Полевой транзистор. Устройство и основные физические процессы. Устройство транзистораТранзистор - общая информация | Двигатель прогрессаOctober 31, 2012 Транзистор – его история виды и устройствоТранзистор (полупроводниковый триод) изготовляется из полупроводникового материала, как правило, имеет три выхода, которые позволять входным сигналам управлять током в электроцепи. Транзисторы используют для усиления, преобразования и генерирования электросигналов. На схемах они обозначаются как «VT» или «Q». Раньше в русскоязычной технической литературе применялись обозначения «ПТ» (полупроводниковый триод) или «Т» (триод). За счет изменения выходного напряжения осуществляется управление током в выходной цепи. Незначительное изменение входных величин приводит к максимальному увеличению выходного напряжения. Усилительное свойство указанных полупроводниковых транзисторов используют в аналоговой технике (радио, аналоговое телевидение, связь и т.п.). Современная аналоговая техника содержит биполярные транзисторы. В структуру цифровой техники (цифровая связь, компьютеры, память) входят полевые металл-оксид-полупроводниковые транзисторы (МОПТ), биполярные в данной технике не используют, поскольку они не экономичные. Благодаря современным технологиям на одной микросхеме площадью всего 2 см2 размещаются несколько МОПТ. С каждым годом размеры транзисторов уменьшаются, происходит миниатюризация, что способствует увеличению количества транзисторов на одном чипе. С уменьшением размеров МОПТ снижается тепловыделение, энергопотребление, при этом скорость быстродействия процессоров значительно увеличивается. Благодаря современным технологиям микропроцессоры Intel собирают на 3d транзисторах (трехмерных транзисторах, Tri-Gate). Данные технологии позволяют существенно улучшить технические характеристики процессоров. Использование современных технологий позволяет увеличить продуктивность процессоров на тридцать процентов, при этом энергопотребление снижается. Следует сказать, что затраты на производство возрастают незначительно, всего-навсего, на два-три процента. Поэтому цена в магазинах на новые процессоры практически останется прежней. Первые транзисторыПервые разработки на производство полевых транзисторов были запатентованы в Германии в начале 20 века (1928 г). О. Хейл (немецкий физик) в 1934 г. запатентовал полевой транзистор. Принцип работы полевых транзисторов основан на простом электростатическом эффекте поля. Полевые транзисторы намного проще биполярных, поэтому они были придуманы намного раньше. Металл-оксид-полупроводниковые транзисторы изобрели позже (в 60 годах прошлого века) биполярных, однако только в девяностых годах 20 века МОПТ стали доминировать над биполярными транзисторами. У. Шокли, Дж. Бардин, У. Браттейн в 1947 году впервые продемонстрировали работу биполярного транзистора. В 156 году они получили Нобелевскую премию в области физики. Чуть позже вакуумные лампы заменили транзисторы. Их использовали в большинстве электронных устройствах. Устройство транзистораТранзистор состоит из полупроводникового материала, который, как правило, применяют в виде монокристалла, в его контракцию входят изолирующие элементы, металлические выводы, легирующие добавки к базовому материалу, а также керамические и пластиковые части корпуса. В некоторые модели включают и другие материалы. Однако основными из них являются транзисторы на основе Галлия, Силиция, Германия и арсенида галлия. На сегодня существуют транзисторы на основе прозрачных полупроводников, используемых в матрицах разнообразных дисплеев. Перспективным направлением в изготовлении транзисторов является использование полупроводниковых полимеров. В настоящее время известны транзисторы на основе карбоновых нанотрубок, которые используют для изготовления графеновых полевых транзисторов. Транзисторы используют в усилительных схемах. Работают, обычно, в усилительном режиме. Известны также экспериментальные разработки цифровых усилителей, состоящих из транзисторов. В данном случае транзисторы работают в ключевом режиме. Использование транзисторов в электронных ключах. В данном случае транзисторы работают в ключевом режиме. Такие ключевые схемы являются регенераторами (усилителями) цифровых сигналов. В некоторых случаях электронные ключи применяются для управления силой тока в аналоговой нагрузке. Это проводится в тех случаях, когда нагрузка имеет достаточно большую инерционность, а напряжение и сила тока в ней регулируется шириной импульсов, анне амплитудой. На этом же принципе основаны нагревательные приборы, а также бытовые диммеры для ламп накаливания. Транзисторы используются в качестве своеобразных усилительных систем в переключательных каскадах. Транзисторы и генераторы сигналов. С учетом типа генератора транзистор может использовать в усилительном режиме (генерация сигнала произвольной формы) либо в ключевом (генерация прямоугольных сигналов) режиме. lab-37.com Устройство транзистора - и его диагностика
Полупроводниковые транзисторы Устройство транзистора
В начале темы немного о самих транзисторах. Транзистор используется для управления электрическим током, то есть с помощью данного элемента можно управлять величиной тока с использованием его для:
Состоит транзистор из трех областей перехода со свойственной для каждого перехода своей проводимостью. Данные свойства проводимости мы можем наблюдать путем измерения сопротивления:
Большое применение транзисторы нашли в радиотехнике. Рассмотрим устройство транзисторов:
рис.1 Основной функцией для транзисторов \рис.1\ является усиление сигналов. Из чего изготавливается транзисторИзготавливается транзистор либо из германия либо из кремния. Для взаимодействия областей биполярного транзистора:
— к транзистору необходимо приложить правильное напряжение. Если приложить напряжение от внешнего источника к p -n — переходу, — данный переход называют смещением. Когда положительный потенциал подается на p — область, а отрицательный потенциал на n — область, данный p — n — переход открывается. Ток при таком переходе протекает прямой. При обратном n — p — переходе значение сопротивления будет велико и так называемый обратный ток принимает малое значение. рис.2: Устройство n — p — n транзистора Для данного n — p — n транзистора, представленном в рис.2, наглядно показаны так называемые — переходы:
и соответственно схематические обозначения транзисторов обоих типов. Более наглядное объяснение устройства биполярного транзистора, — показано на рис.3 рис.3 По данному рисунку устройства биполярного транзистора — можно вполне ясно наблюдать, что биполярный транзистор состоит из трех областей с чередующимся типом проводимости. Проверка транзистора мультиметром
Мы как бы уже частично ознакомились с устройством транзистора и теперь необходимо усвоить навыки, — проведения диагностики для данных элементов. На фотоснимке показан один из двух способов диагностики транзисторов. Для данного наглядного примера, диагностика транзистора проводится следующим образом: Ножки транзистора вставляются в соответствующее гнездо мультиметра, учитывая при этом тип транзистора:
На дисплее прибора здесь наблюдается проводимость между переходами в транзисторе. Следующим методом проведения диагностики для транзистора, — является метод измерения сопротивления: — переходов.
Проведение диагностики транзистора — методом измерения сопротивления в переходах Для этого, прибор мультиметр выставляется в соответствующий диапазон для измерения сопротивления. Два разъема проводов вставляются в гнезда прибора и двумя щупами проводится измерение сопротивления переходов в транзисторе. Дисплей прибора при этом будет указывать либо на малое сопротивление, при котором ток в данном направлении будет — прямым; либо дисплей прибора выдаст наибольший показатель сопротивления, — в данном примере, переход будет являться обратным \n — p — переход\. В данном фотоснимке, дисплей прибора \мультиметр\ показывает сопротивление при прямом и обратном переходах в транзисторе. При прямом переходе — сопротивление принимает наименьшее значение, при обратном переходе — наибольшее значение. Наличие сопротивления в прямом и обратном направлениях При следующем приведенном примере, дисплей прибора показывает — единицу. Из этого следует, что в двух переходах:
— имеется разрыв. Отсутствие сопротивления в переходах \неисправность транзистора\ Как правильно припаять транзисторПри замене транзистора, как мы убедились, учитываются значения сопротивления в переходах или же другими словами — подбирается серия транзистора. Научившись правильно пользоваться мультиметром и зная устройство того или иного элемента, — можно выполнить определенный объем работы по устранению подобных поломок. На схеме, как правило, имеются обозначения для припаивания ножек транзистора \эмиттер, коллектор, база\. Для транзисторов обоих типов среднюю область называют базой, две другие внешние области называют — коллектором и эмиттером. Данная тема будет содержать дополнение, касающееся типов транзисторов, их замене, — а также обучающие видеоролики в этом направлении. На этом пока все.
zapiski-elektrika.ru Биполярные транзисторы полное описание | Техника и Программы
Страница 1 из 2
Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.
Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки — оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения — транзистор полностью открыт;3) активный режим — это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.
Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) И коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками UЭБ и UКБ. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас). Для усиления сигналов применяется активный режим работы транзистора.При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях. Под действием прямого напряжения UЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая — от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора IКpне может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому IKp= h31Б IэВеличина h31Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h31Б = 0,90…0,998. Так как коллекторный переход включен в обратном направлении (часто говорят — смещен в обратном направлении), через него протекает также обратный ток IКБО, образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой Iк =h31БIэ + IКБОДырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток IБ.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базыIБ = IБ.рек — IКБОВ активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.
В предыдущей схеме электрическая цепь, образованная источником UЭБ, эмиттером и базой транзистора, называется входной, а цепь, образованная источником UКБ, коллектором и базой этого же транзистора,— выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ».
KI – коэффициент усиления по току KU – коэффициент усиления по напряжению KP– коэффициент усиления по мощности
Предыдущая страница – Следующая страница nauchebe.net Устройство и маркировка биполярного транзистораЗдравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми приборами и с этой статьи начнем разбираться с транзистором. В этой части мы познакомимся с устройством и маркировкой биполярных транзисторов. Полупроводниковые транзисторы бывают двух видов: биполярные и полевые.В отличие от полевых транзисторов биполярные получили наиболее широкое применение в радиоэлектронике, а чтобы эти транзисторы как-то отличать друг от друга, биполярные принято называть просто — транзисторами. 1. Устройство и обозначение биполярного транзистора.Схематично биполярный транзистор можно представить в виде пластины полупроводника с чередующимися областями разной электропроводности, которые образуют два p-n перехода. Причем обе крайние области обладают электропроводностью одного типа, а средняя область электропроводностью другого типа, и где каждая из областей имеет свой контактный вывод. Если в крайних областях полупроводника преобладает дырочная электропроводность, а в средней области электронная, то такой полупроводниковый прибор называют транзистором структуры p-n-p. А если в крайних областях преобладает электронная электропроводность, а в средней дырочная, то такой транзистор имеет структуру n-p-n. А теперь возьмем схематичную часть транзистора и прикроем любую крайнюю область, например, область коллектора, и посмотрим на результат: у нас остались открытыми область базы и эмиттера, то есть получился полупроводник с одним p-n переходом или обычный полупроводниковый диод. О диодах можно почитать здесь. Если же мы прикроем область эмиттера, то останутся открытыми области базы и коллектора — и также получается диод. Отсюда возникает вывод, что биполярный транзистор можно представить в виде двух диодов с одной общей областью, включенных навстречу друг другу. При этом общая (средняя) область называется базой, а примыкающие к базе области коллектором и эмиттером. Это и есть три электрода транзистора. Примыкающие к базе области делают неодинаковыми: одну из областей изготавливают так, чтобы из нее наиболее эффективно происходил ввод (инжекция) носителей заряда в базу, а другую область делают таким-образом, чтобы в нее эффективно осуществлялся вывод (экстракция) носителей заряда из базы. Отсюда получается: область транзистора, назначением которой является ввод (инжекция) носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным. область транзистора, назначением которой является вывод (экстракция) носителей из базы, называется коллектором, и соответствующий p-n переход коллекторным. То есть получается, что эмиттер вводит электрические заряды в базу, а коллектор их забирает. Различие в обозначениях транзисторов разных структур на принципиальных схемах заключается лишь в направлении стрелки эмиттера: в p-n-p транзисторах она обращена в сторону базы, а в n-p-n транзисторах – от базы. 2. Технология изготовления биполярных транзисторов.Технология изготовления транзисторов ни чем не отличается от технологии изготовления диодов. Еще в начальный период развития транзисторной техники биполярные транзисторы делали только из германия методом вплавления примесей, и такие транзисторы называют сплавными. Берется кристалл германия и в него вплавляются кусочки индия.Атомы индия диффузируют (проникают) в тело кристалла германия, образуя в нем две области p-типа – коллектор и эмиттер. Между этими областями остается очень тонкая (несколько микрон) прослойка полупроводника n-типа, которую именуют базой. А чтобы защитить кристалл от влияния света и механического воздействия его помещают в металлостеклянный, металлокерамический или пластмассовый корпус. На картинке ниже показано схематическое устройство и конструкция сплавного транзистора, собранного на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу диска – ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проводникам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Металлический колпак защищает прибор от влияния света и механических повреждений. Так устроены наиболее распространенные маломощные низкочастотные германиевые транзисторы из серии МП37 — МП42. В обозначении буква «М» говорит, что корпус транзистора холодносварной, буква «П» — это первая буква слова «плоскостной», а цифры означают порядковый заводской номер транзистора. Как правило, после заводского номера ставят буквы А, Б, В, Г и т.д., указывающие на разновидность транзистора в данной серии, например, МП42Б. С появлением новых технологий научились обрабатывать кристаллы кремния, и уже на его основе были созданы кремниевые транзисторы, получившие наиболее широкое применение в радиотехнике и на сегодняшний день практически полностью вытеснившие германиевые приборы. Кремниевые транзисторы могут работать при более высоких температурах (до 125ºС), имеют меньшие обратные токи коллектора и эмиттера, а также более высокие пробивные напряжения. Основным методом изготовления современных транзисторов является планарная технология, а транзисторы, выполненные по этой технологии, называют планарными. У таких транзисторов p-n переходы эмиттер-база и коллектор-база находятся в одной плоскости. Суть метода заключается в диффузии (вплавлении) в пластину исходного кремния примеси, которая может находиться в газообразной, жидкой или твердой фазе. Как правило, коллектором транзистора, изготовленного по такой технологии, служит пластина исходного кремния, на поверхность которой вплавляют близко друг от друга два шарика примесных элементов. В процессе нагрева до строго определенной температуры происходит диффузия примесных элементов в пластину кремния. При этом один шарик образует в пластине тонкую базовую область, а другой эмиттерную. В результате в пластине исходного кремния образуются два p-n перехода, образующие транзистор структуры p-n-p. По такой технологии изготавливают наиболее распространенные кремниевые транзисторы. Также для изготовления транзисторных структур широко используются комбинированные методы: сплавление и диффузия или сочетание различных вариантов диффузии (двусторонняя, двойная односторонняя). Возможный пример такого транзистора: базовая область может быть диффузионная, а коллектор и эмиттер – сплавные. Использование той или иной технологии при создании полупроводниковых приборов диктуется различными соображениями, связанными с техническими и экономическими показателями, а также их надежностью. 3. Маркировка биполярных транзисторов.На сегодняшний день маркировка транзисторов, согласно которой их различают и выпускают на производствах, состоит из четырех элементов.Например: ГТ109А, ГТ328, 1Т310В, КТ203Б, КТ817А, 2Т903В. Первый элемент — буква Г, К, А или цифра 1, 2, 3 – характеризует полупроводниковый материал и температурные условия работы транзистора. 1. Буква Г или цифра 1 присваивается германиевым транзисторам;2. Буква К или цифра 2 присваивается кремниевым транзисторам;3. Буква А или цифра 3 присваивается транзисторам, полупроводниковым материалом которых служит арсенид галлия. Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах: германий – выше 60ºС, а кремний – выше 85ºС. Второй элемент – буква Т от начального слова «транзистор». Третий элемент – трехзначное число от 101 до 999 – указывает порядковый заводской номер разработки и назначение транзистора. Эти параметры даны в справочнике по транзисторам. Четвертый элемент – буква от А до К – указывает разновидность транзисторов данной серии. Однако до сих пор еще можно встретить транзисторы, на которых стоит более ранняя система обозначения, например, П27, П213, П401, П416, МП39 и т.д. Такие транзисторы выпускались еще в 60 — 70-х годах до введения современной маркировки полупроводниковых приборов. Пусть эти транзисторы устарели, но они все еще пользуются популярностью и применяются в радиолюбительских схемах. В рамках этой части статьи мы рассмотрели лишь общие методы изготовления транзисторных структур, чтобы начинающему радиолюбителю было легче понять внутреннее устройство транзистора. На этом мы закончим, а в следующей части проведем несколько опытов и на их основе сделаем практические выводы о работе биполярного транзистора.Удачи! Литература: 1. Борисов В.Г — Юный радиолюбитель. 1985г.2. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г. sesaga.ru Полевой транзистор: определение, устройство, принцип работыПолевой транзистор является очень широко используемым активным (т. е. способным усиливать сигналы) полупроводниковым прибором. Впервые он был предложен в 1930 г. Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). В англоязычной литературе эти транзисторы называют транзисторами типа FET (Field Effect Transistor). Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвуют только основные носители. Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Для определенности вначале обратимся к так называемому полевому транзистору с управляющим p-n-переходом с каналом p-типа. Устройство транзистора.Дадим схематическое изображение структуры полевого транзистора с управляющим переходом и каналом p-типа. (рис. 1.85) и условное графическое обозначение этого транзистора (рис. 1.86, а). Стрелка указывает направление от слоя pк слою n (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть меньше 1 мкм. Удельное сопротивление слоя n(затвора) намного меньше удельного сопротивления слоя p (канала), поэтому область p-n-перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р. Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим p-n-переходом и каналом n-типа, его условное графическое обозначение представлено на рис. 1.86, б. Основные физические процессы.Подадим положительное напряжение между затвором и истоком транзистора с каналом p-типа: uзи> 0. Оно сместит p-n-переход в обратном направлении. При увеличении обратного напряжения на p-n -переходе он расширяется в основном за счет канала (в силу указанного выше различия в удельных сопротивлениях). Увеличение ширины p-n -перехода уменьшает толщину канала и, следовательно, увеличивает его сопротивление. Это приводит к уменьшению тока между истоком и стоком. Именно это явление позволяет управлять током с помощью напряжения и соответствующего ему электрического поля. Если напряжение uзи достаточно велико и равно напряжению отсечки u зи отс, канал полностью перекрывается областью p-n-перехода. В рабочем (не аварийном) режиме p-n-переход должен находиться под обратным или нулевым напряжением. Поэтому в рабочем режиме ток затвора примерно равен нулю (iз ~ 0), а ток стока iс примерно равен току истока iи (iи = iс).Важно учитывать, что на ширину p-n-перехода и толщину канала прямое влияние может оказывать напряжение между истоком и стоком uис. Пусть uиз = 0 (между истоком и затвором включена закоротка) и подано положительное напряжение uис (рис. 1.87). Это напряжение через закоротку окажется поданным на промежуток затвор — сток, т. е. окажется, что uиз=uис и что p-n-переход находится под обратным напряжением. Обратное напряжение в различных областях p -n-перехода различно. В областях вблизи истока это напряжение практически равно нулю, а в областях вблизи стока это напряжение равно величине uис . Поэтому p-n-переход будет шире в тех областях, которые ближе к стоку. Обычно считают, что напряжение в канале от истока к стоку увеличивается линейно. Можно утверждать, что при u ис = u из отс канал полностью перекроется вблизи стока. При дальнейшем увеличении напряжения uис та область канала, в которой он перекрыт, будет расширяться (рис. 1.88). pue8.ru Транзисторы: назначение, устройство и принципы работыЧто означает название "транзистор"Первоначально все транзисторы называли полупроводниковыми триодами. Термин «транзистор» можно разделить на две составляющие: «трансфер» - передача, преобразование; «резистор» - электрическое сопротивление. Поэтому понятие «транзистор» определяется как преобразователь сопротивления. Такое объяснение совпадает и с принципом работы транзистора: транзистор открыт – сопротивление стремится к нулю, транзистор закрыт – сопротивление большое. Применение транзисторов Изначально транзисторы пришли на смену электрическим лампам в схемах усиления электрических сигналов в радиотехнике. Принцип действия любого усилителя достаточно прост: маломощный входной сигнал в электрической схеме с дополнительным источником питания получает усиление по амплитуде. Другими словами, транзистор позволяет управлять маломощным входным воздействием мощными потоками энергии. В большинстве схем усиления сигналов транзисторы используются в качестве управляемого сопротивления с маломощным входным сигналом задания. Схемы управления в радиоэлектронике строятся на базе источников постоянного напряжения. Входной управляющий сигнал изменяет внутреннее сопротивление транзистора, формируя переменный сигнал на выходе транзистора. В соответствии с этим формируется ток в цепи нагрузки транзистора. Электропроводность и строение атома Электропроводность любого материала определяется строением его атомов. В начале ХХ века Нильс Бор ввел понятие «планетарной модели атома», которая представлена на рисунке ниже. Согласно этой модели атом состоит из ядра (протоны и нейтроны), вокруг которого по орбитам вращаются заряженные частицы (электроны). Ядро имеет общий положительный заряд за счет наличия протонов. Количество протонов и электронов в ядре уравновешено, что позволяет атому находиться в состоянии электрического равновесия. При потере электрона атом превращается в положительно заряженный ион; при присоединении атомом чужого электрона – атом превращается в отрицательный ион. Строение атома рассмотрим на примере кремния (Si). По таблице Менделеева можно определить строение любого атома. Так для кремния распределение электронов по орбитам будет выглядеть как 2-8-4. В любом атоме орбиты имеют сферический характер, однако для упрощения примем все орбиты движения электронов как расположенные в одной плоскости. Свойства материала определяют электроны, расположенные на внешней орбите (валентные электроны), которые принимают участие в образовании молекул из нескольких атомов. Валентные электроны способны отрываться от атома и создавать электрический ток. Именно эти носители заряда и определяют полупроводниковые свойства транзисторов. Всего комментариев: 0 ukrelektrik.com ТРАНЗИСТОР - это... Что такое ТРАНЗИСТОР?ТРАНЗИСТОР — (от англ. transfer перенос и resistor сопротивление) трёхэлектродный полупроводниковый прибор, способный усиливать электрич. сигналы. Изобретён Дж. Бардином (J. Bardeen), У. Браттейном (W. Brattain) и У. Шокли (W. Shockley) в 1948 (Нобелевская… … Физическая энциклопедия ТРАНЗИСТОР — (от англ. transfеr переносить и резистор) полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно Si или Ge), содержащего не менее… … Большой Энциклопедический словарь ТРАНЗИСТОР — ТРАНЗИСТОР, ПОЛУПРОВОДНИКОВОЕ электронное устройство, способное усиливать электрические сигналы. В основное вещество КРЕМНИЙ или ГЕРМАНИЙ добавляется очень малое количество присадки МЫШЬЯКА или СУРЬМЫ, чтобы образовался материал типа п, в котором … Научно-технический энциклопедический словарь транзистор — филдистор, радиоприемник Словарь русских синонимов. транзистор сущ., кол во синонимов: 8 • микротранзистор (1) • … Словарь синонимов ТРАНЗИСТОР — ТРАНЗИСТОР, а, муж. 1. Полупроводниковый прибор, усиливающий, генерирующий и преобразующий электрические колебания. 2. Портативный радиоприёмник с такими приборами. | прил. транзисторный, ая, ое (к 1 знач.). Т. приёмник. Толковый словарь Ожегова … Толковый словарь Ожегова транзистор — транзистор, мн. транзисторы, род. транзисторов (неправильно транзистора, транзисторов) … Словарь трудностей произношения и ударения в современном русском языке транзистор — Электронный прибор на основе полупроводникового кристалла, имеющий три или более вывода, предназначенный для генерирования и преобразования электрических колебаний. [РД 01.120.00 КТН 228 06] Тематики магистральный нефтепроводный транспорт EN… … Справочник технического переводчика ТРАНЗИСТОР — (1) полупроводниковый (см.), предназначенный для усиления, генерирования, коммутации и преобразования электрических колебаний различных частот. Представляет собой монокристалл германия, кремния, арсенида галлия, фосфида галлия или др.… … Большая политехническая энциклопедия Транзистор — Дискретные транзисторы в различном конструктивном оформлении … Википедия Транзистор — (от англ. transfer переносить и resistor сопротивление) электронный прибор на основе полупроводникового кристалла, имеющий три (или более) вывода, предназначенный для генерирования и преобразования электрических колебаний. Изобретён в… … Большая советская энциклопедия dic.academic.ru |