и полупроводником n-типа возникает электронно-дырочный переход.

На рис. 3 приведены условные графические обозначения (УГО) различных диодов. Острая вершина треугольника в УГО указывает на направление протекания прямого тока через диод. То есть для того, чтобы диод пропускал ток, включать его нужно так, чтобы на основание треугольника подавался «плюс» (или на прямолинейный отрезок подавался «минус»). Если включить диод в обратном направлении, то он не будет пропускать ток (потому и называется полупроводником – пропускает ток только в одном направлении). Пример включения диода показан на рис. 4. Пример применения диода можно увидеть на рис. 5.

Условное графическое обозначение (УГО) диодов

Рис. 3. Условное графическое обозначение (УГО) диодов.

р-область диода (то есть вывод, на который в прямом направлении подаётся «плюс») носит название анод. Противоположный вод называется катод.

Включение диода

Рис. 4. Включение диода.

tz-5133.narod.ru

Полупроводниковый диод

Полупроводниковый диод - это полупроводниковый элемент, пропускающий ток только в одном направлении. Принцип работы диода основан на свойствах проводимости полупроводников, а именно на электронно-дырочном переходе.

 

На принципиальной электрической схеме диоды изображаются следующим образом:

 

Диоды изготавливают в основном методами сплавления и методом диффузии. Метод сплавления заключается в сплавлении пластин p и n – типов, а метод диффузии состоит во внедрении примесных атомов в полупроводниковую пластину. Благодаря этим способам изготавливаются большие площади p – n переходов – до 1000 мм2. А чем больше площадь перехода, тем больший ток можно через него пропускать.

Существуют также точечные (высокочастотные) диоды, площадь их p – n перехода меньше 0,1 мм2. Такие диоды изготавливаются с помощью соединения металлической иглы с полупроводником. Применяются точечные диоды в аппаратуре сверхвысоких частот при значении тока 10-20 мА.

Основные виды полупроводниковых диодов по функциональному назначению: выпрямительные, стабилитроны, импульсные, светодиоды, фотодиоды и т.д.

Выпрямительными называют полупроводниковые диоды, предназначенные для преобразования переменного тока в постоянный. Такие диоды изготавливают методами сплавки и диффузии, для того чтобы создать большую площадь p-n перехода, так как через них протекают большие токи. Сам процесс выпрямления переменного тока заключается в свойстве диода хорошо проводить ток в одном направлении и практически не проводить его в другом.

Ниже изображена схема простейшего однополупериодного выпрямителя. Работает он следующим образом: положительный полупериод напряжения Uвх, диод V пропускает практически без изменения, и напряжение Ur практически равно Uвх. Но в момент времени, когда полупериод напряжения отрицательный, диод включен в обратном направлении и все напряжение Uвх падает на диоде, а напряжение на резисторе практически равно нулю

 

 На рисунке схематично изображен график напряжения на резисторе.

 

Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.

 

Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении.

Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.

 

electroandi.ru

Полупроводниковый диод |

Начинать осваивать полупроводниковую технику следует с того что необходимо разобраться с основными понятиями типа полупроводник, потенциальный барьер и p-n переход. В этой статье рассказано про некоторые тонкости полупроводниковой техники на примере работы полупроводникового диода.

Полупроводник это:

Полупроводник – это такой материал электрические свойства, которого могут меняться под воздействием внешних факторов. Полупроводник может либо расширять запретную зону и становиться диэлектриком, либо сужать запретную зону ставая проводником. Такие особенности полупроводников нашли успешное применение в современной электроники.

Полупроводниковый диод это:

Полупроводниковый диод (рисунок№1) представляет собой радиоэлектронный компонент (прибор) в основе работы которого лежит один своеобразный электрический переход.

Рисунок №1 – Пример полупроводникового диода

Полупроводниковый диод имеет всего два вывода рисунок №1 катод и анод. А принцип действия полупроводникового диода основывается на так называемом  p-n-переходе рисунок №2.

Рисунок №2 – p-n-переход полупроводникового диода

Как видно из рисунка №2 p-n-переход – это ни что иное как область между двумя разными проводимостями (стык двух полупроводников).

Оставляя законы физики и кучу формул и доказательств не рассмотренными, прежде всего так же следует понять что такое потенциальный барьер, так как именно на этом явлении основывается принцип действия полупроводникового диода и прочих полупроводниковых устройств и элементов.

Потенциальный барьер – образуется в области p-n-перехода, и является пространством разделяющим две другие области с различными (или одинаковыми) потенциальными энергиями. Потенциальный барьер лежит в основе работы полупроводникового диода и в принципе работает как водопроводный клапан. Полупроводниковый диод пропускает носители заряда только в одном направлении рисунок №3.

Рисунок №3 – Иллюстрация работы полупроводникового диода

Говоря по-простому потенциальный в полупроводниковом диоде барьер можно представить горкой. И как видно из рисунка №3 то на горку электрон не может взобраться а с неё он спокойно скатывается – вот как то так, в общих чертах, и работает полупроводниковый диод пропуская ток только в одном направлении.

Обозначение диода на схеме:

Полупроводниковый диод имеет своё особое обозначение в зависимости от типа  принципа действия, а так же работы и электрических особенностей рисунок№4.

Рисунок №4 – Обозначения различных полупроводниковых приборов

Имея представление о принципе действия полупроводникового диода вы сможете без особого труда находить по справочнику необходимый вам тип полупроводникового диода.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт http://bip-mip.com/ 

bip-mip.com

Полупроводниковые и оптоэлектронные приборы | Разновидности полупроводниковых диодов

Стабилитрон – это полупроводниковый диод, сконст­руированный для работы в режиме электрического про­боя. Условное графическое обозначение стабилитрона представлено на рис. 1.39, а.

Рис. 1.39

В указанном режиме при значительном изменении тока стабилитрона напряжение изменяется незначительно. Го­ворят, что стабилитрон стабилизирует напряжение. Изоб­разим для примера вольт-амперные характеристики крем­ниевого стабилитрона Д814Д (рис. 1.40).

Рис. 1.40

В стабилитронах может иметь место и туннельный, и лавинный, и смешанный пробой в зависимости от удель­ного сопротивления базы. В стабилитронах с низкоомной базой (низковольтных, до 5,7 В) имеет место туннельный пробой, а в стабилитронах с высокоомной базой (высоко­вольтных) – лавинный пробой.

Для примера применения стабилитрона обратимся к схеме параметрического стабилизатора напряжения (рис. 1.41). Если напря­жение uвх настолько велико, что стабилитрон находится в режиме пробоя, то изменения этого напряжения практи­чески не вызывают изменения напряжения uвых (при изменении напряжения uвх изменяется только ток i, а также напряжение uR: uR = i·R).

Рис. 1.41

Стабилитрон является быстродействую­щим прибором и хорошо работает в импульсных схемах.

Стабистор – это полупроводниковый диод, напряже­ние на котором при прямом включении (около 0,7 В) мало зависит от тока (прямая ветвь на соответствующем участ­ке почти вертикальная). Стабистор предназначен для ста­билизации малых напряжений.

В диоде Шоттки используется не p-n-переход, а выпрямляющий контакт металл–полупро­водник. Условное графическое обозначение диода Шоттки представлено на рис. 1.39, б.

При работе диода Шоттки отсутствуют инжекция не­основных носителей и соответствующие явления накоп­ления и рассасывания, поэтому диоды Шоттки – очень быстродействующие приборы, они могут работать на ча­стотах до десятков гигагерц. У диода Шоттки может быть малый обратный ток и малое прямое напряжение (при малых прямых токах) – около 0,5 В, что меньше, чем у кремниевых приборов. Максимально допу­стимый прямой ток может составлять десятки и сотни ампер, а максимально допустимое напряжение – сотни вольт.

Для примера изобразим прямые ветви вольт-амперных характеристик (рис. 1.42) кремниевого диода КД923А с барьером Шоттки (диода Шоттки), предназначенного для работы в импульсных устройствах.

Рис. 1.42

Варикап – это полупроводниковый диод, предназначенный для работы в качестве конденсатора, емкость которо­го управляется напряжением. Условное графическое обо­значение варикапа представлено на рис. 1.39, в.

На варикап подают обратное напряжение. Барьерная емкость варикапа уменьшается при увеличении (по моду­лю) обратного напряжения. Характер изменения емкости у варикапа такой же, как и у обычного диода.

Туннельный диод– это полупроводниковый диод, в ко­тором используется явление туннельного пробоя при включении в прямом направлении. Характерной особен­ностью туннельного диода является наличие на прямой ветви вольт-амперной характеристики участка с отрица­тельным дифференциальным сопротивлением. Условное графическое обозначение туннельного диода представле­но на рис. 1.39, г.

Для примера изобразим (рис. 1.43) прямую ветвь вольт-амперной характеристики германиевого туннельного уси­лительного диода 1И104А, предназначенного для уси­ления в диапазоне волн 2...10 см (это соответствует час­тоте более 1 ГГц).

Рис. 1.43

Наличие участка с отрицательным дифференциальным сопротивлением на вольт-амперной характеристике обес­печивает возможность использования туннельных диодов в качестве усилительного элемента и в качестве основно­го элемента генераторов. В настоящее время туннельные диоды используются именно в этом качестве в области сверхвысоких частот.

Обращенный диод– это полупроводниковый диод, фи­зические явления в котором подобны физическим явле­ниям в туннельном диоде, поэтому зачастую обращенный диод рассматривают как вариант туннельного диода. При этом участок с отрицательным дифференциальным сопро­тивлением на вольт-амперной характеристике обращенно­го диода отсутствует или очень слабо выражен.

Обратная ветвь вольт-амперной характеристики обра­щенного диода (отличающаяся очень малым падением напряжения) используется в качестве прямой ветви «обыч­ного» диода, а прямая ветвь – в качестве обратной ветви. Отсюда и название – обращенный диод.

Условное графическое обозначение обращенного дио­да представлено на рис. 1.39, д.

Лавинно-пролетные диоды (ЛПД) работают в режиме электрического пробоя при постоянном обратном напряжении и при некоторых условиях обладают отрицательным сопротивлением переменному току, что позволяет их использовать для усиления и генерации колебаний. Такое отрицательное сопротивление получается только на СВЧ, на более низких частотах оно не возникает.

Допустим, к ЛПД приложено постоянное обратное и некоторое переменное напряжение. При положительной полуволне обратного напряжения в режиме пробоя происходит лавинообразное нарастание тока – «электрическая лавина». Вследствие инерционности процессов в полупровод­никах этот ток достигает максимума с некоторым запаздыванием по отношению к вызвавшей его полуволне переменного напряжения. Под действием постоянного напряжения «лавина» продолжает двигаться и в течение следующего, отрицательного полупериода. Таким образом, импульс тока, соответствующий лавине, противоположен по знаку отрицательной полуволне переменного напряжения. Следовательно, для переменного тока возникает отрицательное сопротивление. На более низких частотах инерционность слишком мала, и запаздывание импульса тока также мало, поэтому отрицательное сопротивление отсутствует.

3ys.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта