Вращающаяся часть электрогенератора: Как называется вращающаяся часть генератора?

Как называется вращающаяся часть генератора переменного тока?

Как называется вращающаяся часть генератора переменного тока? Ротор.

спросил
от
Вопросы и ответы
в категории Естественные науки

Ваш ответ

Отображаемое имя (по желанию):

Отправить мне письмо на это адрес если мой ответ выбран или прокомментирован:Отправить мне письмо если мой ответ выбран или прокомментирован

Конфиденциальность: Ваш электронный адрес будет использоваться только для отправки уведомлений.

Анти-спам проверка:

Чтобы избежать проверки в будущем, пожалуйста войдите или зарегистрируйтесь.

1 Ответ

0 голосов

ответил
от
raad

Похожие вопросы

Ротор генератора переменного тока вращается в однородном магнитном поле. Как изменится

спросил
от
Вопросы и ответы
в категории Естественные науки

Вращающаяся часть генератора

спросил
от
Вопросы и ответы
в категории Естественные науки

Лампа и конденсатор включены последовательно в сеть переменного тока. Как изменится накал лампы

спросил
от
Вопросы и ответы
в категории Естественные науки

Сдвиг фаз между колебаниями силы тока и напряжения на катушке индуктивности в цепи переменного тока составляет

спросил
от
Вопросы и ответы
в категории Естественные науки

Не изменяя индуктивности и емкости в цепи переменного тока, режим резонанса можно установить. Подобрав соответствующую частоту

спросил
от
Вопросы и ответы
в категории Естественные науки

Какие превращения энергии происходят при работе индукционных генераторов переменного тока

спросил
от
Вопросы и ответы
в категории Естественные науки

В цепи переменного тока колебания силы тока …

спросил
от
Вопросы и ответы
в категории Естественные науки

В какой стране был разработан электродвигатель трехфазного переменного тока?

спросил
от
Akma
в категории Тесты ЕНТ, КТА, ВОУД Ответы на тесты ЕНТ

Кто разработал электродвигатель трехфазного переменного тока?

спросил
от
Akma
в категории Тесты ЕНТ, КТА, ВОУД Ответы на тесты ЕНТ

Чем отличаются измерения в цепях переменного тока от измерений в цепях постоянного тока?

спросил
от
Вопросы и ответы
в категории Образование

Отношение разности потенциалов между концами проводника, являющегося участком электрической цепи, к силе тока в цепи называется

спросил
от
Вопросы и ответы
в категории Естественные науки

Какие колебания возникают в колебательном контуре генератора на транзисторе?

спросил
от
Вопросы и ответы
в категории Естественные науки

Через трубу переменного сечения протекает жидкость. Насос, накачивающий жидкость в трубу, создает давление выше атмосферного.

спросил
от
Жауапбек
в категории Естественные науки

Как изменится силатока в первичной обмотке трансформатора при возрастании силы тока в его вторичной обмотке?

спросил
от
Вопросы и ответы
в категории Естественные науки

Как изменится сила тока в первичной обмотке трансформатора при возрастании силы тока в его вторичной обмотке?

спросил
от
Вопросы и ответы
в категории Естественные науки

  • Все категории
  • Авто-Мото
    827
  • Бизнес, Финансы
    1,642
  • Праздники
    47
  • Города и Страны
    1,224
  • Досуг, Развлечения
    447
  • Еда, Кулинария
    228
  • Животные, Растения
    5,986
  • Знакомства, Любовь, Отношения
    65
  • Искусство и Культура
    10,186
  • Игры
    259
  • Кино
    33
  • Музыка
    507
  • Компьютеры, Связь
    2,297
  • Красота и Здоровье
    1,089
  • Наука, Техника, Языки
    3,261

    • Гуманитарные науки
      17
    • Естественные науки
      1,015
    • Лингвистика
      12
    • Техника
      19
  • Ұстаз
    1,070
  • Образование
    6,724
  • Общество, Политика, СМИ
    1,738
  • Юридическая консультация
    141
  • Путешествия, Туризм
    96
  • Работа, Карьера
    95
  • Казахские традиции
    25
  • Семья, Дом, Дети
    176
  • Спорт
    100
  • Стиль, Мода, Звезды
    32
  • Товары и Услуги
    4,223
  • Фотография, Видеосъемка
    354
  • Логические задачи
    265
  • Тесты ЕНТ, КТА, ВОУД Ответы на тесты ЕНТ
    28,735
  • Юмор
    16
  • Другое
    14,152

Урок 43-3 Устройство и принцип работы генератора переменного тока

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .

Тогда получим мгновенное значение э.д.с.

e = — Ф’ = — (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε0 = ωBS – называется амплитудным значением э. д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС — электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Структурная схема генератора переменного тока.

Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Ответы на семь общих вопросов о работе генераторов и двигателей

Вращающееся оборудование настолько распространено, но так неправильно понимается, что даже очень опытные электрики и инженеры часто сталкиваются с вопросами об их работе. В этой статье мы ответим на семь наиболее часто задаваемых вопросов. Объяснения краткие и практичные из-за ограниченного места; тем не менее, они позволят вам лучше понять это оборудование.

Вопрос №1: Якорь, поле, ротор, статор: что есть что?

Статор по определению состоит из всех невращающихся электрических частей генератора или двигателя. Также по определению ротор включает в себя все вращающиеся электрические части.

Поле машины — это часть, которая создает прямое магнитное поле. Ток в поле не переменный. Обмотка якоря — это та, которая генерирует или имеет приложенное к ней переменное напряжение.

Обычно термины «якорь» и «поле» применяются только к генераторам переменного тока, синхронным двигателям, двигателям постоянного тока и генераторам постоянного тока.

Генераторы переменного тока . Поле синхронного генератора представляет собой обмотку, на которую подается постоянный ток возбуждения. Якорь – это обмотка, к которой подключена нагрузка. В малых генераторах обмотки возбуждения часто находятся на статоре, а обмотки якоря — на роторе. Однако большинство больших машин имеют вращающееся поле и неподвижный якорь.

Синхронный двигатель практически идентичен синхронному генератору. Таким образом, якорь — это статор, а поле — это ротор.

Машины постоянного тока . В машинах постоянного тока, как двигателях, так и генераторах, ротором является якорь, а статором — поле. Поскольку якорь всегда является ротором в машинах постоянного тока, многие электрики и инженеры ошибочно полагают, что ротором всех двигателей и генераторов является якорь.

Вопрос № 2: Я ослабил натяжение пружины на щетках, но они по-прежнему изнашиваются слишком быстро. Почему?

Износ щеток происходит по двум основным причинам: механическое трение и электрический износ. Механическое трение вызывается трением щеток о коллектор или контактное кольцо. Электрический износ вызван искрением и искрением щетки, когда она движется по коллектору. Механическое трение увеличивается с давлением щетки; Электрический износ уменьшается с давлением щетки.

Для любой установки щетки существует оптимальное давление щетки. Если давление снижается ниже этой величины, общий износ увеличивается, поскольку увеличивается электрический износ. Если давление увеличивается выше оптимального значения, общий износ снова увеличивается из-за увеличения механического трения.

Всегда следите за тем, чтобы давление щетки было установлено на уровне, рекомендованном производителем. Если износ по-прежнему чрезмерный, следует изучить тип и размер используемой щетки. Помните, что плотность тока (ампер на квадратный дюйм щетки) должна соответствовать применению. Надлежащая плотность тока необходима для того, чтобы на коллекторе или контактном кольце образовалась смазочная проводящая пленка. Эта пленка состоит из влаги, меди и углерода. Недостаточная плотность тока препятствует образованию этой пленки и может привести к чрезмерному износу щеток.

Кроме того, среда с очень низкой влажностью не обеспечивает достаточного количества влаги для образования смазочной пленки. Если в такой среде возникает проблема чрезмерного износа щеток, возможно, вам придется увлажнить место, где работает машина.

Вопрос № 3: Что такое сервис-фактор?

Коэффициент эксплуатации — это нагрузка, которая может быть приложена к двигателю без превышения допустимых значений. Например, если двигатель мощностью 10 л.с. имеет эксплуатационный фактор 1,25, он будет успешно развивать мощность 12,5 л.с. (10 x 1,25) без превышения заданного повышения температуры. Обратите внимание, что при таком приводе выше номинальной нагрузки двигатель должен питаться с номинальным напряжением и частотой.

Однако имейте в виду, что двигатель мощностью 10 л.с. с коэффициентом эксплуатации 1,25 не является двигателем мощностью 12,5 л.с. Если двигатель мощностью 10 л.с. будет постоянно работать при мощности 12,5 л.с., срок службы его изоляции может сократиться на две трети от нормального. Если вам нужен двигатель мощностью 12,5 л.с., купите его; эксплуатационный коэффициент следует использовать только для кратковременных условий перегрузки.

Вопрос № 4: Что такое вращающееся магнитное поле и почему оно вращается?

Вращающееся магнитное поле — это поле, северный и южный полюса которого движутся внутри статора, как если бы внутри машины вращался стержневой магнит или магниты.

Посмотрите на статор трехфазного двигателя, показанный на прилагаемой схеме. Это двухполюсный статор с тремя фазами, расположенными с интервалом 120 [градусов]. Ток от каждой фазы входит в катушку на одной стороне статора и выходит через катушку на противоположной стороне. Таким образом, если одна из катушек создает магнитный северный полюс, другая катушка (для той же фазы) создаст магнитный южный полюс на противоположной стороне статора.

В Позиции 1 фаза B создает сильный северный полюс вверху слева и сильный южный полюс внизу справа. А-фаза создает более слабый северный полюс внизу слева и более слабый южный полюс внизу. C-фаза создает общее магнитное поле с северным полюсом в левом верхнем углу и южным полюсом в правом нижнем углу.

В Позиции 2 фаза А создает сильный северный полюс внизу слева и сильный южный полюс вверху справа; таким образом, сильные полюса повернулись на 60 [градусов] против часовой стрелки. (Обратите внимание, что это магнитное вращение на 60 [градусов] точно соответствует электрическому изменению фазных токов на 60 [градусов].) Слабые полюса также повернулись на 60 [градусов] против часовой стрелки. Фактически это означает, что общее магнитное поле повернулось на 60 [градусов] от положения 1. фаз изменяется более чем на 60 электрических градусов. Анализ позиций 3, 4, 5 и 6 показывает, что магнитное поле продолжает вращаться.

Скорость, с которой вращается магнитное поле, называется синхронной скоростью и описывается следующим уравнением:

S = (f x P) / 120, где S = скорость вращения в оборотах в минуту f = частота подаваемого напряжения (Гц ) P = число магнитных полюсов во вращающемся магнитном поле

Если бы в этот статор был помещен постоянный магнит с валом, который позволял бы ему вращаться, его толкали бы (или тянули) вперед с синхронной скоростью. Точно так же работает синхронный двигатель, за исключением того, что магнитное поле ротора (поля) создается электромагнетизмом, а не постоянным магнитом.

Ротор асинхронного двигателя состоит из короткозамкнутых обмоток, и в обмотках ротора индуцируется ток, когда вращающееся магнитное поле пересекает их. Этот ток создает поле, противодействующее вращающемуся полю. В результате ротор толкается (или притягивается) вращающимся полем. Обратите внимание, что ротор асинхронного двигателя не может вращаться с синхронной скоростью, поскольку вращающееся поле должно прорезать обмотки ротора, чтобы создать крутящий момент. Разница между синхронной скоростью и фактической скоростью вращения ротора называется процентным скольжением; она выражается в процентах.

Однофазные двигатели также имеют вращающееся магнитное поле. Вращающееся поле, необходимое для запуска двигателя, создается второй обмоткой, называемой пусковой обмоткой. После разгона двигателя пусковая обмотка отключается, и вращающееся поле создается за счет взаимодействия основной обмотки статора и ротора.

Вопрос № 5: Как работает асинхронный генератор?

Асинхронный генератор по конструкции идентичен асинхронному двигателю. Обмотки статора подключены к трехфазной системе питания, и три фазы создают вращающееся магнитное поле. Ротор асинхронного генератора вращается первичным двигателем, который вращается быстрее синхронной скорости. Когда обмотки ротора пересекают вращающееся поле, в них индуцируется ток. Этот индуцированный ток создает поле, которое, в свою очередь, прорезает обмотки статора, создавая выходную мощность для нагрузки.

Таким образом, асинхронный генератор получает питание от энергосистемы, к которой он подключен. Асинхронный двигатель должен иметь синхронные генераторы, подключенные к его статору, чтобы начать генерировать. После того, как асинхронный генератор работает, конденсаторы могут использоваться для питания возбуждения.

Вопрос № 6: Почему подшипники генератора и двигателя изолированы?

Магнитное поле внутри двигателя или генератора не совсем однородно. Таким образом, при вращении ротора на валу в продольном направлении (непосредственно вдоль вала) возникает напряжение. Это напряжение вызовет протекание микротоков через смазочную пленку на подшипниках. Эти токи, в свою очередь, могут вызвать незначительное искрение, нагрев и, в конечном итоге, выход из строя подшипника. Чем больше машина, тем хуже становится проблема.

Чтобы избежать этой проблемы, корпус подшипника со стороны ротора часто изолируется от стороны статора. В большинстве случаев будет изолирован по крайней мере один подшипник, обычно самый дальний от первичного двигателя для генераторов и самый дальний от нагрузки для двигателей. Иногда оба подшипника изолированы.

Вопрос № 7: Как генераторы переменного тока регулируют переменную, напряжение и мощность?

Хотя элементы управления генератором взаимодействуют, верны следующие общие положения.

  • Выходная мощность генератора контролируется его первичным двигателем.
  • Вклад напряжения и/или реактивной мощности генератора контролируется уровнем тока возбуждения.

Например, предположим, что к выходу генератора подключена дополнительная нагрузка. Добавленный поток тока увеличит силу магнитного поля якоря и заставит генератор замедлиться. Чтобы поддерживать частоту, регулятор генератора увеличивает мощность, подводимую к первичному двигателю. Таким образом, дополнительная мощность, необходимая для генератора, регулируется вводом первичного двигателя.

В нашем примере чистый магнитный поток в воздушном зазоре уменьшится, так как увеличение якоря противодействует потоку поля. Если не увеличить поток поля, чтобы компенсировать это изменение, выходное напряжение генератора уменьшится. Таким образом, ток возбуждения используется для управления выходным напряжением.

Давайте посмотрим на другой пример для дальнейшего пояснения. Предположим, к нашему генератору добавлена ​​дополнительная нагрузка VAR. В этом случае выходной ток генератора снова возрастет. Однако, поскольку новая нагрузка не является «настоящей» мощностью, первичный двигатель необходимо увеличивать только настолько, чтобы компенсировать дополнительное падение IR, создаваемое дополнительным током.

В качестве последнего примера предположим, что у нас есть два или более генераторов, работающих параллельно и питающих нагрузку. Генератор 1 (G1) несет всю нагрузку (активную и реактивную), в то время как Генератор 2 (G2) работает с нулевой мощностью и нулевой реактивной мощностью. Если оператор G2 открывает дроссельную заслонку первичного двигателя, G2 начинает подавать ватты в систему. Поскольку подключенная нагрузка не изменилась, оба генератора увеличат скорость, если G1 не снизится.

Поскольку G2 берет на себя дополнительную долю нагрузки, ему требуется повышенный поток поля. Если оператор G2 не увеличивает поле G2, G2 будет получать дополнительное возбуждение от G1, требуя, чтобы G1 увеличил уровень своего возбуждения. Если ни G1, ни G2 не увеличат уровень возбуждения, общее напряжение системы упадет.

Джон Кадик, ЧП является президентом Cadick Professional Services, Гарленд, Техас, международной ассоциации электрических испытаний. (NETA) член.

Как работает генератор?

Генераторы — это полезные устройства, которые обеспечивают подачу электроэнергии во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание деловых операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор представляет собой устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию для принудительного перемещения электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, если рассматривать генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, протекающую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что описанный выше поток электрических зарядов может быть вызван перемещением электрического проводника, такого как проволока, содержащая электрические заряды, в магнитном поле. Это движение создает разность потенциалов между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в целом классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборка/рама

Описание основных компонентов генератора приведено ниже.

Двигатель

Двигатель является источником входной механической энергии для генератора. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может обеспечить генератор. Есть несколько факторов, которые необходимо учитывать при оценке двигателя вашего генератора. Следует проконсультироваться с производителем двигателя для получения полных технических характеристик двигателя и графиков технического обслуживания.

(a) Тип используемого топлива. Генераторные двигатели работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженной или газообразной форме) или природный газ. Двигатели меньшего размера обычно работают на бензине, а двигатели большего размера работают на дизельном топливе, сжиженном пропане, пропановом газе или природном газе. Некоторые двигатели также могут работать на двух видах топлива: дизельном и газовом.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV. Двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускной и выпускной клапаны двигателя расположены в головке цилиндра двигателя, а не установлены на двигателе. блокировать. Двигатели с верхним расположением клапанов имеют ряд преимуществ перед другими двигателями, например:

• Компактный дизайн
• Упрощенный рабочий механизм
• Прочность
• Удобен в работе
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако двигатели с верхним расположением клапанов также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя – CIS представляет собой накладку в цилиндре двигателя. Снижает износ и обеспечивает долговечность двигателя. Большинство двигателей с верхним расположением клапанов оснащены CIS, но важно проверить эту функцию в двигателе генератора. CIS — недорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

 

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность на основе механического входа, поступающего от двигателя. Он содержит сборку неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, что, в свою очередь, генерирует электричество.

(a) Статор – это неподвижный компонент. Он содержит набор электрических проводников, намотанных в витках на железный сердечник.

(b) Ротор/Якорь – это подвижный компонент, создающий вращающееся магнитное поле одним из следующих трех способов:

(i) Индукционный генератор. Известны как бесщеточные генераторы переменного тока, которые обычно используются в больших генераторах.
(ii) Постоянные магниты — обычно используются в небольших генераторах переменного тока.
(iii) С помощью возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через узел токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое индуцирует разность потенциалов между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

Ниже приведены факторы, которые необходимо учитывать при оценке генератора переменного тока генератора:

(a) Металлический корпус в сравнении с пластиковым. Цельнометаллическая конструкция обеспечивает долговечность генератора переменного тока. Пластиковые корпуса со временем деформируются, что приводит к оголению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция. Генератор переменного тока, в котором не используются щетки, требует меньше обслуживания, а также производит более чистую энергию.

 

Топливная система

Объем топливного бака обычно достаточен для поддержания работы генератора в среднем от 6 до 8 часов. В случае небольших генераторных установок топливный бак является частью основания генератора или устанавливается на верхней части рамы генератора. Для коммерческого применения может потребоваться установка внешнего топливного бака. Все такие установки подлежат утверждению Департаментом городского планирования. Щелкните следующую ссылку для получения дополнительной информации о топливных баках для генераторов.

К общим характеристикам топливной системы относятся следующие:

(a) Соединение трубопровода от топливного бака к двигателю. Подающая линия направляет топливо из бака в двигатель, а обратная линия направляет топливо из двигателя в бак.

(b) Вентиляционная трубка топливного бака. Топливный бак имеет вентиляционную трубку для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака следите за металлическим контактом между заправочным пистолетом и топливным баком, чтобы избежать искрения.

(c) Перепускной штуцер от топливного бака к сливной трубе – Это необходимо для того, чтобы любой перелив во время заправки бака не привел к проливанию жидкости на генераторную установку.

(d) Топливный насос – перекачивает топливо из основного бака хранения в расходный бак. Топливный насос обычно имеет электрический привод.

(e) Топливный водоотделитель/топливный фильтр — отделяет воду и посторонние частицы от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка – распыляет жидкое топливо и впрыскивает необходимое количество топлива в камеру сгорания двигателя.

Регулятор напряжения
Как видно из названия, этот компонент регулирует выходное напряжение генератора. Механизм описан ниже для каждого компонента, который играет роль в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток. Регулятор напряжения потребляет небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбуждения.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный ток. Обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток. Обмотки возбудителя подключены к устройствам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный – они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор/якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора/якоря.

(4) Ротор/якорь: преобразование постоянного тока в переменное напряжение. Ротор/якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения производит меньший постоянный ток. Как только генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

При добавлении нагрузки к генератору его выходное напряжение немного падает. Это приводит в действие регулятор напряжения, и начинается описанный выше цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет исходной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Постоянное использование генератора приводит к нагреву его различных компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, образующегося в процессе.

Необработанная/пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше. Водород иногда используется в качестве хладагента для обмоток статора крупных генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему рядом с очень крупными генераторами и небольшими электростанциями часто стоят большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генератор и работают как первичная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости генератора. Систему охлаждения и насос сырой воды следует промывать через каждые 600 часов, а теплообменник следует чистить через каждые 2400 часов работы генератора. Генератор следует размещать в открытом и проветриваемом помещении с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) предписывает, чтобы со всех сторон генератора оставалось минимальное пространство в 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы генератора ничем не отличаются от выхлопных газов любого другого дизельного или бензинового двигателя и содержат высокотоксичные химические вещества, с которыми необходимо правильно обращаться. Следовательно, необходимо установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя не подчеркнуть, поскольку отравление угарным газом остается одной из наиболее распространенных причин смерти в районах, пострадавших от ураганов, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно крепятся к двигателю с помощью гибких соединителей, чтобы свести к минимуму вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба выходит наружу и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не соединена с выхлопной системой любого другого оборудования. Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для работы вашего генератора получать разрешение от местных властей, чтобы убедиться, что вы соблюдаете местные законы и защищаете от штрафов и других санкций.

Система смазки
Поскольку генератор содержит движущиеся части двигателя, ему требуется смазка для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе. Вы должны проверять уровень смазочного масла каждые 8 ​​часов работы генератора. Вы также должны проверять наличие утечек смазки и заменять смазочное масло каждые 500 часов работы генератора.

Зарядное устройство
st e art Функция генератора работает от батареи. Зарядное устройство батареи поддерживает заряд батареи генератора, подавая на нее точное «плавающее» напряжение. Если плавающее напряжение очень низкое, аккумулятор останется недозаряженным. Если плавающее напряжение очень высокое, это сократит срок службы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным значением плавающего напряжения для свинцово-кислотных аккумуляторов. Зарядное устройство имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.

Панель управления
Это пользовательский интерфейс генератора, содержащий положения для электрических розеток и элементов управления. В следующей статье приведены дополнительные сведения о панели управления генератора. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают генератор при отключении электроэнергии, контролируют работу генератора и автоматически выключают агрегат, когда он больше не нужен.

(b) Датчики двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы.

Вращающаяся часть электрогенератора: Как называется вращающаяся часть генератора?