Защита от перенапряжений, заземление воздушных линий электропередач. Защита вл от перенапряжений13. Защита от перенапряжений вл выше 1000 вВнезапные повышения напряжения до значений, опасных для изоляции электроустановки, называются перенапряжениями. По своему происхождению перенапряжения бывают двух видов: внешние (атмосферные) и внутренние (коммутационные). Атмосферные перенапряжения возникают при прямых ударах молнии в электроустановку или наводятся (индуцируются) в линиях при ударах молний вблизи от них. Внутренние перенапряжения возникают при резких изменениях режима работы электроустановки, например, при отключении ненагруженных линий, отключении тока холостого хода трансформаторов, замыкании фазы в сети с изолированной нейтралью на землю, резонансных, феррорезонансных явлениях и др. Перенапряжения при прямых ударах молнии могут достигать 1000 кВ, а ток молнии - 200 кА. Разряд молнии обычно состоит из серии отдельных импульсов (до 40 шт.) и продолжается не более долей секунды. Длительность отдельного импульса составляет десятки микросекунд. Индуктированные перенапряжения достигают 100 кВ и распространяются по проводам линии электропередачи в виде затухающих волн. Атмосферные перенапряжения не зависят от номинального напряжения электроустановки и потому их опасность возрастает со снижением класса напряжения электрической сети. Коммутационные перенапряжения зависят от номинального напряжения электроустановки и обычно не превышают 4Uном. Из сказанного следует, что основную опасность представляют атмосферные перенапряжения. Перенапряжения весьма опасны по своим последствиям. Пробив изоляцию, они могут вызывать КЗ, пожары в электроустановках, опасность для жизни людей и др. Поэтому каждая электроустановка должна иметь защиту от перенапряжений. В качестве основных защитных средств от атмосферных повреждений применяют молниеотводы, разрядники и искровые промежутки. Главной частью всех этих аппаратов является заземлитель, который должен обеспечить надежный отвод зарядов в землю. Молниеотвод ориентирует атмосферный заряд на себя, отводя его от токоведущих частей электроустановки. Различают стержневые и тросовые (на воздушных линиях) молниеотводы. Тросовые молниеотводы подвешивают на опорах линий электропередачи напряжением 35 кВ и выше над проводами фаз. Тросы выполняют стальными и соединяют спусками с заземлением опор. Сопротивление заземления опоры при этом не должно превышать 10 Ом. Разрядник представляет собой комбинацию искровых промежутков и дополнительных элементов, облегчающих гашение электрической дуги в искровом промежутке. Разрядники по исполнению делятся на трубчатые и вентильные, а по назначению - на под станционные, станционные, для защиты вращающихся машин и др. Защитное действие разрядника заключается в том, что проходящий в них разряд ограничивает амплитуду перенапряжений до пределов, не представляющих опасности для изоляции защищаемого объекта. Возникающая при этом в разряднике электрическая дуга гасится после исчезновения импульсов перенапряжения раньше, чем срабатывает защита от КЗ, и, таким образом, объект не отключается от сети. Каждый из разрядников, независимо от его типа и конструкции, состоит из искрового промежутка, один из электродов которого присоединяется к фазному проводу линии, а другой - к заземляющему устройству непосредственно или через добавочное сопротивление. Через хорошо заземленный искровой промежуток вслед за импульсным током, возникающим после пробоя перенапряжением, проходит сопровождающий ток нормальной частоты (50 Гц), обусловленный рабочим напряжением. Разрядник должен обладать способностью быстро погасить сопровождающий ток после исчезновения перенапряжения. Для этого разрядник снабжают помимо искрового промежутка последовательно включенным с ним специальным элементом, обеспечивающим гашение сопровождающего тока. Гашение сопровождающего тока обеспечивается двумя способами: в трубчатых разрядниках - специальным дугогасительным устройством; в вентильных разрядниках - активными сопротивлениями с нелинейной (зависящей от приложенного напряжения) характеристикой (рис. 2, а). Нелинейная характеристика (рис. 2, б) должна быть такой, чтобы при перенапряжениях сопротивление разрядника было малым. При рабочих напряжениях сопротивление разрядника должно быть большим, чтобы гасился сопровождающий ток.
Рисунок 2. Вентильный разрядник: а - схема; б - защитная характеристика Трубчатые разрядники применяются как основное средство для защиты изоляции линии электропередачи и как вспомогательное средство защиты изоляции оборудования подстанций. Они выполняются с номинальными напряжениями 6, 10, 35 кВ. Основной частью разрядника является трубка из твердого газогенерирующего диэлектрика (фибра, фибробакелит у разрядников серий РТ, РТФ; винипласт - у разрядников серии РТВ). Разрядник (рис. 3) имеет 2 искровых промежутка: внешний (3) и внутренний (2). Внешний изолирует трубку от постоянного соприкосновения с токоведущей частью, находящейся под напряжением. При пробое искровых промежутков под воздействием высокой температуры электрической дуги трубка 1 разлагается и генерирует газ (в основном водород), облегчающий гашение электрической дуги. Необходимость гашения дуги объясняется тем, что после прохождения перенапряжения по искровым промежуткам проходит сопровождающий ток разрядника, обусловленный рабочим напряжением электрической сети и имеющий частоту 50 Гц. Поэтому в обозначении разрядника, кроме букв, присутствует дробь, где числитель указывает номинальное напряжение, а знаменатель - пределы сопровождающего тока, успешно отключаемого разрядником. Например, обозначает: трубчатый разрядник на 10 кВ, отключающий сопровождающий ток (равный току КЗ) от 0,5 до 7 кА.
Рисунок 3. Устройство трубчатого разрядника Вентильные разрядники предназначены для защиты от атмосферных перенапряжений оборудования электростанций и подстанций, главным образом, силовых трансформаторов. Основными элементами разрядника являются многократные искровые промежутки и соединенные последовательно с ними нелинейные сопротивления в виде дисков из вилита. Термин «нелинейное сопротивление» означает, что сопротивление зависит от проходящего по нему тока. Сопротивление вилита уменьшается при возрастании проходящего по нему тока. Вилит не влагостоек, поэтому его помещают в герметизированный фарфоровый корпус. Для защиты подстанций используют разрядники серий РВП (разрядник вентильный подстанционный) и РВН (разрядник вентильный низковольтный). Устройство вентильного разрядника показано на рис. 4.
Рисунок 4. Устройство вентильного разрядника серии РВП Разрядник работает следующим образом. При перенапряжениях искровые промежутки 3 пробиваются, и по вилитовым дискам блока 4 ток проходит в землю. Сопротивление вилита резко уменьшается и перенапряжение на оборудование подстанции не поступает. При исчезновении перенапряжения сопротивление вилита возрастает, дуга в искровом промежутке гаснет, и ток через разрядник не проходит. Специальная защита воздушных линий от атмосферных перенапряжений не устанавливается, так как молния может ударить в линию в любой ее точке. Все воздушные линии оборудуются устройствами АПВ, т. к. после КЗ, вызванного перенапряжением, и отключения линии, ее изоляционные свойства восстанавливаются. Поэтому повторное включение линии оказывается в большинстве случаев успешным. В настоящее время широкое распространение получают ограничители перенапряжений (ОПН), представляющие собой нелинейные активные сопротивления без специальных искровых промежутков. ОПН обычно изготовляют путем спекания оксидов цинка и других металлов. В полученной после спекания поликристаллической керамике кристаллы окиси цинка имеют высокую проводимость, а межкристальные промежутки, сформированные из оксидов других металлов, имеют высокое сопротивление. Точечные контакты между кристаллами окиси цинка, возникающие при спекании, являются микроваристорами, т. е. имеют так называемые р-n переходы. Защитная характеристика ОПН имеет вид, близкий к нелинейной характеристике вентильного разрядника (рис. 2, б). Однако оксидно-цинковые сопротивления имеют значительно более высокую нелинейность, чем вилитовые сопротивления. Благодаря этому в ОПН нет необходимости использования искровых промежутков. Выпуск вентильных разрядников в нашей стране прекращен в 90-е годы из-за высокой трудоемкости производства и настройки искровых промежутков. При том существенно расширена номенклатура выпускаемых ОПН. Достоинствами ОПН, по сравнению с вентильными разрядниками, являются взрывобезопасность, более высокая надежность, снижение уровня перенапряжений, воздействующих на защищаемое оборудование, и возможность контроля старения сопротивлений по току в рабочем режиме. Существенным недостатком ОПН и вентильных разрядников является невозможность обеспечения с их помощью защиты от квазистационарных перенапряжений (резонансные и феррорезонансные перенапряжения, смещение нейтрали при перемежающейся электрической дуге). Не следует забывать, что при длительных перенапряжениях происходит интенсивное старение ОПН, и они могут отказать, т. е. повредиться. В распределительных электрических сетях в системе защиты от перенапряжений основное внимание уделяют защите оборудования подстанций. На рис. 5 приведены два варианта защиты подстанций напряжением 6-10 кВ от атмосферных перенапряжений при присоединении их непосредственно к воздушной линии (рис. 5, а) и кабельным вводом (рис. 5, б). В первом случае (а) на линии устанавливают два комплекта трубчатых разрядников F1, F2, один из которых (F2) - на концевой опоре линии, а F1 - на расстоянии 100-5-200 м от F2. В случае (б) комплект разрядников F2 устанавливают на конце кабеля, причем его заземление соединяют с оболочкой кабеля. Это необходимо для уменьшения перенапряжений, поступающих на подстанцию. Второй комплект F1 устанавливается при длине кабельного ввода менее 10 м. Расстояние между F1 и F2 равно 100-5-200 м. Вместо F2 при длине кабельной вставки более 50 м рекомендуется устанавливать вентильные разрядники.
Рисунок 5. Защита подстанции от перенапряжений: а - подстанция непосредственно присоединена к ВЛ; б - подстанция присоединена к ВЛ кабельным вводом Кроме трубчатых разрядников непосредственно на подстанциях устанавливают вентильные разрядники (или ОПН) FV3 и FV4 на сторонах высшего и низшего напряжений. Сочетание трубчатые разрядники - вентильный разрядник (или ОПН) применяется по следующей причине. Трубчатые разрядники не могут надежно защищать трансформаторы и вращающиеся электрические машины от перенапряжений, т. к. имеют грубые защитные характеристики. Такую защиту обеспечивают вентильные разрядники. Назначение трубчатых разрядников заключается в том, чтобы предотвратить повреждение вентильных разрядников от приходящих из линии волн перенапряжений. Трубчатые разрядники уменьшают амплитуду и крутизну импульсов перенапряжений до величин, безопасных для вентильных разрядников и ОПН. В настоящее время при новом строительстве, реконструкции и техническом перевооружении объектов Федеральной сетевой компании России применение вентильных и трубчатых разрядников не рекомендуется по причине их низкой надежности и из-за недостатков в технических характеристиках. studfiles.net Защита от перенапряжений ВЛ выше 1000 В — МегаЛекции
Внезапные повышения напряжения до значений, опасных для изоляции электроустановки, называются перенапряжениями. По своему происхождению перенапряжения бывают двух видов: внешние (атмосферные) и внутренние (коммутационные).
Атмосферные перенапряжения возникают при прямых ударах молнии в электроустановку или наводятся (индуцируются) в линиях при ударах молний вблизи от них. Внутренние перенапряжения возникают при резких изменениях режима работы электроустановки, например, при отключении ненагруженных линий, отключении тока холостого хода трансформаторов, замыкании фазы в сети с изолированной нейтралью на землю, резонансных, феррорезонансных явлениях и др.
Перенапряжения при прямых ударах молнии могут достигать 1000 кВ, а ток молнии - 200 кА. Разряд молнии обычно состоит из серии отдельных импульсов (до 40 шт.) и продолжается не более долей секунды. Длительность отдельного импульса составляет десятки микросекунд. Индуктированные перенапряжения достигают 100 кВ и распространяются по проводам линии электропередачи в виде затухающих волн. Атмосферные перенапряжения не зависят от номинального напряжения электроустановки и потому их опасность возрастает со снижением класса напряжения электрической сети. Коммутационные перенапряжения зависят от номинального напряжения электроустановки и обычно не превышают 4Uном. Из сказанного следует, что основную опасность представляют атмосферные перенапряжения. Перенапряжения весьма опасны по своим последствиям. Пробив изоляцию, они могут вызывать КЗ, пожары в электроустановках, опасность для жизни людей и др. Поэтому каждая электроустановка должна иметь защиту от перенапряжений. В качестве основных защитных средств от атмосферных повреждений применяют молниеотводы, разрядники и искровые промежутки. Главной частью всех этих аппаратов является заземлитель, который должен обеспечить надежный отвод зарядов в землю. Молниеотвод ориентирует атмосферный заряд на себя, отводя его от токоведущих частей электроустановки. Различают стержневые и тросовые (на воздушных линиях) молниеотводы. Тросовые молниеотводы подвешивают на опорах линий электропередачи напряжением 35 кВ и выше над проводами фаз. Тросы выполняют стальными и соединяют спусками с заземлением опор. Сопротивление заземления опоры при этом не должно превышать 10 Ом. Разрядник представляет собой комбинацию искровых промежутков и дополнительных элементов, облегчающих гашение электрической дуги в искровом промежутке. Разрядники по исполнению делятся на трубчатые и вентильные, а по назначению - на под станционные, станционные, для защиты вращающихся машин и др. Защитное действие разрядника заключается в том, что проходящий в них разряд ограничивает амплитуду перенапряжений до пределов, не представляющих опасности для изоляции защищаемого объекта. Возникающая при этом в разряднике электрическая дуга гасится после исчезновения импульсов перенапряжения раньше, чем срабатывает защита от КЗ, и, таким образом, объект не отключается от сети. Каждый из разрядников, независимо от его типа и конструкции, состоит из искрового промежутка, один из электродов которого присоединяется к фазному проводу линии, а другой - к заземляющему устройству непосредственно или через добавочное сопротивление.
Через хорошо заземленный искровой промежуток вслед за импульсным током, возникающим после пробоя перенапряжением, проходит сопровождающий ток нормальной частоты (50 Гц), обусловленный рабочим напряжением. Разрядник должен обладать способностью быстро погасить сопровождающий ток после исчезновения перенапряжения. Для этого разрядник снабжают помимо искрового промежутка последовательно включенным с ним специальным элементом, обеспечивающим гашение сопровождающего тока. Гашение сопровождающего тока обеспечивается двумя способами: в трубчатых разрядниках - специальным дугогасительным устройством; в вентильных разрядниках - активными сопротивлениями с нелинейной (зависящей от приложенного напряжения) характеристикой (рис. 2, а). Нелинейная характеристика (рис. 2, б) должна быть такой, чтобы при перенапряжениях сопротивление разрядника было малым. При рабочих напряжениях сопротивление разрядника должно быть большим, чтобы гасился сопровождающий ток.
Рисунок 2. Вентильный разрядник: а - схема; б - защитная характеристика Трубчатые разрядники применяются как основное средство для защиты изоляции линии электропередачи и как вспомогательное средство защиты изоляции оборудования подстанций. Они выполняются с номинальными напряжениями 6, 10, 35 кВ. Основной частью разрядника является трубка из твердого газогенерирующего диэлектрика (фибра, фибробакелит у разрядников серий РТ, РТФ; винипласт - у разрядников серии РТВ). Разрядник (рис. 3) имеет 2 искровых промежутка: внешний (3) и внутренний (2). Внешний изолирует трубку от постоянного соприкосновения с токоведущей частью, находящейся под напряжением. При пробое искровых промежутков под воздействием высокой температуры электрической дуги трубка 1 разлагается и генерирует газ (в основном водород), облегчающий гашение электрической дуги. Необходимость гашения дуги объясняется тем, что после прохождения перенапряжения по искровым промежуткам проходит сопровождающий ток разрядника, обусловленный рабочим напряжением электрической сети и имеющий частоту 50 Гц. Поэтому в обозначении разрядника, кроме букв, присутствует дробь, где числитель указывает номинальное напряжение, а знаменатель - пределы сопровождающего тока, успешно отключаемого разрядником. Например, обозначает: трубчатый разрядник на 10 кВ, отключающий сопровождающий ток (равный току КЗ) от 0,5 до 7 кА.
Рисунок 3. Устройство трубчатого разрядника Вентильные разрядники предназначены для защиты от атмосферных перенапряжений оборудования электростанций и подстанций, главным образом, силовых трансформаторов. Основными элементами разрядника являются многократные искровые промежутки и соединенные последовательно с ними нелинейные сопротивления в виде дисков из вилита. Термин «нелинейное сопротивление» означает, что сопротивление зависит от проходящего по нему тока. Сопротивление вилита уменьшается при возрастании проходящего по нему тока. Вилит не влагостоек, поэтому его помещают в герметизированный фарфоровый корпус. Для защиты подстанций используют разрядники серий РВП (разрядник вентильный подстанционный) и РВН (разрядник вентильный низковольтный). Устройство вентильного разрядника показано на рис. 4.
Рисунок 4. Устройство вентильного разрядника серии РВП
Разрядник работает следующим образом. При перенапряжениях искровые промежутки 3 пробиваются, и по вилитовым дискам блока 4 ток проходит в землю. Сопротивление вилита резко уменьшается и перенапряжение на оборудование подстанции не поступает. При исчезновении перенапряжения сопротивление вилита возрастает, дуга в искровом промежутке гаснет, и ток через разрядник не проходит. Специальная защита воздушных линий от атмосферных перенапряжений не устанавливается, так как молния может ударить в линию в любой ее точке. Все воздушные линии оборудуются устройствами АПВ, т. к. после КЗ, вызванного перенапряжением, и отключения линии, ее изоляционные свойства восстанавливаются. Поэтому повторное включение линии оказывается в большинстве случаев успешным. В настоящее время широкое распространение получают ограничители перенапряжений (ОПН), представляющие собой нелинейные активные сопротивления без специальных искровых промежутков. ОПН обычно изготовляют путем спекания оксидов цинка и других металлов. В полученной после спекания поликристаллической керамике кристаллы окиси цинка имеют высокую проводимость, а межкристальные промежутки, сформированные из оксидов других металлов, имеют высокое сопротивление. Точечные контакты между кристаллами окиси цинка, возникающие при спекании, являются микроваристорами, т. е. имеют так называемые р-n переходы. Защитная характеристика ОПН имеет вид, близкий к нелинейной характеристике вентильного разрядника (рис. 2, б). Однако оксидно-цинковые сопротивления имеют значительно более высокую нелинейность, чем вилитовые сопротивления. Благодаря этому в ОПН нет необходимости использования искровых промежутков. Выпуск вентильных разрядников в нашей стране прекращен в 90-е годы из-за высокой трудоемкости производства и настройки искровых промежутков. При том существенно расширена номенклатура выпускаемых ОПН. Достоинствами ОПН, по сравнению с вентильными разрядниками, являются взрывобезопасность, более высокая надежность, снижение уровня перенапряжений, воздействующих на защищаемое оборудование, и возможность контроля старения сопротивлений по току в рабочем режиме. Существенным недостатком ОПН и вентильных разрядников является невозможность обеспечения с их помощью защиты от квазистационарных перенапряжений (резонансные и феррорезонансные перенапряжения, смещение нейтрали при перемежающейся электрической дуге). Не следует забывать, что при длительных перенапряжениях происходит интенсивное старение ОПН, и они могут отказать, т. е. повредиться. В распределительных электрических сетях в системе защиты от перенапряжений основное внимание уделяют защите оборудования подстанций. На рис. 5 приведены два варианта защиты подстанций напряжением 6-10 кВ от атмосферных перенапряжений при присоединении их непосредственно к воздушной линии (рис. 5, а) и кабельным вводом (рис. 5, б). В первом случае (а) на линии устанавливают два комплекта трубчатых разрядников F1, F2, один из которых (F2) - на концевой опоре линии, а F1 - на расстоянии 100-5-200 м от F2. В случае (б) комплект разрядников F2 устанавливают на конце кабеля, причем его заземление соединяют с оболочкой кабеля. Это необходимо для уменьшения перенапряжений, поступающих на подстанцию. Второй комплект F1 устанавливается при длине кабельного ввода менее 10 м. Расстояние между F1 и F2 равно 100-5-200 м. Вместо F2 при длине кабельной вставки более 50 м рекомендуется устанавливать вентильные разрядники.
Рисунок 5. Защита подстанции от перенапряжений: а - подстанция непосредственно присоединена к ВЛ; б - подстанция присоединена к ВЛ кабельным вводом Кроме трубчатых разрядников непосредственно на подстанциях устанавливают вентильные разрядники (или ОПН) FV3 и FV4 на сторонах высшего и низшего напряжений. Сочетание трубчатые разрядники - вентильный разрядник (или ОПН) применяется по следующей причине. Трубчатые разрядники не могут надежно защищать трансформаторы и вращающиеся электрические машины от перенапряжений, т. к. имеют грубые защитные характеристики. Такую защиту обеспечивают вентильные разрядники. Назначение трубчатых разрядников заключается в том, чтобы предотвратить повреждение вентильных разрядников от приходящих из линии волн перенапряжений. Трубчатые разрядники уменьшают амплитуду и крутизну импульсов перенапряжений до величин, безопасных для вентильных разрядников и ОПН. В настоящее время при новом строительстве, реконструкции и техническом перевооружении объектов Федеральной сетевой компании России применение вентильных и трубчатых разрядников не рекомендуется по причине их низкой надежности и из-за недостатков в технических характеристиках. megalektsii.ru 2.2. Устройства защит от атмосферных и коммутационных перенапряжений.ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЙ Внезапные повышения напряжения до значений, опасных для изоляции электроустановки, называются перенапряжениями. По своему происхождению перенапряжения бывают двух видов: внешние (атмосферные) и внутренние (коммутационные). Атмосферные перенапряжения возникают при прямых ударах молнии в электроустановку или наводятся (индуцируются) в линиях при ударах молний вблизи от них. Внутренние перенапряжения возникают при резких изменениях режима работы электроустановки, например, при отключении ненагруженных линий, отключении тока холостого хода трансформаторов, замыкании фазы в сети с изолированной нейтралью на землю, резонансных, феррорезонансных явлениях и др. Перенапряжения при прямых ударах молнии могут достигать 1000 кВ, а ток молнии - 200 кА. Разряд молнии обычно состоит из серии отдельных импульсов (до 40 шт.) и продолжается не более долей секунды. Длительность отдельного импульса составляет десятки микросекунд. Индуктированные перенапряжения достигают 100 кВ и распространяются по проводам линии электропередачи в виде затухающих волн. Атмосферные перенапряжения не зависят от номинального напряжения электроустановки и потому их опасность возрастает со снижением класса напряжения электрической сети. Коммутационные перенапряжения зависят от номинального напряжения электроустановки и обычно не превышают 4Uном. Из сказанного следует, что основную опасность представляют атмосферные перенапряжения. Перенапряжения весьма опасны по своим последствиям. Пробив изоляцию, они могут вызывать КЗ, пожары в электроустановках, опасность для жизни людей и др. Поэтому каждая электроустановка должна иметь защиту от перенапряжений. В качестве основных защитных средств от атмосферных повреждений применяют молниеотводы, разрядники и искровые промежутки. Главной частью всех этих аппаратов является заземлитель, который должен обеспечить надежный отвод зарядов в землю. Молниеотвод ориентирует атмосферный заряд на себя, отводя его от токоведущих частей электроустановки. Различают стержневые и тросовые (на воздушных линиях) молниеотводы. Стержневые молниеотводы устанавливают вертикально. Они должны быть выше защищаемых объектов. Зона защиты одиночного стержневого молниеотвода - пространство, защищенное от прямых ударов молнии. Эта зона имеет вид конуса, образующая которого имеет вид кривой линии (рис. 1). На рис. 1 приняты следующие обозначения: hx - высота защищаемого объекта; ha - активная часть молниеотвода, равная превышению молниеотвода над высотой объекта; h - высота молниеотвода. При большой протяженности или ширине объекта устанавливают несколько молниеотводов. Расстояние между молниеотводом и защищаемым объектом должно быть не более 5 м. Зона защиты одиночного стержневого молниеотвода Тросовые молниеотводы подвешивают на опорах линий электропередачи напряжением 35 кВ и выше над проводами фаз. Тросы выполняют стальными и соединяют спусками с заземлением опор. Сопротивление заземления опоры при этом не должно превышать 10 Ом. Разрядник представляет собой комбинацию искровых промежутков и дополнительных элементов, облегчающих гашение электрической дуги в искровом промежутке. Разрядники по исполнению делятся на трубчатые и вентильные, а по назначению - на под станционные, станционные, для защиты вращающихся машин и др. Защитное действие разрядника заключается в том, что проходящий в них разряд ограничивает амплитуду перенапряжений до пределов, не представляющих опасности для изоляции защищаемого объекта. Возникающая при этом в разряднике электрическая дуга гасится после исчезновения импульсов перенапряжения раньше, чем срабатывает защита от КЗ, и, таким образом, объект не отключается от сети. Каждый из разрядников, независимо от его типа и конструкции, состоит из искрового промежутка, один из электродов которого присоединяется к фазному проводу линии, а другой - к заземляющему устройству непосредственно или через добавочное сопротивление. Через хорошо заземленный искровой промежуток вслед за импульсным током, возникающим после пробоя перенапряжением, проходит сопровождающий ток нормальной частоты (50 Гц), обусловленный рабочим напряжением. Разрядник должен обладать способностью быстро погасить сопровождающий ток после исчезновения перенапряжения. Для этого разрядник снабжают помимо искрового промежутка последовательно включенным с ним специальным элементом, обеспечивающим гашение сопровождающего тока. Гашение сопровождающего тока обеспечивается двумя способами: в трубчатых разрядниках - специальным дугогасительным устройством; в вентильных разрядниках - активными сопротивлениями с нелинейной (зависящей от приложенного напряжения) характеристикой (рис. 2, а). Нелинейная характеристика (рис. 2, б) должна быть такой, чтобы при перенапряжениях сопротивление разрядника было малым. При рабочих напряжениях сопротивление разрядника должно быть большим, чтобы гасился сопровождающий ток.
. Вентильный разрядник: а - схема; б - защитная характеристика Трубчатые разрядники применяются как основное средство для защиты изоляции линии электропередачи и как вспомогательное средство защиты изоляции оборудования подстанций. Они выполняются с номинальными напряжениями 6, 10, 35 кВ. Основной частью разрядника является трубка из твердого газогенерирующего диэлектрика (фибра, фибробакелит у разрядников серий РТ, РТФ; винипласт - у разрядников серии РТВ). Разрядник (рис. 3) имеет 2 искровых промежутка: внешний (3) и внутренний (2). Внешний изолирует трубку от постоянного соприкосновения с токоведущей частью, находящейся под напряжением. При пробое искровых промежутков под воздействием высокой температуры электрической дуги трубка 1 разлагается и генерирует газ (в основном водород), облегчающий гашение электрической дуги. Необходимость гашения дуги объясняется тем, что после прохождения перенапряжения по искровым промежуткам проходит сопровождающий ток разрядника, обусловленный рабочим напряжением электрической сети и имеющий частоту 50 Гц. Поэтому в обозначении разрядника, кроме букв, присутствует дробь, где числитель указывает номинальное напряжение, а знаменатель - пределы сопровождающего тока, успешно отключаемого разрядником. Например, обозначает: трубчатый разрядник на 10 кВ, отключающий сопровождающий ток (равный току КЗ) от 0,5 до 7 кА.
Устройство трубчатого разрядника Вентильные разрядники предназначены для защиты от атмосферных перенапряжений оборудования электростанций и подстанций, главным образом, силовых трансформаторов. Основными элементами разрядника являются многократные искровые промежутки и соединенные последовательно с ними нелинейные сопротивления в виде дисков из вилита. Термин «нелинейное сопротивление» означает, что сопротивление зависит от проходящего по нему тока. Сопротивление вилита уменьшается при возрастании проходящего по нему тока. Вилит не влагостоек, поэтому его помещают в герметизированный фарфоровый корпус. Для защиты подстанций используют разрядники серий РВП (разрядник вентильный подстанционный) и РВН (разрядник вентильный низковольтный). . Устройство вентильного разрядника серии РВП Разрядник работает следующим образом. При перенапряжениях искровые промежутки 3 пробиваются, и по вилитовым дискам блока 4 ток проходит в землю. Сопротивление вилита резко уменьшается и перенапряжение на оборудование подстанции не поступает. При исчезновении перенапряжения сопротивление вилита возрастает, дуга в искровом промежутке гаснет, и ток через разрядник не проходит. Специальная защита воздушных линий от атмосферных перенапряжений не устанавливается, так как молния может ударить в линию в любой ее точке. Все воздушные линии оборудуются устройствами АПВ, т. к. после КЗ, вызванного перенапряжением, и отключения линии, ее изоляционные свойства восстанавливаются. Поэтому повторное включение линии оказывается в большинстве случаев успешным. В настоящее время широкое распространение получают ограничители перенапряжений (ОПН), представляющие собой нелинейные активные сопротивления без специальных искровых промежутков. ОПН обычно изготовляют путем спекания оксидов цинка и других металлов. В полученной после спекания поликристаллической керамике кристаллы окиси цинка имеют высокую проводимость, а межкристальные промежутки, сформированные из оксидов других металлов, имеют высокое сопротивление. Точечные контакты между кристаллами окиси цинка, возникающие при спекании, являются микроваристорами, т. е. имеют так называемые р-n переходы. Защитная характеристика ОПН имеет вид, близкий к нелинейной характеристике вентильного разрядника (рис. 2, б). Однако оксидно-цинковые сопротивления имеют значительно более высокую нелинейность, чем вилитовые сопротивления. Благодаря этому в ОПН нет необходимости использования искровых промежутков. Выпуск вентильных разрядников в нашей стране прекращен в 90-е годы из-за высокой трудоемкости производства и настройки искровых промежутков. При том существенно расширена номенклатура выпускаемых ОПН. Достоинствами ОПН, по сравнению с вентильными разрядниками, являются взрывобезопасность, более высокая надежность, снижение уровня перенапряжений, воздействующих на защищаемое оборудование, и возможность контроля старения сопротивлений по току в рабочем режиме. Существенным недостатком ОПН и вентильных разрядников является невозможность обеспечения с их помощью защиты от квазистационарных перенапряжений (резонансные и феррорезонансные перенапряжения, смещение нейтрали при перемежающейся электрической дуге). Не следует забывать, что при длительных перенапряжениях происходит интенсивное старение ОПН, и они могут отказать, т. е. повредиться. В распределительных электрических сетях в системе защиты от перенапряжений основное внимание уделяют защите оборудования подстанций. На рис. 5 приведены два варианта защиты подстанций напряжением 6-10 кВ от атмосферных перенапряжений при присоединении их непосредственно к воздушной линии (рис. 5, а) и кабельным вводом (рис. 5, б). В первом случае (а) на линии устанавливают два комплекта трубчатых разрядников F1, F2, один из которых (F2) - на концевой опоре линии, а F1 - на расстоянии 100-5-200 м от F2. В случае (б) комплект разрядников F2 устанавливают на конце кабеля, причем его заземление соединяют с оболочкой кабеля. Это необходимо для уменьшения перенапряжений, поступающих на подстанцию. Второй комплект F1 устанавливается при длине кабельного ввода менее 10 м. Расстояние между F1 и F2 равно 100-5-200 м. Вместо F2 при длине кабельной вставки более 50 м рекомендуется устанавливать вентильные разрядники.
Защита подстанции от перенапряжений: а - подстанция непосредственно присоединена к ВЛ; б - подстанция присоединена к ВЛ кабельным вводом Кроме трубчатых разрядников непосредственно на подстанциях устанавливают вентильные разрядники (или ОПН) FV3 и FV4 на сторонах высшего и низшего напряжений. Сочетание трубчатые разрядники - вентильный разрядник (или ОПН) применяется по следующей причине. Трубчатые разрядники не могут надежно защищать трансформаторы и вращающиеся электрические машины от перенапряжений, т. к. имеют грубые защитные характеристики. Такую защиту обеспечивают вентильные разрядники. Назначение трубчатых разрядников заключается в том, чтобы предотвратить повреждение вентильных разрядников от приходящих из линии волн перенапряжений. Трубчатые разрядники уменьшают амплитуду и крутизну импульсов перенапряжений до величин, безопасных для вентильных разрядников и ОПН. В настоящее время при новом строительстве, реконструкции и техническом перевооружении объектов Федеральной сетевой компании России применение вентильных и трубчатых разрядников не рекомендуется по причине их низкой надежности и из-за недостатков в технических характеристиках. studfiles.net Защита от грозовых перенапряжений4.2.133. Защита от грозовых перенапряжений РУ и ПС осуществляется: от прямых ударов молнии - стержневыми и тросовыми молниеотводами; от набегающих волн с отходящих линий - молнеотводами от прямых ударов молнии на определенной длине этих линий защитными аппаратами, устанавливаемыми на подходах и в РУ, к которым относятся разрядники вентильные (РВ), ограничители перенапряжений (ОПН), разрядники трубчатые (РТ) и защитные искровые промежутки (ИП). Ограничители перенапряжений, остающиеся напряжения которых при номинальном разрядном токе не более чем на 10% ниже остающегося напряжения РВ или среднего пробивного напряжения РТ или ИП, называются далее соответствующими. 4.2.134. Открытые РУ и ПС 20-750 кВ должны быть защищены от прямых ударов молнии. Выполнение защиты от прямых ударов молнии не требуется для ПС 20 и 35 кВ с трансформаторами единичной мощностью 1,6 МВ·А и менее независимо от количества таких трансформаторов и от числа грозовых часов в году, для всех ОРУ ПС 20 и 35 кВ в районах числом грозовых часов в году не более 20, а также для ОРУ и ПС 220 кВ и ниже на площадках с эквивалентным удельным сопротивлением земли в грозовой сезон более 2000 Ом·м при числе грозовых часов в году не более 20. Здания закрытых РУ и ПС следует защищать от прямых ударов молнии в районах с числом грозовых часов в году более 20. Защиту зданий закрытых РУ и ПС, имеющих металлические покрытия кровли, следует выполнять заземлением этих покрытий. При наличии железобетонной кровли и непрерывной электрической связи отдельных ее элементов защита выполняется заземлением ее арматуры. Защиту зданий закрытых РУ и ПС, крыша которых не имеет металлических или железобетонных покрытий с непрерывной электрической связью отдельных ее элементов, следует выполнять стержневыми молниеотводами, либо укладкой молниеприемной сетки непосредственно на крыше зданий. При установке стержневых молниеотводов на защищаемом здании от каждого молниеотвода должно быть проложено не менее двух токоотводов по противоположным сторонам здания. Молниеприемная сетка должна быть выполнена из стальной проволоки диаметром 6-8 мм и уложена на кровлю непосредственно или под слой негорючих утеплителя или гидроизоляции. Сетка должна иметь ячейки площадью не более 150 м(например, ячейка 12х12 м). Узлы сетки должны быть соединены сваркой. Токоотводы, соединяющие молниеприемную сетку с заземляющим устройством, должны быть проложены не реже чем через каждые 25 м по периметру здания. В качестве токоотводов следует использовать металлические и железобетонные (при наличии хотя бы части ненапряженной арматуры) конструкции зданий. При этом должна быть обеспечена непрерывная электрическая связь от молниеприемника до заземлителя. Металлические элементы здания (трубы, вентиляционные устройства и пр.) следует соединять с металлической кровлей или молниеприемной сеткой. При расчете числа обратных перекрытий на опоре следует учитывать увеличение индуктивности опоры пропорционально отношению расстояния по токоотводу от опоры до заземления к расстоянию от заземления до верха опоры. При вводе в закрытые РУ и ПС ВЛ через проходные изоляторы, расположенные на расстоянии менее 10 м от токопроводов и других связанных с ним токоведущих частей, указанные вводы должны быть защищены РВ или соответствующими ОПН. При присоединении к магистралям заземления ПС на расстоянии менее 15 м от силовых трансформаторов необходимо выполнение условий 4.2.136. Для расположенных на территории ПС электролизных зданий, помещений для хранения баллонов с водородом и установок с ресиверами водорода молниеприемная сетка должна иметь ячейки площадью не более 36 м(например, 6х6 м). Защита зданий и сооружений, в том числе взрывоопасных и пожароопасных, а также труб, расположенных, на территории электростанций, осуществляется в соответствии с технической документацией, утвержденной в установленном порядке. 4.2.135. Защита ОРУ 35 кВ и выше от прямых ударов молнии должна быть выполнена отдельно стоящими или установленными на конструкциях стержневыми молниеотводами. Рекомендуется использовать защитное действие высоких объектов, которые являются молниеприемниками (опоры ВЛ, прожекторные мачты, радиомачты и т.п.). На конструкциях ОРУ 110 кВ и выше стержневые молниеотводы могут устанавливаться при эквивалентном удельном сопротивлении земли в грозовой сезон: до 1000 Ом·м - независимо от площади заземляющего устройства ПС; более 1000 до 2000 Ом·м - при площади заземляющего устройства ПС 10000 ми более. Установка молниеотводов на конструкциях ОРУ 35 кВ допускается при эквивалентном удельном сопротивлении земли в грозовой сезон: до 500 Ом·м - независимо от площади заземляющего контура ПС, более 500 Ом·м - при площади заземляющего контура ПС 10000 ми более. От стоек конструкций ОРУ 35 кВ и выше с молниеотводами должно быть обеспечено растекание тока молнии по магистралям заземления не менее чем в двух направлениях с углом не менее 90° между соседними. Кроме того, должно быть установлено не менее одного вертикального электрода длиной 3-5 м на каждом направлении, на расстоянии не менее длины электрода от места присоединения к магистрали заземления стойки с молниеотводом. Если зоны защиты стержневых молниеотводов не закрывают всю территорию ОРУ, дополнительно используют тросовые молниеотводы, расположенные над ошиновкой. Гирлянды подвесной изоляции на порталах ОРУ 20 и 35 кВ с тросовыми или стержневыми молниеотводами, а также на концевых опорах ВЛ должны иметь следующее количество изоляторов: 1) на порталах ОРУ с молниеотводами: не менее шести изоляторов при расположении вентильных разрядников или соответствующих им по уровню остающихся напряжений ОПН не далее 15 м по магистралям заземляющего устройства от места присоединения к нему; не менее семи изоляторов в остальных случаях; 2) на концевых опорах: не менее семи изоляторов при подсоединении к порталам троса ПС; не менее восьми изоляторов, если трос не заходит на конструкции ПС и при установке на концевой опоре стержневого молниеотвода. Число изоляторов на ОРУ 20 и 35 кВ и концевых опорах должно быть увеличено, если это требуется по условиям гл.1.9. При установке молниеотводов на концевых опорах ВЛ 110 кВ и выше специальных требований к выполнению гирлянд изоляторов не предъявляется. Установка молниеотводов на концевых опорах ВЛ 3-20 кВ не допускается. Расстояние по воздуху от конструкций ОРУ, на которых установлены молниеотводы, до токоведущих частей должно быть не менее длины гирлянды. Место присоединения конструкции со стержневым или тросовым молниеотводом к заземляющему устройству ПС должно быть расположено на расстоянии не менее 15 м по магистралям заземления от места присоединения к нему трансформаторов (реакторов) и конструкций КРУН 6-10 кВ. Расстояние в земле между точкой заземления молниеотвода и точкой заземления нейтрали или бака трансформатора должно быть не менее 3 м. 4.2.136. На трансформаторных порталах, порталах шунтирующих реакторов и конструкциях ОРУ, удаленных от трансформаторов или реакторов по магистралям заземления на расстоянии менее 15 м, молниеотводы могут устанавливаться при эквивалентном удельном сопротивлении земли в грозовой сезон не более 350 Ом·м и при соблюдении следующих условий: 1) непосредственно на всех выводах обмоток 3-35 кВ трансформаторов или на расстоянии не более 5 м от них по ошиновке, включая ответвления к защитным аппаратам, должны быть установлены соответствующие ОПН 3-35 кВ или РВ; 2) должно быть обеспечено растекание тока молнии от стойки конструкции с молниеотводом по трем-четырем направлениям с углом не менее 90° между ними; 3) на каждом направлении, на расстоянии 3-5 м от стойки с молниеотводом, должно быть установлено по одному вертикальному электроду длиной 5 м; 4) на ПС с высшим напряжением 20 и 35 кВ при установке молниеотвода на трансформаторном портале сопротивление заземляющего устройства не должно превышать 4 Ом без учета заземлителей, расположенных вне контура заземления ОРУ; 5) заземляющие проводники РВ или ОПН и силовых трансформаторов рекомендуется присоединять к заземляющему устройству ПС поблизости один от другого или выполнять их так, чтобы место присоединения РВ или ОПН к заземляющему устройству находилось между точками присоединения заземляющих проводников портала с молниеотводом и трансформатора. Заземляющие проводники измерительных трансформаторов тока необходимо присоединить к заземляющему устройству РУ в наиболее удаленных от заземления РВ или ОПН местах. 4.2.137. Защиту от прямых ударов молнии ОРУ, на конструкциях которых установка молниеотводов не допускается или нецелесообразна по конструктивным соображениям, следует выполнять отдельно стоящими молниеотводами, имеющими обособленные заземлители с сопротивлением не более 80 Ом при импульсном токе 60 кА. Расстояние , м, между обособленным заземлителем молниеотвода и заземляющим устройством ОРУ (ПС) должно быть равным (но не менее 3 м): , где - импульсное сопротивление заземления, Ом, отдельно стоящего молниеотвода. Расстояние по воздуху , м, от отдельностоящего молниеотвода с обособленным заземлителем до токоведущих частей, заземленных конструкций и оборудования ОРУ (ПС) должно быть равным (но не менее 5 м): , где - высота рассматриваемой точки на токоведущей части или оборудовании над уровнем земли, м. Заземлители отдельно стоящих молниеотводов в ОРУ могут быть присоединены к заземляющему устройству ОРУ (ПС) при соблюдении указанных в 4.2.135 условий установки молниеотводов на конструкциях ОРУ. Место присоединения заземлителя отдельно стоящего молниеотвода к заземляющему устройству ПС должно быть удалено по магистралям заземления на расстояние не менее 15 м от места присоединения к нему трансформатора (реактора). В месте присоединения заземлителя отдельно стоящего молниеотвода к заземляющему устройству ОРУ 35-150 кВ магистрали заземления должны быть выполнены по двум-трем направлениям с углом не менее 90° между ними. Заземлители молниеотводов, установленных на прожекторных мачтах, должны быть присоединены к заземляющему устройству ПС. В случае несоблюдения условий, указанных в 4.2.135, дополнительно к общим требованиям присоединения заземлителей отдельно стоящих молниеотводов должны быть соблюдены следующие требования: 1) в радиусе 5 м от молниеотвода следует установить три вертикальных электрода длиной 3-5 м; 2) если расстояние по магистрали заземления от места присоединения заземлителя молниеотвода к заземляющему устройству до места присоединения к нему трансформатора (реактора) превышает 15 м, но менее 40 м, то на выводах обмоток напряжением до 35 кВ трансформатора должны быть установлены РВ или ОПН. Расстояние по воздуху от отдельно стоящего молниеотвода, заземлитель которого соединен с заземляющим устройством ОРУ (ПС), до токоведущих частей должно составлять: , где - высота токоведущих частей над уровнем земли, м;- длина гирлянды изоляторов, м. 4.2.138. Тросовые молниеотводы ВЛ 110 кВ и выше, как правило, следует присоединять к заземленным конструкциям ОРУ (ПС). От стоек конструкций ОРУ 110-220 кВ, к которым присоединены тросовые молниеотводы, должны быть выполнены магистрали заземления не менее чем по двум-трем направлениям с углом не менее 90° между ними. Тросовые молниеотводы, защищающие подходы ВЛ 35 кВ, разрешается присоединять к заземленным конструкциям ОРУ при эквивалентном удельном сопротивлении земли в грозовой сезон: до 750 Ом·м - независимо от площади заземляющего контура ПС; более 750 Ом·м - при площади заземляющего контура ПС 10000 ми более. От стоек конструкций ОРУ 35 кВ, к которым присоединены тросовые молниеотводы, магистрали заземления должны быть выполнены не менее чем по двум-трем направлениям с углом не менее 90° между ними. Кроме того, на каждом направлении должно быть установлено по одному вертикальному электроду длиной 3-5 м на расстоянии не менее 5 м. Сопротивление заземлителей ближайших к ОРУ опор ВЛ напряжением 35 кВ не должно превышать 10 Ом. Тросовые молниеотводы на подходах ВЛ 35 кВ к тем ОРУ, к которым не допускается их присоединение, должно заканчиваться на ближайшей к ОРУ опоре. Первый от ОРУ бестросовый пролет этих ВЛ должен быть защищен стержневыми молниеотводами, устанавливаемыми на ПС, опорах ВЛ или около ВЛ. Гирлянды изоляторов на порталах ОРУ 35 кВ и на концевых опорах ВЛ 35 кВ следует выбирать в соответствии с 4.2.135. 4.2.139. Устройство и защита подходов ВЛ к ОРУ и ПС должны отвечать требованиям, приведенным в 4.2.138, 4.2.142-4.2.146, 4.2.153-4.2.157. 4.2.140. Не допускается установка молниеотводов на конструкциях: трансформаторов, к которым открытыми токопроводами присоединены вращающиеся машины; опор открытых токопроводов, если к ним присоединены вращающиеся машины. Порталы трансформаторов и опоры открытых токопроводов, связанных с вращающимися машинами, должны входить в зоны защиты отдельно стоящих или установленных на других конструкциях молниеотводов. Указанные требования относятся и к случаям соединения открытых токопроводов с шинами РУ, к которым присоединены вращающиеся машины. 4.2.141. При использовании прожекторных матч в качестве молниеотводов электропроводку к ним на участке от точки выхода из кабельного сооружения до мачты и далее по ней следует выполнять кабелями с металлической оболочкой либо кабелями без металлической оболочки в трубах. Около конструкции с молниеотводом эти кабели должны быть проложены непосредственно в земле на протяжении не менее 10 м. В месте ввода кабелей в кабельное сооружение металлическая оболочка кабелей, броня и металлическая труба должны быть соединены с заземляющим устройством ПС. 4.2.142. Защита ВЛ 35 кВ и выше от прямых ударов молнии на подходах к РУ (ПС) должна быть выполнена тросовыми молниеотводами в соответствии с табл.4.2.8. Таблица 4.2.8 studfiles.net Назовите достоинства и недостатки полимерных изоляторов на ВЛ. Методы защиты ВЛ 10-220 кВ от перенапряжений.ПРЕИМУЩЕСТВА ПОЛИМЕРНЫХ ИЗОЛЯТОРОВ - Более устойчивы к актам вандализма - Высокая механическая прочность - Высокая стойкость к перенапряжению - Устойчивость к атмосферным загрязнениям - Простота и удобство монтажа - Низкий вес НЕДОСТАТКИПОЛИМЕРНЫХ ИЗОЛЯТОРОВ - При старении и воздействии высоких температур уменьшается механическая и электрическая прочность - Стареют под воздействием ультрафиолета и солнечной радиации - Водопроницаемы - Пожароопасны - Подвержены воздействию выбросов металлургических и химических производств - Не рекомендуется применять в разъединителях класса напряжения 220 кВ и более - Высокий риск пробоев при разгерметизации
Методы защиты ВЛ 10-220 кВ от перенапряжений
Открытые РУ и ПС 20-750 кВ должны быть защищены от прямых ударов молнии. Для защиты от природных (внешних) перенапряжений на металлических и железобетонных конструкциях открытых распределительных устройств устанавливают стержневые молниеотводы. На высоковольтных линиях напряжением 35 кВ и выше применяют грозозащитный трос (тросовый молниеотвод), который располагается в верхней части опор линий электропередач на всей их протяженности, соединяясь с металлическими элементами линейных порталов открытых распределительных устройств подстанций. Молниеотводы притягивают атмосферные заряды на себя, тем самым предупреждая их попадания на токоведущие части электрооборудования электроустановок. Для обеспечения надежной защиты оборудования электроустановок от возможных перенапряжений, разрядники и ограничители перенапряжений, как и все элементы оборудования, должны проходить периодические ремонты и испытания. Также необходимо в соответствии с установленной периодичностью проверять сопротивление и техническое состояние заземляющих контуров распределительных устройств. Основной причиной грозовых перенапряжений на изоляции оборудования распределительных устройств (РУ) 35-750 кВ являются воздействия молнии на присоединенные воздушные линии (ВЛ), вызывающие образование грозовых волн, распространяющихся вдоль ВЛ. Защита изоляции оборудования РУ от набегающих по ВЛ грозовых волн основана на ряде мероприятий [1-4]: − обустройство защищенных подходов воздушных линий к распределительному устройству, на которых приняты меры по снижению числа грозовых волн с опасными параметрами, возникающих на изоляции ВЛ вследствие ударов молнии; − установка в выбранные места защитных аппаратов с необходимыми характеристиками (ранее - вентильных разрядников РВ, теперь - нелинейных ограничителей перенапряжений ОПН). Разрядники вентильные или ОПН следует выбирать с учетом координации их защитных характеристик с изоляцией защищаемого оборудования, соответствия наибольшего рабочего напряжения наибольшему рабочему напряжению сети с учетом высших гармоник и неравномерности распределения напряжения по поверхности, а также допустимых повышений напряжения в течение времени действия резервных релейных защит при однофазном замыкании на землю, при одностороннем включении линии или переходном резонансе на высших гармониках. При присоединении трансформатора к РУ кабельной линией 110 кВ и выше в месте присоединения кабеля к шинам РУ с ВЛ должен быть установлен комплект РВ или ОПН. Заземляющий зажим РВ или ОПН должен быть присоединен к металлическим оболочкам кабеля. В случае присоединения к шинам РУ нескольких кабелей, непосредственно соединенных с трансформаторами, на шинах РУ устанавливается один комплект РВ или ОПН. Место их установки следует выбирать возможно ближе к местам присоединения кабелей. Принцип работы газовой защиты трансформатора См. № 64 infopedia.su Защита от перенапряжений, заземление воздушных линий электропередач.Воздушные линии электропередач напряжением 110-500 кВ с металлическими и железо-бетонными опорами должны быть защищены от прямых ударов молнии тросами по всей длине линии. Для воздушных линий электропередач напряжением до 35 кВ применение грозозащитных тросов не требуется кроме участков, отходящих от подстанции. Воздушные линии 110 кВ на деревянных опорах, как правило, не должен защищаться тросами. Крепление тросов на всех опорах воздушных линий электропередач 110-500 кВ должно быть выполнено при помощи изолятора, шунтированного искровым промежутком. На каждом анкерном участке длиной 10 км тросы должны быть заземлены в одной точке путём устройства специальных перемычек на анкерной опоре. Изолированное крепление троса рекомендуется выполнять стеклянными изоляторами. На подходах воздушных линий электропередач 110-330 кВ к подстанциям на длине 2-3 км и на подходе ВЛ 500 кВ на длине не менее 5 км, если тросы не используются для ёмкостного отбора, плавки гололёда или связи, их следует заземлять на каждой опоре. На воздушных линиях электропередач 150 кВ и ниже, если не предусмотрена плавка гололёда на тросе, изолированное крепление троса следует выполнять только на металлических и железобетонных анкерных опорах. На переходах воздушных линий через реки, ущелья и т.п. при высоте опор более 40 м и отсутствии на опорах троса должны устанавливаться трубчатые разрядники. На воздушных линиях электропередач должны быть заземлены: - опоры, имеющие грозозащитный трос или другие устройства грозозащиты; - железобетонные и металлические опоры ВЛ 3-35 кВ; - опоры, на которых установлены силовые или измерительные трансформаторы, разъединители или другие аппараты; - металлические и железобетонные опоры ВЛ 110-500 кВ без тросов и других устройств грозозащиты, если это необходимо по условиям обеспечения надёжной работы релейной защиты и автоматики. Железобетонные фундаменты опор воздушных линий электропередач могут быть использованы в качестве естественных заземлителей при осуществлении металлической связи между анкерными болтами и арматурой фундамента. Для заземления железобетонных опор в качестве заземляющих проводников следует использовать всё те же элементы продольной арматуры стоек, которые металлически соединены между собой и могут быть присоединены к заземлителю. Оттяжки железобетонных опор должны использоваться в качестве заземляющих проводников дополнительно к арматуре. Тросы и детали крепления изоляторов к траверсе железобетонных опор должны быть металлически соединены с заземляющим спуском или заземлённой арматурой. Сечение каждого из заземляющих спусков на опоре воздушной линии должно быть не менее 35 мм2. Заземлители воздушных линий электропередач, как правило, должны находиться на глубине не менее 0,5 м, а в пахотной земле – 1 м. www.eti.su |