Eng Ru
Отправить письмо

Нетрадиционные возобновляемые источники энергии. Возобновляемые нетрадиционные источники энергии


Нетрадиционные возобновляемые источники энергии — МегаЛекции

Благодаря научно-техническому прогрессу нетрадиционные возобновляемые источники энергии (солнечное излучение, ветер, стихия Мирового океана, тепло Земли) в XXI в. начинают использоваться на качественно новом уровне и в будущем смогут обеспечить значительную часть потребностей человечества в практически неисчерпаемой и экологически чистой энергии. Энергетический потенциал нетрадиционных возобновляемых источников энергии (НВИЭ) в 50 раз превышает современные потребности цивилизации. Однако существуют большие технические трудности в широкомасштабном внедрении новых технологий. В современном мировом энергетическом балансе доля НВИЭ оценивается в 2–2,5 %, а к концу XXI в. их роль значительно возрастет, снизив тем самым зависимость человечества от нефти и газа.

Энергия биомассы. В настоящее время основная часть – более 80 % – энергии НВИЭ производится из биомассы. При расчетах энергобаланса рассматриваются только новейшие технологии использования биомассы для производства электроэнергии и тепла на современных установках, получения биогаза, этанола и дизельного топлива. Примитивное сжигание биомассы для местных нужд оценивается лишь приблизительно (в мире потребляется около 1 млрд т у. т. в год), в то время как промышленные энергетические установки можно оценивать количественно и, соответственно, проводить статистический анализ.

Новые технологии использования биомассы развиваются по следующим основным направлениям: брикетирование отходов лесопереработки, сжигание горючих фракций промышленных и бытовых отходов, получение биогаза, этанола и дизельного топлива.

Солнечная и ветровая энергетика. Солнечные и ветровые установки начали сооружаться не только в Европе и Северной Америке, но и во многих других странах мира.

Современными солнечными тепловыми коллекторами в мире оснащены крыши более 40 млн домов. В Китае сосредоточено более 70 % мирового объема солнечных тепловых установок и планируется увеличить их число к 2015 г. в 3,5–4 раза. В Израиле, Японии, США и некоторых других странах почти половина домов снабжены солнечными панелями, которые обеспечивают горячее водоснабжение. Эти достижения представляют большой интерес для всего мира.

С каждым годом совершенствуется техническое устройство ветровых установок для производства электроэнергии и уменьшается их стоимость. По прогнозам, к 2050 г. мировое производство электроэнергии на основе ветра может увеличиться в 10 раз по сравнению с современным уровнем, а к концу XXI в. – в 30–40 раз.

В результате научных разработок стоимость строительства солнечных и ветровых установок в среднесрочной перспективе может уменьшиться в 2–3 раза. Таким образом, они составят конкуренцию традиционным электростанциям. По прогнозам, к середине XXI в. будет производиться солнечной электроэнергии в 10 раз больше современного уровня, а к концу века доля гелиоэнергетики в мировом энергобалансе превысит 3 %.

Геотермальная энергия. Наглядное проявление геотермальной энергии – горячие источники, гейзеры, выбросы пара. Тепло горячих источников используется очень давно, а в начале XX в. в ряде стран начали строиться электростанции, работающие на перегретом паре (ГеоЭС). В настоящее время геотермальная энергия используется в 62 странах, а лидеры по производству электроэнергии – Исландия, Япония, Новая Зеландия, США, Мексика, Филиппины. В 2004 г. в мире действовало 45 крупных ГеоЭС.

Другой источник геотермальной энергии – грунтовые воды, залегающие на небольших глубинах. Их температура недостаточна для прямого использования в быту или промышленности, однако, используя тепловые насосы, ее можно повысить до нужных кондиций. Многие жилые дома в странах Европы снабжены такими конструкциями, что обеспечивает экономию нефти, газа и угля.

Дальнейшие перспективы использования внутреннего тепла Земли связываются также с освоением глубоких недр (1–2 км), в которых содержатся огромные объемы воды с высокой температурой.

По прогнозам, по сравнению с современным состоянием к 2050 г. использование геотермальной энергии возрастет в 3–4 раза, а к концу века – в 15–18 раз.

Многообразие возобновляемых источников энергии позволяет выбрать для каждого района наиболее перспективные направления. Например, по экспертным оценкам, в странах Европы наиболее рациональный комплекс для северных регионов – ветровая, приливная энергетика и тепловые насосы, а для южных – солнечные установки. Для условий России большое значение имеет развитие технологий утилизации отходов лесозаготовок и деревообработки, поэтому в различных регионах (Республика Коми, Кировская область и др.) строятся заводы по гранулированию опилок. На Камчатке до 30 % необходимой энергии обеспечат новые геотермальные станции. Практически в каждой стране мира с использованием инновационных технологий может быть реализован потенциал той или иной энергии природных процессов.

Энергия морской стихии многократно превосходит гидроресурсы суши. Так, течение Гольфстрим в Атлантическом океане проносит через Флоридский пролив в 20 раз больше воды, чем сток всех рек земного шара. После реализации сложнейших проектов строительства морских электростанций (пока гипотетических) будет производиться в 1000 раз больше энергии, чем производят ГЭС на суше.

Потенциальные возможности возобновляемых источников энергии практически неограниченны. Однако для эффективного их использования требуется создание новых технологий и оборудования, международное сотрудничество и финансирование перспективных проектов.

Охрана окружающей среды

Экологические проблемы все больше определяют перспективы дальнейшего развития общества. Техногенная деятельность человека стала уже опасной для экосистемы Земли и инициирует механизмы деструктивного характера на региональном и глобальном уровнях.

Основными составляющими стратегии, определяющими императивы экологической безопасности, являются:

1) экологическое совершенствование энергетических технологий на действующих и новых производствах, обеспечивающих экологически безопасное использование энергоносителей, уменьшение объемов вредных выбросов;

2) активное вовлечение в топливно-энергетический баланс возобновляемых, наиболее чистых источников энергии;

3) утилизация, переработка и рециркуляция промышленных и бытовых отходов в качестве дешевого сырья для производства товаров, что снизит поступление вредных веществ в окружающую среду;

4) создание единых унифицированных стандартов в области энергетики, определяющих нормативно-технические и правовые меры экологической защиты регионов планеты.

megalektsii.ru

Нетрадиционные возобновляемые источники энергии

Поиск Лекций

Понятие устойчивого развития включает в себя как обязательный компонент постепенный переход от энергетики, основанной на сжигании органического топлива (нефть, уголь, газ и др.), к нетрадиционной (альтернативной) энергетике, использующей возобновляемые экологически чистые источники энергии  солнце, ветер, энергию биомассы, подземное тепло и др. (рис. 21.5).

Рис. 21.5. Классификация возобновляемых источников энергии (Энергоактивные здания, 1988, с изм.)

В послании международной экологической организации Гринпис правительствам всех стран отмечается, что «правительства должны признать, что углеводородное топливо  основная причина изменения климата и что единственной стабильной системой энергоснабжения, способной отвечать нашим энергетическим потребностям, может быть система, основанная на возобновляемых источниках энергии».

Основные преимущества возобновляемых источников энергии хорошо известны: практическая неисчерпаемость запасов (рис. 21.5) и относительная экологическая безвредность, в связи с отсутствием побочных эффектов, загрязняющих природную среду. Сдерживает их развитие недостаточный на сегодняшний день технический уровень индустриальных методов использования.

В жилищно-строительной сфере, как и во всех других видах человеческой деятельности, использование нетрадиционных возобновляемых источников энергии получило широкое развитие.

Энергия Солнца. В современной мировой практике энергоснабжения излучение Солнца  возможно, главный нетрадиционный источник энергии. Появилась новая отрасль энергетики  гелиоэнергетика, созданы специальные энергетические установки  гелиосистемы.

«Ливень» солнечной энергии неисчерпаем. Лишь незначительная часть излучения Солнца (0,02%) попадает в биосферу Земли, но и этого количества энергии достаточно, чтобы в тысячи раз перекрыть общую мощность всех электростанций мира.

К недостаткам солнечной энергии относят дискретность (прерывистость) ее поступления на поверхность Земли (по часам суток, времени года, географическим поясам) и зависимость от метеорологических условий. Например, в России специалисты рекомендуют размещать гелиополигоны южнее 55 с. ш. В связи с этим многие зарубежные ученые работают над проблемой выноса гелиосистем на околоземную орбиту. Предполагается строительство в Европе 40 спутниковых солнечных электростанций, способных обеспечить около 20% потребности в электроэнергии. Однако не исключено, что солнечные электростанции могут причинить ущерб окружающей среде в процессе передачи энергии на Землю (А. И. Мелуа и др., 1988).

Существует два основных направления использования солнечной энергии: выработка электрической энергии и получение тепловой энергии (теплоснабжение). Применение солнечных электрогенераторов находится все еще в начальной стадии, зато использование солнечного теплоснабжения для обогрева жилых зданий занимает в мировой практике уже значительное место.

Так, в США в 1977 г. насчитывалось около 1000 солнечных домов, в 90-е гг. число их превысило 15 тыс. Солнечные установки для подогрева воды имеют 90% домов на Кипре и 70% в Израиле. Только за последние 15 лет в Японии построены сотни тысяч зданий с солнечным подогревом, что позволило резко уменьшить выбросы в атмосферу диоксида углерода и других парниковых газов.

Солнечная энергетика в России развита совершенно недостаточно, хотя половина ее территории находится в благоприятных для использования солнечной энергии условиях  в год ее поступает не менее 100 кВт ч/м2, а в таких районах, как Дагестан, Бурятия, Приморье, Астраханская область и др.  до 200 кВт ч/м2 (Стребков, 1993).

Солнечная энергия очень удобна для энергоснабжения зданий. Как показали экспериментальные исследования, только за счет энергии солнечных лучей, падающих на ограждающие конструкции зданий, можно полностью решить энергетические проблемы, связанные с их обогревом, горячим водоснабжением и др.

Существует три вида гелиосистем, служащих для удовлетворения тепловых нужд здания: пассивные, активные и смешанные (Швецов, 1994).

В пассивных гелиосистемах само здание служит приемником и преобразователем солнечной энергии, а распределение тепла осуществляется за счет конвенции.

Основным элементом более дорогостоящей активной гелиосистемы является коллектор  приемник солнечной энергии, где солнечный свет преобразуется в тепло. Гелиоколлектор представляет собой теплоизолированный ящик: видимый свет от солнца проходит сквозь прозрачное покрытие (стекло или пленку), попадает на зачерненную панель и нагревает ее. При специальной конструкции коллектора внутри его достигается очень высокая температура, позволяющая успешно осуществлять горячее водоснабжение.

Оценивая эффективность применения солнечного теплоснабжения в нашей стране, Н. Пинигин и А. Александров (1990) показали, что использование солнечных установок в режиме круглогодичного горячего водоснабжения зданий экономически целесообразно практически для всей южной части Российской Федерации.

В последние годы созданы установки с сезонным аккумулированием тепла, что позволяет даже в условиях Сибири сохранить до 30% топливных ресурсов и использовать их для обогрева небольших домов в зимний период. Необходимы дальнейшие поиски использования солнечной энергии не только в южных, но и в северных районах России, особенно учитывая, что в Норвегии и Финляндии такой опыт уже имеется.

Использование солнечной энергии в жилищно-строительной сфере не ограничивается только теплоснабжением жилых зданий. Так, АО «ПИ-2» разработало серию проектов гелиополигонов (стационарных и мобильных, сезонных и круглогодичного действия), в которых впервые в мире для термовлажностной обработки сборных железобетонных конструкций и изделий была использована солнечная энергия без промежуточных превращений (Великолепов, 1995) (рис. 21.6). После укладки гелиопокрытия (СВИТАП) железобетонное изделие превращается в аккумулятор тепла, после чего начинает действовать другой источник тепла  экзотермия цемента.

Рис. 21.6. Общий вид и технологическая схема гелиополигона круглогодичного действия:1  гелиокамеры; 2  форма на колесах; 3  СВИТАП; 4  запирающий щит;5  инфракрасные излучатели; 6  механизм передвижения форм; 7  производственный корпус с БСЦ;8  бетоновозная эстакада; 9  склад арматурных каркасов; 10  бетоноукладчик;11  склад готовой продукции с зоной дозревания; 12  козловой кран

Строительство таких гелиополигонов позволяет: сократить объемы строительно-монтажных работ, повысить долговечность и качество изделия, снизить его стоимость, отказаться от котельной, теплотрасс, пропарочных камер, уменьшить нагрузку на окружающую среду и, главное, экономить условное топливо. По мнению авторов проекта, необходимо пересмотреть способы производства сборного железобетона и создать условия для широкого внедрения энергосберегающих технологий, использующих солнечную энергию.

В заключение приведем высказывание лауреата Нобелевской премии Жореса Алферова (2001) по поводу использования солнечной энергии: «Солнце  это термоядерный реактор, который работает миллионы лет надежно и безопасно. И задача преобразования солнечной энергии в электрическую будет решена. Может быть, даже в нашем ХХI веке. Академик Иоффе мечтал о солнечной энергетике и ее широком применении, когда КПД солнечных преобразований равнялся 0,1%. Сегодня КПД солнечных преобразований на гетероструктурах достиг 35%. Да, это по-прежнему дороже, чем атомная энергетика. Но дороже не на порядок, а лишь в несколько раз. И хочется верить, что лет через пятнадцать  двадцать солнечная энергетика будет сравнима или даже обойдет другие виды».

Завораживающей сознание выглядит идея, предложенная японскими специалистами, о строительстве единой для всей планеты гигантской солнечной электростанции где-нибудь в Сахаре или пустынях Австралии. Для этой станции потребовалась бы площадь, эквивалентная квадрату со стороной 800 км. Но уже сейчас суммарная площадь солнечных отражателей, используемых в мировой практике, превышает 6 млрд м2 (США  1,8 млрд м2, Япония  1,3 млрд м2 и т. д.).

Энергия ветра. Направление энергетики, связанное с ветровой энергией, называют ветроэнергетикой, а здания, в которых энергия ветра преобразуется в электрическую, тепловую и другие виды энергии,  ветроэнергоактивными.

Ветроэнергетика становится рентабельной при средних скоростях ветра от 3 до 10 м/с при повторяемости около 6090% и, следовательно, может использоваться лишь в районах с постоянным ветром (Крайний Север, побережье Охотского моря, Камчатка, Курилы, Прикаспийская низменность и др.).

В ветроэнергоактивном здании энергия ветра преобразуется с помощью ветрового колеса, размещенного в здании. Основным рабочим органом является ротор, который вращает генератор.

По А. Н. Тетиору (1991), важной экологической проблемой является защита здания и жителей от механических колебаний, генерируемых ветроустановкой. Применение различных способов виброизоляции, включая размещение ветроэнергетических установок вне жилых зданий, приводит к удорожанию их строительства. Значительным недостатком ветроэлектростанции является также генерация ими инфразвукового шума.

И, тем не менее, ветроэнергетика имеет большое будущее. За последние 20 лет она прошла путь от небольших агрегатов до современной многомиллиардной отрасли, обеспечивающей большое количество энергосистем. В 2001 г. ветротурбины, мощность которых составляла 14 000 МВт, генерировали «чистую» электроэнергию в более чем 30 странах мира. Только в США работает 9000 ветровых электроустановок, в Дании  1500. По данным Европейской ассоциации ветровой энергии, к 2020 г. ветровые электростанции обеспечат 10% мировой потребности в электроэнергии.

Геотермальная энергия. На территории СНГ запасы еще одного нетрадиционного источника энергии  геотермального тепла, оцениваются в десятки миллионов тонн условного топлива. Идея использования тепла Земли как альтернативного энергоресурса не нова. Еще в 20-е гг. ХХ в. К. Э. Циолковский и В. А. Обручев считали возможным использование геотермального тепла. К началу ХХI в. мощность энергии геотермальных систем в мире превысила 16 млн кВт ч, что достаточно для обогрева многих тысяч квартир. Исландия полностью отказалась от использования органического топлива, и широко использует геотермальные воды.

Наиболее экономически выгодный вариант использования геотермального тепла  строительство ГЭС с использованием водяного пара (температурой 200400 С). К сожалению, месторождения термального пара в России, да и в мире, редки, поэтому основное применение находят геотермальные (теплоэнергетичекие) воды с температурой до 200 С, выходящие на поверхность земли в виде источников. Достаточно упомянуть в связи с этим Паужетскую гидротермальную станцию, построенную в 1967 г. на Камчатке.

Перспективным направлением в энергосбережении специалисты считают извлечение тепловой энергии из водонасыщенных пластов, залегающих на глубинах 23 км и имеющих температуру 150200 С. На выбранной площадке бурятся вертикальные и наклонные нагнетательные скважины, по которым закачивается теплоноситель, который прогревается горячими породами, а затем откачивается. Подобная теплоэнергетическая система называется циркуляционной и ее применение вполне целесообразно во многих районах СНГ (Северный Кавказ, Крым, Армения, Закарпатье и др.). Первая в России термоциркуляционная система действовала в г. Грозном, где вода после использования в теплицах нагнеталась на глубину 1 км, там она вновь нагревалась.

Энергия биомассы. Биомасса  это выраженное в единицах массы количество живого вещества организмов, приходящееся на единицу площади или объема. В процессе переработки она преобразуется в органические отходы и биогаз.

В настоящее время биомасса широко используется в качестве топлива, что является результатом постоянных усилий ученых и специалистов по созданию экологически чистой энергии и предотвращению выбросов загрязняющих веществ в атмосферу.

В энергетических целях биомассу либо сжигают, используя теплоту сгорания (в этом случае продукты пиролиза могут загрязнять атмосферу), либо перерабатывают путем анаэробного сбраживания с целью получения биогаза (рис. 21.7). Биогаз, состоящий на 6070% из метана и на 2040% из углекислого газа, получают в специальных установках, основной частью которых является реактор (метантенк), т. е. бродильная камера, в которую загружают биомассу.

Рис. 21.7. Принципиальная схема переработки ТБО методоманаэробного компостирования для получения биогаза:1  приемный бункер; 2  мостовой грейферный кран; 3  дробилка; 4  магнитный сепаратор;5  насос-смеситель; 6  метантенк; 7  шнековый пресс; 8  рыхлитель; 9  емкость для сбораотжима; 10  цилиндрический грохот; 11  упаковочная машина; 12  крупный отсев;13  склад удобрений; 14  газголдер; 15  компрессор; 16  уравнительная касера; I  направлениедвижения отходов; II  направление движения биогаза

Материалом для переработки на биогазовых установках служат твердые бытовые отходы, навоз, отходы деревообработки (кора, опилки, стружки), осадки биологических очистных устройств и др.

С экологической точки зрения укажем на некоторые отличительные особенности использования этого энергетического направления:

1) биотехнологическая трансформация биомассы в энергию считается абсолютно безвредной;

2) в отличие от традиционных источников энергии данный метод не загрязняет окружающую среду;

3) вырабатывается не только энергия, но и одновременно природная среда очищается (освобождается) от продуктов жизнедеятельности и других отходов.

После очищения от углекислого газа и сероводорода биогаз сжигают и используют в стандартных водонагревателях, газовых плитах, горелках и других приборах.

В строительной сфере биогаз, как показывает мировой опыт, широко используется как источник экологически чистой энергии при производстве многих строительных материалов: гипса, стекла, керамзита и др. Доказано также, что при сухом способе производства цемента экологически и экономически выгоднее во вращающихся обжиговых печах использовать не традиционные источники энергии, а биогаз.

К нетрадиционным возобновляемым источникам энергии относят также энергию приливов, энергию ветровых волн, тепловые насосы, энергию температурных колебаний различных слоев морской воды и т. д.

Перспективным методом использования нетрадиционных источников энергии считается объединение ряда зданий в единую энергосистему в виде гелио- и ветрогелиокомплексов, а также ветроэнергоактивных комплексов, дополненных тепловыми насосами для трех сред (Селиванов, 1993). Эксплуатация подобных жилищно-энергетических комплексов позволит не только экономить невозобновляемые источники энергии, но и исключить или свести к минимуму вредное воздействие энергетики на окружающую среду.

 

poisk-ru.ru

Возобновляемые и нетрадиционные источники энергии. Республиканская программа по энергосбережению до 2010 г.

Возобновляемые и нетрадиционные источники энергии. Республиканская программа по энергосбережению до 2010 г.

Возобновляемые ресурсы — природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет. Это довольно расплывчатое определение, и часто в понятие «возобновляемые ресурсы» включают не совсем то, что это словосочетание обозначает. Термин был введён в обращение как противопоставление понятию «невозобновляемые ресурсы» (ресурсы, запасы которых могут быть исчерпаны уже в ближайшее время при существующих темпах использования).  

Многие ресурсы, которые относят к возобновляемым, на самом деле не восстанавливаются и когда-нибудь будут исчерпаны. В качестве примера можно привести солнечную энергию. С другой стороны, при достаточном развитии технологии, многие ресурсы, которые традиционно считаются невозобновляемыми, могут быть восстановлены. Например, металлы можно использовать повторно. Ведутся исследования по переработке изделий из пластика.  

Возобновляемые источники энергии (ВИЭ) — в современной мировой практике к ВИЭ относят: гидро, солнечную, ветровую, геотермальную, гидравлическую энергии, энергию морских течений, волн, приливов, температурного градиента морской воды, разности температур между воздушной массой и океаном, тепла Земли, биомассу животного, растительного и бытового происхождения.  

Существуют различные мнения о том, к какому типу ресурсов следует относить ядерное топливо. Запасы ядерного топлива с учётом возможности его воспроизводства в реакторах-размножителях, огромны, его может хватить на тысячи лет. Несмотря на это, его обычно причисляют к невозобновляемым ресурсам. Основным аргументом для этого является высокий риск для экологии, связанный с использованием ядерной энергии.  

Альтернативный источник энергии — способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.  

На возобновляемые (альтернативные) источники энергии приходится всего около 1 % мировой выработки электроэнергии. Речь идет, прежде всего, о геотермальных электростанциях (ГеоТЭС), которые вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.  

Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае.  

Солнечные электростанции (СЭС) работают более чем в 30 странах.  

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их в — странах Западной Европы (Дания, ФРГ. Великобритания, Нидерланды), в США, в Индии, Китае.  

В качестве топлива в Бразилии и других странах все чаще используют этиловый спирт.  

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и грядущим топливным дефицитом в традиционной энергетике.  

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1% ВВП.  

Альтернативная энергетика — совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района.  

Альтернативный источник энергии — способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.  

Увеличивающееся загрязнение окружающей среды, нарушение теплового баланса атмосферы постепенно приводят к глобальным изменением климата. Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к нетрадиционным, альтернативным источникам энергии. Они экологичны, возобновляемы, основой их служит энергия Солнца и Земли.  

Основные причины, указывающие на важность скорейшего перехода к АИЭ:  

¾     глобально-экологические: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.  

¾     политические: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;  

¾     экономические: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности.     Кроме     того,     стоимость     энергии,     производимой     многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную — постоянно растут;  

¾     социальные: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, — всё это увеличивает социальную напряженность.  

¾     эволюционно-исторические: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.  

В настоящее время во многих странах мира наблюдается повышение ин­тереса к возобновляемым источникам энергии. Это связано с непрерывно уменьшающимися запасами ископаемых энергоносителей, ухудшением экологии, связанным с газовыми выбросами, приводящими к парниковому эффекту, а также желанием многих стран освободить энергетические ис­точники от политической ситуации.  

Республика Беларусь относится к категории стран, которые не об­ладают значительными собственными топливно-энергетическими ресурсами, собственные ресурсы ископаемых энергоносителей составляют не более 16% от потребности.  

Доля природного газа в общем балансе ТЭР Беларуси превышает уровень 76%, а в белорусской энергосистеме — 93%. Республика Беларусь импортирует от 20 до 30% потребляемой электроэнергии. В случае ограни­чения поставок ТЭР Республика Беларусь потерпит ущерб в виде недопроиз­водства ВНП в размере около 410 долларов США на одну тонну условного топлива. А это во много раз превышает стоимость недопоставленных энерго­носителей.  

Поэтому развитие нетрадиционных и возобновляемых источников энер­гии и увеличение доли использования местных видов топлива (МВТ) являет­ся приоритетным направлением энергетической политики страны.  

Преимущество возобновляемых источников энергии перед традицион­ными неоспоримо не только по причине их неистощимости, но и потому, что они оказывают позитивное влияние на сохранение теплового баланса плане­ты. А вот этого невозможно достичь при эксплуатации атомных электростан­ций (АЭС), которые многие ошибочно причисляют к абсолютно «зеленой» энергетике. Задача, стоящая перед правительством в ближайшие годы — уве­личить долю местных видов топлива до 25% .  

Весь мир, чтобы предотвратить глобальную экологическую катастрофу, должен перейти к потреблению энергии из традиционных источников к уровню 1900 г., остальной дефицит можно восполнить за счет альтернатив­ных источников.  

Солнечная энергия — наиболее грандиозный, дешевый но и пожалуй, наименее используемый человеком источник энергии. По расчетам, только за полгода Солнце поставляет на Землю энергию эквивалентную всем запасам минерального топлива на нашей планете. Но используют этот колоссальный энергетический потенциал пока еще очень мало.  

Существуют два пути использования энергии Солнца: непосредственное преобразование солнечной энергии в электрическую (при помощи фотоэлектрасских элементов) или тепловую (с последующим использованием и качестве технологического тепла или для получения электроэнергии).  

Преимущество первого пути — быстрое преобразование прямой и рассеянной солнечной радиации в электроэнергию, не требующее сложнейшей системы механизмов слежения зеркал за Солнцем. Второй путь позволяет использовать солнечную энергию не только для получения электроэнергии, но и для других целей (отопление домов, теплиц и т. п.). Однако у обоих путей есть общий существенный недостаток: Солнце светит не всегда (кстати, при втором пути разогретый теплоноситель в «солнечном котле» способен отдавать энергию еще в течение 3 — 4 ч после захода Солнца). Поэтому важнейшая проблема развития гелиоэнергетики — аккумулирование энергии. По мнению специалистов, наиболее эффективным носителем энергии может стать водород (получаемый на гелиоустановках путем электролиза воды), который в дальнейшем может быть преобразован в электроэнергию. Очень ценно, что этот технологический процесс абсолютно экологически чист.  

В гелиоустановках мира наиболее широко используют фотоэлектрические элементы. Их применяют и в космической технике, и в быту (часы, микрокалькуляторы и т. п.), и т. д. Проходят практическую проверку разнообразнейшие варианты их использования: «солнечные» крыши на домах для энерго- и теплоснабжения, «солнечные» крыши на автомобилях для подзарядки аккумуляторов, «солнечные» фермы в сельских районах, использование солнечных элементов в садово-огородном хозяйстве, солнечные установки электролиза воды и др.  

По имеющимся оценкам, к 2010 г. мощность гелиоустановок мира может составить 130 млн. кВт (в 600 раз больше современного уровня), причем наибольший рост придется на первое десятилетие 21 века. Ожидают, что к этому времени в гелиоэнергетике будут преобладать фотоэлектрические генераторы. Развитию солнечной энергетики препятствует потребность к большой площади для размещения фотоэлементов или зеркал. Это затрудняет ее развитие в странах с высокой плотностью населения и промышленной застройки. Частичное решение проблемы заключается в сооружении крупных гелиоустановок в пустынных районах. Интересен в этом отношении западногерманский проект сооружения мощной гелиоЭС в пустынях Северной Африки. Получаемую на этих станциях электроэнергию предполагают использовать для выработки водорода, который планируют передавать в промышленные районы Европы по трубопроводам.  

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км2) занимают моря и океаны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Наиболее очевидным способом использования океанской энергии представляется постройка  приливных электростанций. Неожиданной возможностью океанской энергетики оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей, легко перерабатываемых в метан для энергетической замены природного газа. Большое внимание приобрела «океанотермическая энергоконверсия», т. е. получение электроэнергии за счет разницы температур между поверхностными и засасываемыми насосом глубинными океанскими водами.  

В качестве топлива может использоваться биомасса, включающая растения, отходы сельского хозяйства, городские отходы. Содержание ее в биосфере — 800 млрд. т., причем ежегодно возобновляются 200 млрд. т. (это соответствует 100 млрд. т. нефти).  

В энергических целях энергию биомасса используют двояко: биологическая и термохимическая конверсия. К первой относятся процессы брожения. С их помощью можно получить биогаз, водород, этанол, бутанол, ацетон, органические кислоты. Термохимические процессы — это пиролиз, т.е. разложение сырья, главным образом древесины, без доступа воздуха в присутствии воздуха при температуре 450-5500 С на древесный уголь, метанол, уксусную кислоту, горючий   газ,   а также   газификация   -   сжигание   твердой   биомассы   в присутствии воздуха при температуре 900-15000 С. В результате получаются те же продукты, что и при пиролизе.  

На пути широкого внедрения альтернативных источников энергии стоят трудноразрешимые экономические и социальные проблемы. Прежде всего, это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологий. Во-вторых, высокая материалоемкость (создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т. д., для гелиоЭС необходимо большое количество новейших дорогостоящих материалов) В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживает также нехватка специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию.)  

Нормативно-правовая база энергосбережения является одним из основ­ных механизмов повышения эффективности использования ТЭР, и в Респуб­лики Беларусь она создана. В её основе лежит Закон Республики Беларусь «Об энергосбережении». В развитие его правительством и другими республи­канскими органами управления принято более 35 нормативно — технических документов, регулирующих деятельность юридических и физических лиц по эффективному использованию ТЭР и другим вопросам, связанным с реали­зацией государственной энергосберегающей политики. Кодексом Республи­ки Беларусь об административных правонарушениях предусмотрена админи­стративная ответственность за нерациональное использование ТЭР.  

Принятым в 1998 г. Законом Республики Беларусь «Об энергосбереже­нии» (15 июля 1998 г. № 190-3) регулируются отношения, возникающие в процессе деятельности юридических и физических лиц в сфере энергосбере­жения в целях повышения эффективности использования ТЭР, в том числе реализацию мероприятий, связанных с развитием и применением нетрадици­онных и возобновляемых источников энергии, использование возобновляе­мых энергетических ресурсов.  

Законом определены основные принципы государственного управления в сфере энергосбережения:  

-  создание системы финансово-экономических механизмов, обеспечи­вающих экономическую заинтересованность производителей и пользовате­лей в эффективном использовании ТЭР, вовлечение в топливно-энергетический баланс нетрадиционных и возобновляемых источников энер­гии, а также в инвестировании средств в энергосберегающие мероприятия;  

-  создание и широкое распространение экологически чистых и безопас­ных энергетических технологий, обеспечение безопасного для населения со­стояния окружающей среды в процессе использования ТЭР.  

Ставится также задача расширять международное сотрудничество в этой сфере.  

Программа развития ООН (ПРООН) приветствовала решение Беларуси о присоединении к Киотскому протоколу — важнейшему международному ме­ханизму борьбы с глобальным изменением климата. Соответствующий указ был подписан Президентом Беларуси 13 августа 2005 года.  

Киотский протокол вступил в силу 16 февраля 2005 года. По состоянию на 5 августа 2005 года 153 государства и региональные организации эконо­мической интеграции разместили свои инструменты ратификации, присоеди­нения или одобрения.  

www.newtemper.com

Нетрадиционные возобновляемые источники энергии. Триединство. Россия перед близким Востоком и недалеким Западом. Научно-литературный альманах. Выпуск 1

Нетрадиционные возобновляемые источники энергии

Благодаря научно-техническому прогрессу нетрадиционные возобновляемые источники энергии (солнечное излучение, ветер, стихия Мирового океана, тепло Земли) в XXI в. начинают использоваться на качественно новом уровне и в будущем смогут обеспечить значительную часть потребностей человечества в практически неисчерпаемой и экологически чистой энергии. Энергетический потенциал нетрадиционных возобновляемых источников энергии (НВИЭ) в 50 раз превышает современные потребности цивилизации. Однако существуют большие технические трудности в широкомасштабном внедрении новых технологий. В современном мировом энергетическом балансе доля НВИЭ оценивается в 2-2,5%, а к концу XXI в. их роль значительно возрастет, снизив тем самым зависимость человечества от нефти и газа.

Энергия биомассы. В настоящее время основная часть – более 80% – энергии НВИЭ производится из биомассы. При расчетах энергобаланса рассматриваются только новейшие технологии использования биомассы для производства электроэнергии и тепла на современных установках, получения биогаза, этанола и дизельного топлива. Примитивное сжигание биомассы для местных нужд оценивается лишь приблизительно (в мире потребляется около 1 млрд т у. т. в год), в то время как промышленные энергетические установки можно оценивать количественно и, соответственно, проводить статистический анализ.

Новые технологии использования биомассы развиваются по следующим основным направлениям: брикетирование отходов лесопереработки, сжигание горючих фракций промышленных и бытовых отходов, получение биогаза, этанола и дизельного топлива.

Солнечная и ветровая энергетика. Солнечные и ветровые установки начали сооружаться не только в Европе и Северной Америке, но и во многих других странах мира.

Современными солнечными тепловыми коллекторами в мире оснащены крыши более 40 млн домов. В Китае сосредоточено более 70% мирового объема солнечных тепловых установок и планируется увеличить их число к 2015 г. в 3,5-4 раза. В Израиле, Японии, США и некоторых других странах почти половина домов снабжены солнечными панелями, которые обеспечивают горячее водоснабжение. Эти достижения представляют большой интерес для всего мира. С каждым годом совершенствуется техническое устройство ветровых установок для производства электроэнергии и уменьшается их стоимость. По прогнозам, к 2050 г. мировое производство электроэнергии на основе ветра может увеличиться в 10 раз по сравнению с современным уровнем, а к концу XXI в. – в 30-40 раз.

В результате научных разработок стоимость строительства солнечных и ветровых установок в среднесрочной перспективе может уменьшиться в 2-3 раза. Таким образом, они составят конкуренцию традиционным электростанциям. По прогнозам, к середине XXI в. будет производиться солнечной электроэнергии в 10 раз больше современного уровня, а к концу века доля гелиоэнергетики в мировом энергобалансе превысит 3 %.

Геотермальная энергия. Наглядное проявление геотермальной энергии: горячие источники, гейзеры, выбросы пара. Тепло горячих источников используется очень давно, а в начале XX в. в ряде стран начали строиться электростанции, работающие на перегретом паре (ГеоЭС). В настоящее время геотермальная энергия используется в 62 странах, а лидеры по производству электроэнергии – Исландия, Япония, Новая Зеландия, США, Мексика, Филиппины.

Другой источник геотермальной энергии – грунтовые воды, залегающие на небольших глубинах. Их температура недостаточна для прямого использования в быту или промышленности, однако, используя тепловые насосы, ее можно повысить до нужных кондиций. Многие жилые дома в странах Европы снабжены такими конструкциями, что обеспечивает экономию нефти, газа и угля.

Дальнейшие перспективы использования внутреннего тепла Земли связываются также с освоением глубоких недр (1-2 км), в которых содержатся огромные объемы воды с высокой температурой.

По прогнозам, по сравнению с современным состоянием к 2050 г. использование геотермальной энергии возрастет в 3-4 раза, а к концу века – в 15-18 раз.

Многообразие возобновляемых источников энергии позволяет выбрать для каждого района наиболее перспективные направления. Например, по экспертным оценкам, в странах Европы наиболее рациональный комплекс для северных регионов – ветровая, приливная энергетика и тепловые насосы, а для южных – солнечные установки. Для условий России большое значение имеет развитие технологий утилизации отходов лесозаготовок и деревообработки, поэтому в различных регионах (Республика Коми, Кировская область и др.) строятся заводы по гранулированию опилок. На Камчатке до 30% необходимой энергии обеспечат новые геотермальные станции. Практически в каждой стране мира с использованием инновационных технологий может быть реализован потенциал той или иной энергии природных процессов.

Энергия морской стихии многократно превосходит гидроресурсы суши. Так, течение Гольфстрим в Атлантическом океане проносит через Флоридский пролив в 20 раз больше воды, чем сток всех рек земного шара. После реализации сложнейших проектов строительства морских электростанций (пока гипотетических) будет производиться в 1000 раз больше энергии, чем производят ГЭС на суше.

Потенциальные возможности возобновляемых источников энергии практически неограниченны. Однако для эффективного их использования требуется создание новых технологий и оборудования, международное сотрудничество и финансирование перспективных проектов.

Поделитесь на страничке

Следующая глава >

history.wikireading.ru

Нетрадиционные возобновляемые источники энергии — Мегаобучалка

К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных процессов. Это источники, связанные с естественными процессами в литосфере (геотермальная энергия), в гидросфере (разные виды энергии Мирового океана), в атмосфере (энергия ветра), в биосфере (энергия биомассы) и в космическом пространстве (солнечная энергия).

Среди несомненных достоинств всех видов альтернативных источников энергии обычно отмечают их практическую неисчерпаемость и отсутствие каких-либо вредных воздействий на окружающую среду. Хотя второй из этих тезисов ныне оспаривают не только отдельные географы и экологи, но и эксперты ООН, никто не отрицает, что они могли бы сыграть определенную роль в укреплении энергетической и экологической безопасности многих стран. Действительно, использование НВИЭ способствовало бы сбережению органических видов топлива и соответственно уменьшению поступления продуктов их сгорания в атмосферу, снижению объемов перевозок этих видов топлива (а следовательно, и транспортных расходов), рационализации топливно-энергетических балансов и др.

Однако на пути широкого использования НВИЭ существует и немало серьезных препятствий, прежде всего технико-экономического характера. Это крайнее непостоянство большинства таких источников энергии во времени и в пространстве, малая плотность потоков энергии, с чем непосредственно связаны высокая капиталоемкость строительства и себестоимость энергии, длительные сроки строительства, значительная степень разного рода рисков.

В целом баланс положительных и отрицательных факторов использования НВИЭ пока можно охарактеризовать как складывающийся с перевесом факторов второй группы. Показательно, что наибольший интерес к ним стали проявлять в период мирового энергетического кризиса 1970-х гг., когда цены на традиционные энергоносители резко поднялись. В 1981 г. в Найроби (Кения) состоялась специальная конференция ООН, на которой была принята мировая «Программа действий по использованию новых и возобновляемых источников энергии». Однако после того, как традиционные энергоносители снова подешевели, интерес к альтернативным значительно снизился. В настоящее время их доля в мировом топливно-энергетическом балансе не превышает 1 %. Только в очень немногих странах и регионах, где отсутствуют запасы органического топлива и ресурсы гидроэнергии, но имеются благоприятные условия для использования альтернативных источников энергии, доля их в таких балансах оказывается значительной. В остальных же странах и регионах они имеют сугубо местное значение, снабжая энергией мелких и территориально рассредоточенных потребителей.

Однако нельзя не учитывать и того, что за последние два десятилетия в мире был достигнут значительный прогресс в повышении экономичности использования нетрадиционных источников энергии. Так, существенно снизились затраты на строительство ветровых и солнечных электростанций, что повысило их конкурентоспособность даже в сравнении с обычными ТЭС, работающими на органическом топливе. В свою очередь, это стало возможным в результате разработки принципиально новых технологий использования альтернативных источников энергии. Большое значение имеет также проводимая в США, Японии, Китае, Индии, во многих странах Западной Европы политика стимулирования их использования. Она обычно предусматривает налоговые льготы на разработку оборудования, предоставление кредитов – государственных и частных, принятие специальных законодательных актов. Исходя из этого и прогнозы дальнейшего использования этих источников энергии относительно оптимистичны. Так, по оценке Мирового энергетического совета (МИРЭС), в 2020 г. даже при минимальном варианте прогноза они могут обеспечить выработку 540 млн тут (в нефтяном эквиваленте) и составить 3–4 % мирового потребления топлива и энергии. А при максимальном варианте эти показатели возрастут предположительно до 1350 млн тут и8—12 %.

Источники геотермальной энергии отличаются не только неисчерпаемостью, но и довольно широким распространением: ныне они известны более чем в 60 странах мира. Но сам характер использования этих источников во многом зависит от их природных особенностей.

Низко– и среднетемпературные «подземные котлы» (с температурой до 150 °C) используют в основном для обогрева и теплоснабжения: природную горячую воду по трубам подают к жилым, производственным и общественным зданиям, теплицам, оранжереям, плавательным бассейнам, водолечебницам и т. д. Термальные воды используют для прямого обогрева во многих странах зарубежной Европы (Франция, Италия, Венгрия, Румыния), Азии, (Япония, Китай), Америки (США, страны Центральной Америки), Океании (Новая Зеландия). Но, пожалуй, наиболее ярким примером такого рода может служить Исландия.

В этой стране, практически лишенной других источников энергии, пресные термальные воды начали осваивать еще в конце 1920-х гг., но первая в мире крупная система геотермального водоснабжения вступила тут в строй только в конце 1950-х гг. Горячую воду из почти ста глубоких скважин по специальной теплотрассе подают в столицу страны – Рейкьявик и соседние поселения. Ею отапливают жилые и общественные здания, промышленные предприятия, оранжереи и в особенности теплицы, полностью обеспечивающие потребности жителей в огурцах и помидорах и снабжающие их яблоками, дынями и даже бананами.

Высокотемпературные (более 150 °C) термальные источники, содержащие сухой или влажный пар, выгоднее всего использовать для приведения в движение турбин геотермальных электростанций (ГеоТЭС).

Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана, в местечке Лардерелло около Пизы, в 1913 г. Затем в Италии стали работать и другие небольшие ГеоТЭС. В 1920-х гг. начали строить ГеоТЭС в Японии, в 1950-х – в Новой Зеландии и Мексике, в 1960-х – в США, в 1970-х – в Китае, Индонезии, Турции, Кении, Сальвадоре, на Филиппинах, в 1980-х – в ряде стран Центральной Америки, в 1990-х – в Австралии. Соответственно и суммарная мощность ГеоТЭС стран мира возрастала следующим образом (в тыс. кВт): в 1950 г. – 240, в 1960 г. – 370, в 1970 г. – 715, в 1980 г. – 2400, в 1990 г. – 8770. Число стран, имеющих ГеоТЭС, уже превышает 20.

До недавнего времени внеконкурентное первое место по количеству (около 20) и мощности (более 3,2 млн кВт) ГеоТЭС занимали США. В этой стране геотермальные электростанции работают в штатах Юта, Гавайи, но большинство их находится в северной части Калифорнии, в Долине гейзеров. Однако с начала 1990-х гг. разработки геотермальных источников в США явно замедлились, почти прекратилась практика предоставления разного рода льгот производителям и потребителям геотермальной энергии. К тому же ГеоТЭС в Долине гейзеров пострадали от падения внутреннего давления и уменьшения поступления горячего пара. Так что в последнее время строительство новых ГеоТЭС в стране не происходило.

Вторым мировым лидером в области геотермальной электроэнергетики стали Филиппины, которые уже в 1995 г. имели несколько ГеоТЭС мощностью 2,2 млн кВт и ныне, по-видимому, по этому показателю уже обогнали США. Первая ГеоТЭС была сооружена здесь в 1977 г. (с помощью иностранного капитала). Согласно расчетам, к 2000 г. геотермальные электростанции этой страны должны были удовлетворять до 30 % ее потребности в электроэнергии. Далее по размерам производства электроэнергии на ГеоТЭС следуют Мексика, Италия и Япония.

Среди ученых нет единого мнения о перспективах развития геотермальной электроэнергетики. Одни считают эти перспективы довольно ограниченными, исходя из того, что на Земле (в том числе и при помощи космических снимков) разведано лишь около ста «горячих точек» конвективного выхода глубинного тепла Земли. Другие, напротив, оценивают эти перспективы весьма высоко. Можно добавить, что главным координатором работ в этой области служит Международная геотермальная ассоциация, периодически созывающая свои симпозиумы.

Использование энергии ветра началось, можно сказать, на самом раннем этапе человеческой истории.

«Ветер служил человечеству с той поры, – пишут американские экологи супруги Ревелль, – как первобытные люди впервые подняли парус над хрупким челноком, выдолбленным из цельного бревна. Преобладающие западные ветры были той силой, которая обеспечила открытие Нового Света и несла испанскую армаду от победы к победе. Пассаты надували паруса больших клиперов и помогли открыть Индию и Китай для торговли с Западом».[58] Они же упоминают о том, что древние персы использовали силу ветра для размола зерна, и о том, что в средневековой Голландии ветряные мельницы служили не только для размола зерна, но и для откачки воды с польдеров. В середине XIX в. в США был изобретен многолопастной ветряк, использовавшийся для подъема воды из колодцев. Но получать при помощи ветра электроэнергию первыми научились датчане в 1890 г.

Технологические основы современной ветроэнергетики разработаны уже достаточно хорошо.

Пока наибольшее распространение получили малые и средние ветроэнергетические установки (ВЭУ) мощностью от 100 до 500 кВт. Но уже началось серийное производство ветротурбин мощностью от 500 до 1000 кВт. Их ротор имеет диаметр от 35 до 80 м, а высота башни достигает 90 м. Малые ветроустановки обычно используют для автономной работы (например, на отдельной ферме), а более крупные чаще концентрируют на одной площадке, создавая так называемую ветровую ферму. Самым крупным производителем ветродвигателей была и остается Дания, за которой следуют Германия, США, Япония, Великобритания, Нидерланды.

В последние два десятилетия ветроэнергетика развивалась более высокими темпами, чем энергетика, использующая остальные виды НВИЭ. Отсюда и значительный рост мощностей ветроустановок в мире. В 1981 г., когда началось их применение в американском штате Калифорния, общая их мощность составляла всего 15 тыс. кВт. К 1985 г. она возросла до 1,1 млн, к 1990 г. – до 2 млн, к 1995 г. – до 5 млн (все такие установки давали тогда 8 млрд кВт ч электроэнергии), а к 2000 г. – до 13 млн кВт. Согласно некоторым прогнозам, в 2006 г. она может достигнуть 36 млн кВт.

География мировой ветроэнергетики претерпела довольно существенные изменения. До середины 1990-х гг. по суммарной мощности ВЭУ (или ветроэлектростанций – ВЭС) первое место занимали США: в 1985 г. на эту страну приходилось 95 %, да и в 1994 г. – 48 % всех мировых мощностей. Почти все они сконцентрированы здесь в штате Калифорния, где находятся и самые крупные в стране отдельные ветро-электростанции и самые большие «ветровые фермы» (на одной из них размещено около 1000 ВЭУ, так что ее суммарная мощность превышает 100 тыс. кВт). Кроме того, такие установки работают в штатах Нью-Мексико, Гавайи, Род-Айленд, ведется или намечается их сооружение и в нескольких других штатах.

Однако во второй половине 1990-х гг. мировое лидерство в ветроэнергетике перешло к Западной Европе, где уже в 1996 г. было сосредоточено 55 % мировых мощностей ветроэнергетических установок. Ветроэлектростанции уже работают в 14 странах Западной Европы, причем в первую их пятерку входят Германия, Дания, Нидерланды, Великобритания и Испания, но определяющая роль принадлежит двум первым из них.

До начала 1990-х гг. европейское первенство удерживала страна – родоначальник ветроэнергетики– Дания. Тем не менее во второй половине 1990-х гг. Дания уступила его Германии, мощности ветроустановок которой в 1999 г. достигли 4 млн кВт, а выработка электроэнергии на них – б млрд кВт ч. К тому же в отличие от Дании, где преобладают мелкие автономно работающие установки, для Германии более характерны крупные «ветровые фермы». Больше всего их на самом «продуваемом» участке ее территории – побережье Северного моря в пределах земли Шлезвиг-Гольштейн. В 2005 г. здесь была введена в строй крупнейшая в мире ВЭУ, которая ежегодно производит 17 млн квт-ч электроэнергии.

В целом еще в середине 1990-х гг. ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн человек. В рамках ЕС была поставлена задача к 2005 г. увеличить долю ветроэнергетики в производстве электроэнергии до 2 % (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030 г. – до 30 %.

Из других стран мира, имеющих перспективы для развития ветроэнергетики, можно назвать Индию, Китай и Японию в Азии, Канаду в Северной Америке, Мексику, Бразилию, Аргентину, Коста-Рику в Латинской Америке, Австралию. Но настоящий рывок в этой сфере в 1990-е гг. предприняла только Индия, которая, с одной стороны, испытывает дефицит традиционных видов топлива, а с другой – обладает значительным потенциалом ветроэнергетических ресурсов, обусловленным муссонной циркуляцией воздушных масс в сочетании с особенностями строения рельефа страны. В результате осуществления большой государственной программы строительства ВЭУ, рассчитанной на привлечение иностранного капитала, Индия по их суммарной мощности уже обогнала Данию и вышла на третье место в мире после США и Германии.

Хотя солнечную энергию использовали для обогрева домов еще в Древней Греции, зарождение современной гелиоэнергетики произошло только в XIX в., когда был сконструирован солнечный коллектор для подогрева воды, а становление ее – уже в XX в. Наиболее благоприятные условия для широкого использования солнечной энергии существуют на территориях, расположенных южнее 50-й параллели. Что же касается самого ее преобразования в тепловую или электрическую энергию, то его можно осуществлять при помощи трех технико-технологических способов.

Первый способ, который получил наиболее широкое распространение, – это теплоснабжение с использованием солнечных коллекторов-водонагревателей, которые неподвижно устанавливают на крышах домов под определенным углом к горизонту. Они обеспечивают нагрев теплоносителя (вода, воздух, антифриз) на 40–50 °C по сравнению с температурой окружающей среды. Их применяют также для кондиционирования воздуха, сушки сельскохозяйственных продуктов, опреснения морской воды и др. Больше всего таких установок теплоснабжения имеют США и Япония, но самая высокая плотность их из расчета на душу населения достигнута в Израиле и на Кипре. Так, в Израиле 800 тыс. солнечных коллекторов обеспечивают горячей водой 70 % жителей этой страны. Солнечные коллекторы применяются также в Китае, Индии, ряде стран Африки (преимущественно для привода в действие насосных установок) и Латинской Америки.

Второй способ заключается в преобразовании солнечной энергии уже не в тепловую, а в электрическую, причем «напрямую» – при помощи фотоэлектрических установок (солнечных батарей) на кремниевой основе – наподобие тех, которые устанавливают на космических аппаратах. Первая такая электростанция была сооружена в Калифорнии в 1981 г., а затем они появились и в других регионах США, и в других странах. Хотя получаемая при их помощи электроэнергия продолжает оставаться еще весьма дорогой (30 центов за 1 кВт ч), наиболее богатые страны уже развернули широкую кампанию за установку солнечных батарей на крышах и фасадах домов. Лидерство в этом деле захватила Япония, которая контролирует также около 1/3 мирового рынка фотоэлектрических элементов. Но и Германия уже приступила к осуществлению программы под названием «1000 крыш и фасадов», а в США в 1997 г. тогдашний президент страны Клинтон провозгласил программу «Миллион крыш».

Наконец, третий способ, также обеспечивающий превращение солнечной энергии в электрическую, реализуется при помощи сооружения собственно солнечных электростанций (СЭС), которые подразделяются на два типа – башенные и параболические.

В 1970-х – начале 1980-х гг. башенные СЭС были построены в США, Японии, Испании, Италии, во Франции, в СССР, но затем они были остановлены из-за неконкурентоспособности. Однако опыт, накопленный при их эксплуатации, позволил начать проектирование нового поколения таких СЭС. На мировом «солнечном саммите», проведенном в середине 1990-х гг., была разработана Мировая солнечная программа на 1996–2005 гг., имеющая глобальные, региональные и национальные разделы.

Биомасса также представляет собой особый класс энергоресурсов, включающий в себя древесину, отходы лесной и деревообрабатывающей промышленности, растениеводства и животноводства. Когда биомассу относят к НВИЭ, то имеют в виду не прямое ее сжигание, например в виде дров или навоза, а газификацию и пиролиз, биологическую переработку с целью получения спиртов или биогаза. Для этой цели в зависимости от сельскохозяйственной специализации той или иной страны обычно используют отходы сахарного тростника, рисовую шелуху, стебли кукурузы, хлопчатника, скорлупу кокосовых, земляных и других орехов, а также навоз. Производство биогаза, хотя и полукустарными способами, получило наибольшее развитие в Китае, где насчитывают миллионы биогазовых установок, рассчитанных на одну семью. Быстро растет число таких установок в Индии. Есть они также в странах Юго-Восточной Азии, Центральной Америки, СНГ.

Крупнейший в мире производитель этилового спирта – Бразилия. С целью замены импортной нефти здесь в 1970-х гг. была разработана, а затем осуществлена в широких масштабах специальная программа «Этанол», предусматривавшая создание специальных плантаций сахарного тростника, из которого получают этиловый спирт, сооружение в сельской местности 280 дистилляционных заводов. Теперь значительная часть автопарка страны работает либо на чистом этаноле, либо на спирто-бензиновых смесях.

К альтернативным источникам энергии можно отнести также синтетическое горючее. В качестве сырья для его получения обычно рассматривают каменный и бурый уголь, горючие сланцы, битуминозные песчаники и биомассу.

Опыт получения синтетической нефти при помощи гидрогенизации угля имелся еще в Германии 1930-х гг. После начала энергетического кризиса многие страны Запада разработали обширные программы получения синтетического горючего из угля при помощи этого способа. То же относится и к газификации угля. Только в США, согласно энергетической программе президента Форда, намечалось построить 35–40 заводов по переработке угля в горючий газ. Но большинству этих программ не суждено было сбыться. Когда нефть снова подешевела, они потеряли актуальность. Жидкое горючее из угля в промышленных масштабах получает только ЮАР, где в 1980-х гг. оно наполовину удовлетворяло потребности страны в автомобильном топливе.

Крупнейшими ресурсами горючих (битуминозных) сланцев обладают страны СНГ, Эстония, США, Бразилия, Китай. По данным МИРЭК, из уже разведанных и доступных для извлечения запасов этих сланцев можно получить 40–50 млрд т нефти, что сравнимо с запасами зоны Персидского залива! Но в промышленных масштабах получение «сланцевой» нефти пока не практикуется.

То же можно сказать и об использовании битуминозных песчаников, запасы которых особенно велики в Канаде, Венесуэле и Колумбии. В Канаде они залегают на площади 75 тыс. км2 в бассейне р. Атабаска (провинция Альберта). Подсчитано, что они содержат до 130 млрд т нефти, из которых доступны для извлечения 30–40 млрд т. В начале 1970-х гг. здесь были созданы мощности, позволявшие получать несколько миллионов тонн нефти. Но этот эксперимент не был продолжительным. Помимо высокой себестоимости такой нефти, сказалась и угроза состоянию окружающей среды. В Венесуэле, в так называемом поясе Ориноко, запасы тяжелой нефти, содержащейся в песчаниках, оцениваются в 185 млрд т, извлекаемые – в 40 млрд т. Их используют для получения смеси битума и воды, которую применяют как топливо.

Россия обладает большими ресурсами практически всех видов нетрадиционных возобновляемых источников энергии. Их экономически оправданный потенциал, предназначенный для первоочередного освоения, составляет в общей сложности 275 млн т условного топлива в год, т. е. примерно 1/4 годового потребления энергетических ресурсов в стране (в том числе геотермальная энергия – 115 млн тут, энергия биомассы – 35 млн, энергия ветра– 10 млн, солнечная энергия – 13 млн тут). Однако доля используемых НВИЭ в стране незначительна – всего 1 %, а ежегодное замещение органического топлива всеми их видами составляет 1,5 млн тут. В России как в стране очень богатой органическим топливом и гидроэнергией в течение длительного времени основное внимание традиционно уделялось крупнейшим и крупным энергетическим объектам. В условиях же хронического дефицита материально-финансового обеспечения трудно предвидеть их развитие в ближайшем будущем. Исключение составляет обширная зона Севера России, где более 70 % территории с населением в 20 млн человек образуют особый регион децентрализованного энергоснабжения. Вот почему федеральная программа «Энергообеспечение северных территорий в 1996–2000 гг.» предусматривала частичную замену доставляемого сюда органического топлива местными альтернативными источниками энергии. Энергетическая стратегия России исходит из того, что в 2010 г. НВИЭ будут удовлетворять 1 % потребностей страны в энергии.

megaobuchalka.ru

Нетрадиционные возобновляемые источники энергии

Экология Нетрадиционные возобновляемые источники энергии

просмотров - 173

Понятие устойчивого развития включает в себя как обязательный компонент постепенный переход от энергетики, основанной на сжигании органического топлива (нефть, уголь, газ и др.), к нетрадиционной (альтернативной) энергетике, использующей возобновляемые экологически чистые источники энергии ¾ солнце, ветер, энергию биомассы, подземное тепло и др. (рис. 21.5).

Рис. 21.5. Классификация возобновляемых источников энергии (Энергоактивные здания, 1988, с изм.)

В послании международной экологической организации Гринпис правительствам всœех стран отмечается, что «правительства должны признать, что углеводородное топливо ¾ основная причина изменения климата и что единственной стабильной системой энергоснабжения, способной отвечать нашим энергетическим потребностям, может быть система, основанная на возобновляемых источниках энергии».

Основные преимущества возобновляемых источников энергии хорошо известны: практическая неисчерпаемость запасов (рис. 21.5) и относительная экологическая безвредность, в связи с отсутствием побочных эффектов, загрязняющих природную среду. Сдерживает их развитие недостаточный на сегодняшний день технический уровень индустриальных методов использования.

В жилищно-строительной сфере, как и во всœех других видах человеческой деятельности, использование нетрадиционных возобновляемых источников энергии получило широкое развитие.

Энергия Солнца. В современной мировой практике энергоснабжения излучение Солнца ¾ возможно, главный нетрадиционный источник энергии. Появилась новая отрасль энергетики ¾ гелиоэнергетика, созданы специальные энергетические установки ¾ гелиосистемы.

«Ливень» солнечной энергии неисчерпаем. Лишь незначительная часть излучения Солнца (0,02%) попадает в биосферу Земли, но и этого количества энергии достаточно, чтобы в тысячи раз перекрыть общую мощность всœех электростанций мира.

К недостаткам солнечной энергии относят дискретность (прерывистость) ее поступления на поверхность Земли (по часам суток, времени года, географическим поясам) и зависимость от метеорологических условий. К примеру, в России специалисты рекомендуют размещать гелиополигоны южнее 55° с. ш. В связи с этим многие зарубежные ученые работают над проблемой выноса гелиосистем на околоземную орбиту. Предполагается строительство в Европе 40 спутниковых солнечных электростанций, способных обеспечить около 20% потребности в электроэнергии. При этом не исключено, что солнечные электростанции могут причинить ущерб окружающей среде в процессе передачи энергии на Землю (А. И. Мелуа и др., 1988).

Существует два базовых направления использования солнечной энергии: выработка электрической энергии и получение тепловой энергии (теплоснабжение). Применение солнечных электрогенераторов находится всœе еще в начальной стадии, зато использование солнечного теплоснабжения для обогрева жилых зданий занимает в мировой практике уже значительное место.

Так, в США в 1977 ᴦ. насчитывалось около 1000 солнечных домов, в 90-е гᴦ. число их превысило 15 тыс. Солнечные установки для подогрева воды имеют 90% домов на Кипре и 70% в Израиле. Только за последние 15 лет в Японии построены сотни тысяч зданий с солнечным подогревом, что позволило резко уменьшить выбросы в атмосферу диоксида углерода и других парниковых газов.

Солнечная энергетика в России развита совершенно недостаточно, хотя половина ее территории находится в благоприятных для использования солнечной энергии условиях ¾ в год ее поступает не менее 100 кВт ч/м2, а в таких районах, как Дагестан, Бурятия, Приморье, Астраханская область и др. ¾ до 200 кВт ч/м2 (Стребков, 1993).

Солнечная энергия очень удобна для энергоснабжения зданий. Как показали экспериментальные исследования, только за счет энергии солнечных лучей, падающих на ограждающие конструкции зданий, можно полностью решить энергетические проблемы, связанные с их обогревом, горячим водоснабжением и др.

Существует три вида гелиосистем, служащих для удовлетворения тепловых нужд здания: пассивные, активные и смешанные (Швецов, 1994).

В пассивных гелиосистемах само здание служит приемником и преобразователœем солнечной энергии, а распределœение тепла осуществляется за счет конвенции.

Основным элементом более дорогостоящей активной гелиосистемы является коллектор ¾ приемник солнечной энергии, где солнечный свет преобразуется в тепло. Гелиоколлектор представляет собой теплоизолированный ящик: видимый свет от солнца проходит сквозь прозрачное покрытие (стекло или пленку), попадает на зачерненную панель и нагревает ее. При специальной конструкции коллектора внутри его достигается очень высокая температура, позволяющая успешно осуществлять горячее водоснабжение.

Оценивая эффективность применения солнечного теплоснабжения в нашей стране, Н. Пинигин и А. Александров (1990) показали, что использование солнечных установок в режиме круглогодичного горячего водоснабжения зданий экономически целœесообразно практически для всœей южной части Российской Федерации.

В последние годы созданы установки с сезонным аккумулированием тепла, что позволяет даже в условиях Сибири сохранить до 30% топливных ресурсов и использовать их для обогрева небольших домов в зимний период. Необходимы дальнейшие поиски использования солнечной энергии не только в южных, но и в северных районах России, особенно учитывая, что в Норвегии и Финляндии такой опыт уже имеется.

Использование солнечной энергии в жилищно-строительной сфере не ограничивается только теплоснабжением жилых зданий. Так, АО «ПИ-2» разработало серию проектов гелиополигонов (стационарных и мобильных, сезонных и круглогодичного действия), в которых впервые в мире для термовлажностной обработки сборных желœезобетонных конструкций и изделий была использована солнечная энергия без промежуточных превращений (Великолепов, 1995) (рис. 21.6). После укладки гелиопокрытия (СВИТАП) желœезобетонное изделие превращается в аккумулятор тепла, после чего начинает действовать другой источник тепла ¾ экзотермия цемента.

Рис. 21.6. Общий вид и технологическая схема гелиополигона круглогодичного действия: 1 ¾ гелиокамеры; 2 ¾ форма на колесах; 3 ¾ СВИТАП; 4 ¾ запирающий щит; 5 ¾ инфракрасные излучатели; 6 ¾ механизм передвижения форм; 7 ¾ производственный корпус с БСЦ; 8 ¾ бетоновозная эстакада; 9 ¾ склад арматурных каркасов; 10 ¾ бетоноукладчик; 11 ¾ склад готовой продукции с зоной дозревания; 12 ¾ козловой кран

Строительство таких гелиополигонов позволяет: сократить объемы строительно-монтажных работ, повысить долговечность и качество изделия, снизить его стоимость, отказаться от котельной, теплотрасс, пропарочных камер, уменьшить нагрузку на окружающую среду и, главное, экономить условное топливо. По мнению авторов проекта͵ крайне важно пересмотреть способы производства сборного желœезобетона и создать условия для широкого внедрения энергосберегающих технологий, использующих солнечную энергию.

В заключение приведем высказывание лауреата Нобелœевской премии Жореса Алферова (2001) по поводу использования солнечной энергии: «Солнце ¾ это термоядерный реактор, который работает миллионы лет надежно и безопасно. И задача преобразования солнечной энергии в электрическую будет решена. Может быть, даже в нашем ХХI веке. Академик Иоффе мечтал о солнечной энергетике и ее широком применении, когда КПД солнечных преобразований равнялся 0,1%. Сегодня КПД солнечных преобразований на гетероструктурах достиг 35%. Да, это по-прежнему дороже, чем атомная энергетика. Но дороже не на порядок, а лишь в несколько раз. И хочется верить, что лет через пятнадцать - двадцать солнечная энергетика будет сравнима или даже обойдет другие виды».

Завораживающей сознание выглядит идея, предложенная японскими специалистами, о строительстве единой для всœей планеты гигантской солнечной электростанции где-нибудь в Сахаре или пустынях Австралии. Для этой станции потребовалась бы площадь, эквивалентная квадрату со стороной 800 км. Но уже сейчас суммарная площадь солнечных отражателœей, используемых в мировой практике, превышает 6 млрд м2 (США ¾ 1,8 млрд м2, Япония ¾ 1,3 млрд м2 и т. д.).

Энергия ветра. Направление энергетики, связанное с ветровой энергией, называют ветроэнергетикой, а здания, в которых энергия ветра преобразуется в электрическую, тепловую и другие виды энергии, ¾ ветроэнергоактивными.

Ветроэнергетика становится рентабельной при средних скоростях ветра от 3 до 10 м/с при повторяемости около 60-90% и, следовательно, может использоваться лишь в районах с постоянным ветром (Крайний Север, побережье Охотского моря, Камчатка, Курилы, Прикаспийская низменность и др.).

В ветроэнергоактивном здании энергия ветра преобразуется с помощью ветрового колеса, размещенного в здании. Основным рабочим органом является ротор, который вращает генератор.

По А. Н. Тетиору (1991), важной экологической проблемой является защита здания и жителœей от механических колебаний, генерируемых ветроустановкой. Применение различных способов виброизоляции, включая размещение ветроэнергетических установок вне жилых зданий, приводит к удорожанию их строительства. Значительным недостатком ветроэлектростанции является также генерация ими инфразвукового шума.

И, тем не менее, ветроэнергетика имеет большое будущее. За последние 20 лет она прошла путь от небольших агрегатов до современной многомиллиардной отрасли, обеспечивающей большое количество энергосистем. В 2001 ᴦ. ветротурбины, мощность которых составляла 14 000 МВт, генерировали «чистую» электроэнергию в более чем 30 странах мира. Только в США работает 9000 ветровых электроустановок, в Дании ¾ 1500. По данным Европейской ассоциации ветровой энергии, к 2020 ᴦ. ветровые электростанции обеспечат 10% мировой потребности в электроэнергии.

Геотермальная энергия. На территории СНГ запасы еще одного нетрадиционного источника энергии ¾ геотермального тепла, оцениваются в десятки миллионов тонн условного топлива. Идея использования тепла Земли как альтернативного энергоресурса не нова. Еще в 20-е гᴦ. ХХ в. К. Э. Циолковский и В. А. Обручев считали возможным использование геотермального тепла. К началу ХХI в. мощность энергии геотермальных систем в мире превысила 16 млн кВт ч, что достаточно для обогрева многих тысяч квартир. Исландия полностью отказалась от использования органического топлива, и широко использует геотермальные воды.

Наиболее экономически выгодный вариант использования геотермального тепла ¾ строительство ГЭС с использованием водяного пара (температурой 200-400 °С). К сожалению, месторождения термального пара в России, да и в мире, редки, в связи с этим основное применение находят геотермальные (теплоэнергетичекие) воды с температурой до 200 °С, выходящие на поверхность земли в виде источников. Достаточно упомянуть в связи с этим Паужетскую гидротермальную станцию, построенную в 1967 ᴦ. на Камчатке.

Перспективным направлением в энергосбережении специалисты считают извлечение тепловой энергии из водонасыщенных пластов, залегающих на глубинах 2-3 км и имеющих температуру 150-200 °С. На выбранной площадке бурятся вертикальные и наклонные нагнетательные скважины, по которым закачивается теплоноситель, который прогревается горячими породами, а затем откачивается. Подобная теплоэнергетическая система принято называть циркуляционной и ее применение вполне целœесообразно во многих районах СНГ (Северный Кавказ, Крым, Армения, Закарпатье и др.). Первая в России термоциркуляционная система действовала в ᴦ. Грозном, где вода после использования в теплицах нагнеталась на глубину 1 км, там она вновь нагревалась.

Энергия биомассы. Биомасса ¾ это выраженное в единицах массы количество живого вещества организмов, приходящееся на единицу площади или объема. В процессе переработки она преобразуется в органические отходы и биогаз.

Сегодня биомасса широко используется в качестве топлива, что является результатом постоянных усилий ученых и специалистов по созданию экологически чистой энергии и предотвращению выбросов загрязняющих веществ в атмосферу.

В энергетических целях биомассу либо сжигают, используя теплоту сгорания (в этом случае продукты пиролиза могут загрязнять атмосферу), либо перерабатывают путем анаэробного сбраживания с целью получения биогаза (рис. 21.7). Биогаз, состоящий на 60-70% из метана и на 20-40% из углекислого газа, получают в специальных установках, основной частью которых является реактор (метантенк), т. е. бродильная камера, в которую загружают биомассу.

Рис. 21.7. Принципиальная схема переработки ТБО методом анаэробного компостирования для получения биогаза: 1 ¾ приемный бункер; 2 ¾ мостовой грейферный кран; 3 ¾ дробилка; 4 ¾ магнитный сепаратор; 5 ¾ насос-смеситель; 6 ¾ метантенк; 7 ¾ шнековый пресс; 8 ¾ рыхлитель; 9 ¾ емкость для сбора отжима; 10 ¾ цилиндрический грохот; 11 ¾ упаковочная машина; 12 ¾ крупный отсев; 13 ¾ склад удобрений; 14 ¾ газголдер; 15 ¾ компрессор; 16 ¾ уравнительная касера; I ¾ направление движения отходов; II ¾ направление движения биогаза

Материалом для переработки на биогазовых установках служат твердые бытовые отходы, навоз, отходы деревообработки (кора, опилки, стружки), осадки биологических очистных устройств и др.

С экологической точки зрения укажем на некоторые отличительные особенности использования этого энергетического направления:

1) биотехнологическая трансформация биомассы в энергию считается абсолютно безвредной;

2) в отличие от традиционных источников энергии данный метод не загрязняет окружающую среду;

3) вырабатывается не только энергия, но и одновременно природная среда очищается (освобождается) от продуктов жизнедеятельности и других отходов.

После очищения от углекислого газа и сероводорода биогаз сжигают и используют в стандартных водонагревателях, газовых плитах, горелках и других приборах.

В строительной сфере биогаз, как показывает мировой опыт, широко используется как источник экологически чистой энергии при производстве многих строительных материалов: гипса, стекла, керамзита и др. Доказано также, что при сухом способе производства цемента экологически и экономически выгоднее во вращающихся обжиговых печах использовать не традиционные источники энергии, а биогаз.

К нетрадиционным возобновляемым источникам энергии относят также энергию приливов, энергию ветровых волн, тепловые насосы, энергию температурных колебаний различных слоев морской воды и т. д.

Перспективным методом использования нетрадиционных источников энергии считается объединœение ряда зданий в единую энергосистему в виде гелио- и ветрогелиокомплексов, а также ветроэнергоактивных комплексов, дополненных тепловыми насосами для трех сред (Селиванов, 1993). Эксплуатация подобных жилищно-энергетических комплексов позволит не только экономить невозобновляемые источники энергии, но и исключить или свести к минимуму вредное воздействие энергетики на окружающую среду.

Читайте также

  • - Нетрадиционные возобновляемые источники энергии.

    Назначение и типы электростанций В зависимости от рода первичного двигателя и способа преобразования различных видов энергии электростанции могут быть тепловыми (в том числе и атомные) и гидравлическими. Тепловые станции (ТЭС) в свою очередь делятся на станции с... [читать подробенее]

  • - Нетрадиционные возобновляемые источники энергии Мирового океана

    Как уже было отмечено, практически неисчерпаемые энергетические источники Мирового океана также относятся к категории нетрадиционных. Но поскольку Мировой океан представляет собой совершенно особую часть гидросферы, да и всей географической оболочки Земли, их... [читать подробенее]

  • - Нетрадиционные возобновляемые источники энергии

    К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных... [читать подробенее]

  • - Нетрадиционные возобновляемые источники энергии

    Понятие устойчивого развития включает в себя как обязательный компонент постепенный переход от энергетики, основанной на сжигании органического топлива (нефть, уголь, газ и др.), к нетрадиционной (альтернативной) энергетике, использующей возобновляемые экологически... [читать подробенее]

  • oplib.ru

    Нетрадиционные возобновляемые источники энергии

    ⇐ ПредыдущаяСтр 9 из 39Следующая ⇒

    К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных процессов. Это источники, связанные с естественными процессами в литосфере (геотермальная энергия), в гидросфере (разные виды энергии Мирового океана), в атмосфере (энергия ветра), в биосфере (энергия биомассы) и в космическом пространстве (солнечная энергия).

    Среди несомненных достоинств всех видов альтернативных источников энергии обычно отмечают их практическую неисчерпаемость и отсутствие каких-либо вредных воздействий на окружающую среду. Хотя второй из этих тезисов ныне оспаривают не только отдельные географы и экологи, но и эксперты ООН, никто не отрицает, что они могли бы сыграть определенную роль в укреплении энергетической и экологической безопасности многих стран. Действительно, использование НВИЭ способствовало бы сбережению органических видов топлива и соответственно уменьшению поступления продуктов их сгорания в атмосферу, снижению объемов перевозок этих видов топлива (а следовательно, и транспортных расходов), рационализации топливно-энергетических балансов и др.

    Однако на пути широкого использования НВИЭ существует и немало серьезных препятствий, прежде всего технико-экономического характера. Это крайнее непостоянство большинства таких источников энергии во времени и в пространстве, малая плотность потоков энергии, с чем непосредственно связаны высокая капиталоемкость строительства и себестоимость энергии, длительные сроки строительства, значительная степень разного рода рисков.

    В целом баланс положительных и отрицательных факторов использования НВИЭ пока можно охарактеризовать как складывающийся с перевесом факторов второй группы. Показательно, что наибольший интерес к ним стали проявлять в период мирового энергетического кризиса 1970-х гг., когда цены на традиционные энергоносители резко поднялись. В 1981 г. в Найроби (Кения) состоялась специальная конференция ООН, на которой была принята мировая «Программа действий по использованию новых и возобновляемых источников энергии». Однако после того, как традиционные энергоносители снова подешевели, интерес к альтернативным значительно снизился. В настоящее время их доля в мировом топливно-энергетическом балансе не превышает 1 %. Только в очень немногих странах и регионах, где отсутствуют запасы органического топлива и ресурсы гидроэнергии, но имеются благоприятные условия для использования альтернативных источников энергии, доля их в таких балансах оказывается значительной. В остальных же странах и регионах они имеют сугубо местное значение, снабжая энергией мелких и территориально рассредоточенных потребителей.

    Однако нельзя не учитывать и того, что за последние два десятилетия в мире был достигнут значительный прогресс в повышении экономичности использования нетрадиционных источников энергии. Так, существенно снизились затраты на строительство ветровых и солнечных электростанций, что повысило их конкурентоспособность даже в сравнении с обычными ТЭС, работающими на органическом топливе. В свою очередь, это стало возможным в результате разработки принципиально новых технологий использования альтернативных источников энергии. Большое значение имеет также проводимая в США, Японии, Китае, Индии, во многих странах Западной Европы политика стимулирования их использования. Она обычно предусматривает налоговые льготы на разработку оборудования, предоставление кредитов – государственных и частных, принятие специальных законодательных актов. Исходя из этого и прогнозы дальнейшего использования этих источников энергии относительно оптимистичны. Так, по оценке Мирового энергетического совета (МИРЭС), в 2020 г. даже при минимальном варианте прогноза они могут обеспечить выработку 540 млн тут (в нефтяном эквиваленте) и составить 3–4 % мирового потребления топлива и энергии. А при максимальном варианте эти показатели возрастут предположительно до 1350 млн тут и8—12 %.

    Источники геотермальной энергии отличаются не только неисчерпаемостью, но и довольно широким распространением: ныне они известны более чем в 60 странах мира. Но сам характер использования этих источников во многом зависит от их природных особенностей.

    Низко– и среднетемпературные «подземные котлы» (с температурой до 150 °C) используют в основном для обогрева и теплоснабжения: природную горячую воду по трубам подают к жилым, производственным и общественным зданиям, теплицам, оранжереям, плавательным бассейнам, водолечебницам и т. д. Термальные воды используют для прямого обогрева во многих странах зарубежной Европы (Франция, Италия, Венгрия, Румыния), Азии, (Япония, Китай), Америки (США, страны Центральной Америки), Океании (Новая Зеландия). Но, пожалуй, наиболее ярким примером такого рода может служить Исландия.

    В этой стране, практически лишенной других источников энергии, пресные термальные воды начали осваивать еще в конце 1920-х гг., но первая в мире крупная система геотермального водоснабжения вступила тут в строй только в конце 1950-х гг. Горячую воду из почти ста глубоких скважин по специальной теплотрассе подают в столицу страны – Рейкьявик и соседние поселения. Ею отапливают жилые и общественные здания, промышленные предприятия, оранжереи и в особенности теплицы, полностью обеспечивающие потребности жителей в огурцах и помидорах и снабжающие их яблоками, дынями и даже бананами.

    Высокотемпературные (более 150 °C) термальные источники, содержащие сухой или влажный пар, выгоднее всего использовать для приведения в движение турбин геотермальных электростанций (ГеоТЭС).

    Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана, в местечке Лардерелло около Пизы, в 1913 г. Затем в Италии стали работать и другие небольшие ГеоТЭС. В 1920-х гг. начали строить ГеоТЭС в Японии, в 1950-х – в Новой Зеландии и Мексике, в 1960-х – в США, в 1970-х – в Китае, Индонезии, Турции, Кении, Сальвадоре, на Филиппинах, в 1980-х – в ряде стран Центральной Америки, в 1990-х – в Австралии. Соответственно и суммарная мощность ГеоТЭС стран мира возрастала следующим образом (в тыс. кВт): в 1950 г. – 240, в 1960 г. – 370, в 1970 г. – 715, в 1980 г. – 2400, в 1990 г. – 8770. Число стран, имеющих ГеоТЭС, уже превышает 20.

    До недавнего времени внеконкурентное первое место по количеству (около 20) и мощности (более 3,2 млн кВт) ГеоТЭС занимали США. В этой стране геотермальные электростанции работают в штатах Юта, Гавайи, но большинство их находится в северной части Калифорнии, в Долине гейзеров. Однако с начала 1990-х гг. разработки геотермальных источников в США явно замедлились, почти прекратилась практика предоставления разного рода льгот производителям и потребителям геотермальной энергии. К тому же ГеоТЭС в Долине гейзеров пострадали от падения внутреннего давления и уменьшения поступления горячего пара. Так что в последнее время строительство новых ГеоТЭС в стране не происходило.

    Вторым мировым лидером в области геотермальной электроэнергетики стали Филиппины, которые уже в 1995 г. имели несколько ГеоТЭС мощностью 2,2 млн кВт и ныне, по-видимому, по этому показателю уже обогнали США. Первая ГеоТЭС была сооружена здесь в 1977 г. (с помощью иностранного капитала). Согласно расчетам, к 2000 г. геотермальные электростанции этой страны должны были удовлетворять до 30 % ее потребности в электроэнергии. Далее по размерам производства электроэнергии на ГеоТЭС следуют Мексика, Италия и Япония.

    Среди ученых нет единого мнения о перспективах развития геотермальной электроэнергетики. Одни считают эти перспективы довольно ограниченными, исходя из того, что на Земле (в том числе и при помощи космических снимков) разведано лишь около ста «горячих точек» конвективного выхода глубинного тепла Земли. Другие, напротив, оценивают эти перспективы весьма высоко. Можно добавить, что главным координатором работ в этой области служит Международная геотермальная ассоциация, периодически созывающая свои симпозиумы.

    Использование энергии ветра началось, можно сказать, на самом раннем этапе человеческой истории.

    «Ветер служил человечеству с той поры, – пишут американские экологи супруги Ревелль, – как первобытные люди впервые подняли парус над хрупким челноком, выдолбленным из цельного бревна. Преобладающие западные ветры были той силой, которая обеспечила открытие Нового Света и несла испанскую армаду от победы к победе. Пассаты надували паруса больших клиперов и помогли открыть Индию и Китай для торговли с Западом».[58] Они же упоминают о том, что древние персы использовали силу ветра для размола зерна, и о том, что в средневековой Голландии ветряные мельницы служили не только для размола зерна, но и для откачки воды с польдеров. В середине XIX в. в США был изобретен многолопастной ветряк, использовавшийся для подъема воды из колодцев. Но получать при помощи ветра электроэнергию первыми научились датчане в 1890 г.

    Технологические основы современной ветроэнергетики разработаны уже достаточно хорошо.

    Пока наибольшее распространение получили малые и средние ветроэнергетические установки (ВЭУ) мощностью от 100 до 500 кВт. Но уже началось серийное производство ветротурбин мощностью от 500 до 1000 кВт. Их ротор имеет диаметр от 35 до 80 м, а высота башни достигает 90 м. Малые ветроустановки обычно используют для автономной работы (например, на отдельной ферме), а более крупные чаще концентрируют на одной площадке, создавая так называемую ветровую ферму. Самым крупным производителем ветродвигателей была и остается Дания, за которой следуют Германия, США, Япония, Великобритания, Нидерланды.

    В последние два десятилетия ветроэнергетика развивалась более высокими темпами, чем энергетика, использующая остальные виды НВИЭ. Отсюда и значительный рост мощностей ветроустановок в мире. В 1981 г., когда началось их применение в американском штате Калифорния, общая их мощность составляла всего 15 тыс. кВт. К 1985 г. она возросла до 1,1 млн, к 1990 г. – до 2 млн, к 1995 г. – до 5 млн (все такие установки давали тогда 8 млрд кВт ч электроэнергии), а к 2000 г. – до 13 млн кВт. Согласно некоторым прогнозам, в 2006 г. она может достигнуть 36 млн кВт.

    География мировой ветроэнергетики претерпела довольно существенные изменения. До середины 1990-х гг. по суммарной мощности ВЭУ (или ветроэлектростанций – ВЭС) первое место занимали США: в 1985 г. на эту страну приходилось 95 %, да и в 1994 г. – 48 % всех мировых мощностей. Почти все они сконцентрированы здесь в штате Калифорния, где находятся и самые крупные в стране отдельные ветро-электростанции и самые большие «ветровые фермы» (на одной из них размещено около 1000 ВЭУ, так что ее суммарная мощность превышает 100 тыс. кВт). Кроме того, такие установки работают в штатах Нью-Мексико, Гавайи, Род-Айленд, ведется или намечается их сооружение и в нескольких других штатах.

    Однако во второй половине 1990-х гг. мировое лидерство в ветроэнергетике перешло к Западной Европе, где уже в 1996 г. было сосредоточено 55 % мировых мощностей ветроэнергетических установок. Ветроэлектростанции уже работают в 14 странах Западной Европы, причем в первую их пятерку входят Германия, Дания, Нидерланды, Великобритания и Испания, но определяющая роль принадлежит двум первым из них.

    До начала 1990-х гг. европейское первенство удерживала страна – родоначальник ветроэнергетики– Дания. Тем не менее во второй половине 1990-х гг. Дания уступила его Германии, мощности ветроустановок которой в 1999 г. достигли 4 млн кВт, а выработка электроэнергии на них – б млрд кВт ч. К тому же в отличие от Дании, где преобладают мелкие автономно работающие установки, для Германии более характерны крупные «ветровые фермы». Больше всего их на самом «продуваемом» участке ее территории – побережье Северного моря в пределах земли Шлезвиг-Гольштейн. В 2005 г. здесь была введена в строй крупнейшая в мире ВЭУ, которая ежегодно производит 17 млн квт-ч электроэнергии.

    В целом еще в середине 1990-х гг. ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн человек. В рамках ЕС была поставлена задача к 2005 г. увеличить долю ветроэнергетики в производстве электроэнергии до 2 % (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030 г. – до 30 %.

    Из других стран мира, имеющих перспективы для развития ветроэнергетики, можно назвать Индию, Китай и Японию в Азии, Канаду в Северной Америке, Мексику, Бразилию, Аргентину, Коста-Рику в Латинской Америке, Австралию. Но настоящий рывок в этой сфере в 1990-е гг. предприняла только Индия, которая, с одной стороны, испытывает дефицит традиционных видов топлива, а с другой – обладает значительным потенциалом ветроэнергетических ресурсов, обусловленным муссонной циркуляцией воздушных масс в сочетании с особенностями строения рельефа страны. В результате осуществления большой государственной программы строительства ВЭУ, рассчитанной на привлечение иностранного капитала, Индия по их суммарной мощности уже обогнала Данию и вышла на третье место в мире после США и Германии.

    Хотя солнечную энергию использовали для обогрева домов еще в Древней Греции, зарождение современной гелиоэнергетики произошло только в XIX в., когда был сконструирован солнечный коллектор для подогрева воды, а становление ее – уже в XX в. Наиболее благоприятные условия для широкого использования солнечной энергии существуют на территориях, расположенных южнее 50-й параллели. Что же касается самого ее преобразования в тепловую или электрическую энергию, то его можно осуществлять при помощи трех технико-технологических способов.

    Первый способ, который получил наиболее широкое распространение, – это теплоснабжение с использованием солнечных коллекторов-водонагревателей, которые неподвижно устанавливают на крышах домов под определенным углом к горизонту. Они обеспечивают нагрев теплоносителя (вода, воздух, антифриз) на 40–50 °C по сравнению с температурой окружающей среды. Их применяют также для кондиционирования воздуха, сушки сельскохозяйственных продуктов, опреснения морской воды и др. Больше всего таких установок теплоснабжения имеют США и Япония, но самая высокая плотность их из расчета на душу населения достигнута в Израиле и на Кипре. Так, в Израиле 800 тыс. солнечных коллекторов обеспечивают горячей водой 70 % жителей этой страны. Солнечные коллекторы применяются также в Китае, Индии, ряде стран Африки (преимущественно для привода в действие насосных установок) и Латинской Америки.

    Второй способ заключается в преобразовании солнечной энергии уже не в тепловую, а в электрическую, причем «напрямую» – при помощи фотоэлектрических установок (солнечных батарей) на кремниевой основе – наподобие тех, которые устанавливают на космических аппаратах. Первая такая электростанция была сооружена в Калифорнии в 1981 г., а затем они появились и в других регионах США, и в других странах. Хотя получаемая при их помощи электроэнергия продолжает оставаться еще весьма дорогой (30 центов за 1 кВт ч), наиболее богатые страны уже развернули широкую кампанию за установку солнечных батарей на крышах и фасадах домов. Лидерство в этом деле захватила Япония, которая контролирует также около 1/3 мирового рынка фотоэлектрических элементов. Но и Германия уже приступила к осуществлению программы под названием «1000 крыш и фасадов», а в США в 1997 г. тогдашний президент страны Клинтон провозгласил программу «Миллион крыш».

    Наконец, третий способ, также обеспечивающий превращение солнечной энергии в электрическую, реализуется при помощи сооружения собственно солнечных электростанций (СЭС), которые подразделяются на два типа – башенные и параболические.

    В 1970-х – начале 1980-х гг. башенные СЭС были построены в США, Японии, Испании, Италии, во Франции, в СССР, но затем они были остановлены из-за неконкурентоспособности. Однако опыт, накопленный при их эксплуатации, позволил начать проектирование нового поколения таких СЭС. На мировом «солнечном саммите», проведенном в середине 1990-х гг., была разработана Мировая солнечная программа на 1996–2005 гг., имеющая глобальные, региональные и национальные разделы.

    Биомасса также представляет собой особый класс энергоресурсов, включающий в себя древесину, отходы лесной и деревообрабатывающей промышленности, растениеводства и животноводства. Когда биомассу относят к НВИЭ, то имеют в виду не прямое ее сжигание, например в виде дров или навоза, а газификацию и пиролиз, биологическую переработку с целью получения спиртов или биогаза. Для этой цели в зависимости от сельскохозяйственной специализации той или иной страны обычно используют отходы сахарного тростника, рисовую шелуху, стебли кукурузы, хлопчатника, скорлупу кокосовых, земляных и других орехов, а также навоз. Производство биогаза, хотя и полукустарными способами, получило наибольшее развитие в Китае, где насчитывают миллионы биогазовых установок, рассчитанных на одну семью. Быстро растет число таких установок в Индии. Есть они также в странах Юго-Восточной Азии, Центральной Америки, СНГ.

    Крупнейший в мире производитель этилового спирта – Бразилия. С целью замены импортной нефти здесь в 1970-х гг. была разработана, а затем осуществлена в широких масштабах специальная программа «Этанол», предусматривавшая создание специальных плантаций сахарного тростника, из которого получают этиловый спирт, сооружение в сельской местности 280 дистилляционных заводов. Теперь значительная часть автопарка страны работает либо на чистом этаноле, либо на спирто-бензиновых смесях.

    К альтернативным источникам энергии можно отнести также синтетическое горючее. В качестве сырья для его получения обычно рассматривают каменный и бурый уголь, горючие сланцы, битуминозные песчаники и биомассу.

    Опыт получения синтетической нефти при помощи гидрогенизации угля имелся еще в Германии 1930-х гг. После начала энергетического кризиса многие страны Запада разработали обширные программы получения синтетического горючего из угля при помощи этого способа. То же относится и к газификации угля. Только в США, согласно энергетической программе президента Форда, намечалось построить 35–40 заводов по переработке угля в горючий газ. Но большинству этих программ не суждено было сбыться. Когда нефть снова подешевела, они потеряли актуальность. Жидкое горючее из угля в промышленных масштабах получает только ЮАР, где в 1980-х гг. оно наполовину удовлетворяло потребности страны в автомобильном топливе.

    Крупнейшими ресурсами горючих (битуминозных) сланцев обладают страны СНГ, Эстония, США, Бразилия, Китай. По данным МИРЭК, из уже разведанных и доступных для извлечения запасов этих сланцев можно получить 40–50 млрд т нефти, что сравнимо с запасами зоны Персидского залива! Но в промышленных масштабах получение «сланцевой» нефти пока не практикуется.

    То же можно сказать и об использовании битуминозных песчаников, запасы которых особенно велики в Канаде, Венесуэле и Колумбии. В Канаде они залегают на площади 75 тыс. км2 в бассейне р. Атабаска (провинция Альберта). Подсчитано, что они содержат до 130 млрд т нефти, из которых доступны для извлечения 30–40 млрд т. В начале 1970-х гг. здесь были созданы мощности, позволявшие получать несколько миллионов тонн нефти. Но этот эксперимент не был продолжительным. Помимо высокой себестоимости такой нефти, сказалась и угроза состоянию окружающей среды. В Венесуэле, в так называемом поясе Ориноко, запасы тяжелой нефти, содержащейся в песчаниках, оцениваются в 185 млрд т, извлекаемые – в 40 млрд т. Их используют для получения смеси битума и воды, которую применяют как топливо.

    Россия обладает большими ресурсами практически всех видов нетрадиционных возобновляемых источников энергии. Их экономически оправданный потенциал, предназначенный для первоочередного освоения, составляет в общей сложности 275 млн т условного топлива в год, т. е. примерно 1/4 годового потребления энергетических ресурсов в стране (в том числе геотермальная энергия – 115 млн тут, энергия биомассы – 35 млн, энергия ветра– 10 млн, солнечная энергия – 13 млн тут). Однако доля используемых НВИЭ в стране незначительна – всего 1 %, а ежегодное замещение органического топлива всеми их видами составляет 1,5 млн тут. В России как в стране очень богатой органическим топливом и гидроэнергией в течение длительного времени основное внимание традиционно уделялось крупнейшим и крупным энергетическим объектам. В условиях же хронического дефицита материально-финансового обеспечения трудно предвидеть их развитие в ближайшем будущем. Исключение составляет обширная зона Севера России, где более 70 % территории с населением в 20 млн человек образуют особый регион децентрализованного энергоснабжения. Вот почему федеральная программа «Энергообеспечение северных территорий в 1996–2000 гг.» предусматривала частичную замену доставляемого сюда органического топлива местными альтернативными источниками энергии. Энергетическая стратегия России исходит из того, что в 2010 г. НВИЭ будут удовлетворять 1 % потребностей страны в энергии.

    Читайте также:

    lektsia.com


    © ЗАО Институт «Севзапэнергомонтажпроект»
    Разработка сайта