Eng Ru
Отправить письмо

IV Международный конкурс научно-исследовательских и творческих работ учащихся Старт в науке. Живой проводник электричества


Живые загадки: электрические явления в природе - Энергетика и промышленность России - № 06 (194) март 2012 года - WWW.EPRUSSIA.RU

Газета "Энергетика и промышленность России" | № 06 (194) март 2012 года

Удивительное взаимодействие электричества и живых организмов изучают ученые всего мира, но многое пока еще остается для нас тайной.

Впервые на электрический заряд обратил внимание Фалес Милетский за 600 лет до н. э. Он обнаружил, что янтарь, потертый о шерсть, приобретает свойства притягивать легкие предметы: пушинки, кусочки бумаги.

Пионером исследования роли электрического поля в живом организме явился профессор анатомии из Болонского университета Луиджи Гальвани. Начиная с 1775 года он стал интересоваться взаимосвязью между «электричеством и жизнью». В конце 1780 года Гальвани занимался в своей лаборатории изучением нервной системы отпрепарированных лягушек.

Совершенно случайно в той же комнате работал его приятель-физик, проводивший опыты с электричеством. Одну из препарированных лягушек Гальвани положил на стол, на котором стояла электрическая машина (генератор статического электричества), и каждый раз, когда машина давала разряд, мышцы лягушки сокращались.

В это время в комнату вошла жена Гальвани. Ее взору предстала жуткая картина: при искрах в электрической машине лапки мертвой лягушки, прикасавшиеся к железному предмету (скальпелю), дергались. Жена Гальвани с ужасом указала на это мужу.

Столкнувшись с необъяснимым явлением, Гальвани счел за лучшее детально исследовать его опытным путем.

Гальвани решил, что все дело в электрических искрах. Чтобы получить более сильный эффект, он во время грозы вывесил на балкон несколько отпрепарированных лягушачьих лапок на медных проволочках. Однако молнии – гигантские электрические разряды никак не повлияли на поведение отпрепарированных лягушек. Что не удалось молнии, сделал ветер. При порывах ветра лягушачьи лапки раскачивались и иногда касались железных прутьев балкона. Как только это случалось, лапки дергались. Гальвани, однако, отнес явление все‑таки на счет грозовых электрических разрядов.

Ученый заключил, что электричество некоим образом «входит» в нерв, и это приводит к сокращению мышцы. Он показал, что для эффекта необходимы металлы. Пять лет он посвятил изучению роли различных металлов в их способности вызывать мышечные сокращения. При наличии тел, не являющихся проводниками электричества, никакого эффекта нет. Гальвани пришел к выводу, что если нерв и мышца лежат на одинаковых металлических пластинах, то замыкание пластин проволокой не дает никакого эффекта. Но если пластины изготовлены из разных металлов, их замыкание сопровождается мышечным сокращением. Наконец, он показал даже, что разные металлы дают разную степень эффекта. Но правильного вывода Гальвани не сумел сделать. Будучи врачом, а не физиком, он видел причину в так называемом «животном электричестве». Свою теорию Гальвани подтверждал ссылкой на известные случаи разрядов, которые способны производить некоторые живые существа, например «электрические рыбы».

Человек и электричество

Вас никогда не интересовало, почему у наэлектризованных людей волосы поднимаются вверх? Оказывается, волосы электризуются одноименным зарядом. Как известно, одноименные заряды отталкиваются, поэтому волосы, подобно листочкам бумажного султана, расходятся во все стороны. Если любое проводящее тело, в том числе и человеческое, изолировать от земли, то его можно зарядить до большого потенциала. Так, с помощью электростатической машины тело человека можно зарядить до потенциала в десятки тысяч вольт. Отсюда вопрос: оказывает ли электрический заряд, размещенный в таком случае в теле человека, влияние на нервную систему?

Человеческое тело – проводник электричества. Если его изолировать от земли и зарядить, то заряд располагается исключительно по поверхности тела, поэтому заряжение до сравнительно высокого потенциала не влияет на нервную систему, так как нервные волокна находятся под кожей. Влияние электрического заряда на нервную систему сказывается в момент разряда, при котором происходит перераспределение зарядов на теле. Это перераспределение представляет собой кратковременный электрический ток, проходящий не по поверхности, а внутри организма.

Какова (приблизительно) электроемкость человека? Если положение человека таково, что его тело находится в соседстве с заземленным проводником (удалено, например, от стен комнаты), то электроемкость его равна приблизительно 30 сантиметрам. Это значит, что электроемкость человеческого тела при указанных условиях равна емкости шарообразного проводника радиусом 30 сантиметров.

Другой вопрос – почему случайное прохождение тока через две близко расположенные точки тела, например два пальца одной и той же руки, ощущаете не только этими пальцами, но и всей нервной системой? Из всех тканей, составляющих тело, наименьшей проводимостью обладают наружные слои кожи, наибольшей – нервные волокна, поэтому электрический ток в теле проходит большей частью по нервным волокнам и этим самым оказывает воздействие на всю нервную систему.

При проверке качества батарейки от карманного фонарика иногда прикасаются языком к металлическим пластинам. Если язык ощущает горьковатый привкус, то батарейка хорошая. Почему же электричество батарейки горьковато на вкус? Слюна человека содержит в незначительном количестве различные органические соли (натрия, калия, кальция и др.). Когда через слюну проходит электрический ток, эти соли подвергаются электролизу, на полюсах батарейки выделяются их составные части, и язык ощущает горьковатый привкус.

Животные и электричество

Поглаживая в темноте кошку сухой ладонью, можно заметить небольшие искорки, возникающие между рукой и шерстью. Что здесь происходит? При поглаживании кошки происходит электризация руки с последующим искровым разрядом. Вспомним опыты Гальвани. Соединив две проволоки из различных металлов, он концом одной из них касался лапки свежепрепарированной лягушки, а концом другой – поясничных нервов; при этом мускулы лапки судорожно сокращались. Как объяснить это явления? Два металла и жидкость лапки составляют гальванический элемент. Ток, возникающий при замыкании цепи, раздражает нервные окончания лягушки.

Еще один любопытный вопрос: почему птицы безнаказанно садятся на провода высоковольтной передачи? Тело сидящей на проводе птицы представляет собой ответвление цепи, включенное параллельно участку проводника между лапками птицы. При параллельном соединении двух участков цепи величина токов в них обратно пропорциональна сопротивлению. Сопротивление тела птицы огромно по сравнению с сопротивлением небольшой длины проводника, поэтому величина тока в теле птицы ничтожна и безвредна. Следует добавить еще, что разность потенциалов на участке между ногами птицы мала.

Бывают случаи, когда птицу, сидящую на проводе линии электропередачи, убивает током. При каких обстоятельствах это может произойти? Птицы чаще всего гибнут в тех случаях, когда, сидя на проводе линии электропередачи, они касаются столба крылом, хвостом или клювом, то есть соединяются с землей.

Еще один интересный факт – почему птицы слетают с провода высокого напряжения, когда включают ток? При включении высокого напряжения на перьях птицы возникает статический электрический заряд, из‑за наличия которого перья птицы расходятся, как расходятся кисти бумажного султана, соединенного с электростатической машиной. Это действие статического заряда и побуждает птицу слететь с провода.

В клетках, тканях и органах животных и растений между отдельными их участками возникает определенная разность потенциалов, так называемые биоэлектропотенциалы, которые связаны с процессами обмена в организме. Какова же величина биопотенциалов?

Эти биоэлектропотенциалы очень малы. Напряжение их колеблется от нескольких микровольт до десятков милливольт. Для регистрации таких потенциалов, изменяющихся во времени, требуются очень чувствительные приборы, позволяющие без искажения регистрировать биотоки живой ткани. Электрическая активность оказалась неотъемлемым свойством живой материи.

www.eprussia.ru

3. Виды электротравм. Механизм смерти от электрического тока. Электрическое сопротивление тела человека. Живая ткань как проводник электрического тока.

По степени тяжести, возникающей при поражении электрическим током, травмы классифицируются по четырем степеням:

I степень – наличие судорожного сокращения мышц без потери сознания;

II степень – судорожное сокращение мышц и потеря сознания;

III степень – потеря сознания и нарушение функции сердечной деятельности или дыхания;

IV степень – клиническая смерть.

Электротравма – результат воздействия на человека электрического тока или электрической дуги.

В зависимости от рабочего напряжения различают низковольтные и высоковольтные электротравмы.

Первый вид – при напряжении 27-380 В – наиболее частый случай поражений переменным током промышленной частоты. Основная опасность – большая вероятность развития фибрилляции, а при длительном прохождении тока – остановка дыхания и асистолия.

К электротравмам относятся :

Ожоги (местные электротравмы), которые подразделяются на четыре степени:

I степень – покраснения кожи;

II степень – образование пузырей;

III степень – обугливание кожи;

IV степень – обугливание подкожной клетчатки, мышц, сосудов.

Электрический ожог – самая распространенная электротравма. Ожоги возникают у большей части пострадавших от электрического тока, причем 1/3 ожогов сопровождается другими травмами – электрическими метками, металлизацией кожи и офтальмией. Различают 2 основных вида ожога: токовый (или контактный), возникающий при прохождении тока через тело человека в результате его контакта с токоведущей частью; дуговой, обусловленный воздействием электрической дуги на тело человека.

Токовый (контактный) ожог получают в электроустановках относительно небольшого напряжения – не выше 2 кВ. при более высоких напряжениях, как правило, образуется электрическая дуга (или искра), что может привести к дуговому ожогу.

Механизм смерти от электрического тока. Термальные состояния – это крайние состояния организма, переходные от жизни к смерти. Все они обратимы, во всех стадиях умирания возможно оживление.

Динамика умирания характеризуется цепью событий: асистолия (прекращение работы сердца) или фибрилляция (колебания волокон сердца с частотой 400-600 раз в 1 минуту) →остановка кровообращения →потеря сознания (в течение нескольких секунд)→ расширение зрачков (на 20-30 секунд) → остановка дыхания → термальные состояния, клиническая смерть → биологическая (необратимая) смерть.

Выделяется четыре вида термальных состояний (этапов умирания): преагональное состояние – преагония, терминальная пауза, агония, клиническая смерть.

Преагония. Общее двигательное возбуждение, нарушения сознания – заторможенность, спутанность, отсутствие сознания. Кожа бледная; ногтевое ложе синюшное; пульс частый, затем медленный. Дыхание вначале учащенное, в дальнейшем медленное, редкое, судорожное, аритмичное. Температура тела резко понижена. При быстром умирании возможны кратковременные судороги, потеря сознания, двигательное возбуждение.

Термальная пауза. Длится от нескольких секунд до 3-4 минут. Симптомы: дыхание отсутствует; пульс резко замедлен, определяется только на сонных, бедренных артериях; реакция зрачков на свет исчезает, ширина зрачков возрастает.

Агония. Характеризуется последней короткой вспышкой жизнедеятельности. Симптомы: возможно кратковременное восстановление сознания, некоторое учащение пульса (на сонных, бедренных артериях). Тоны сердца глухие. Дыхание может быть двух видов: судорожное, большой амплитуды, частотой 2-6 в 1 минуту и слабое, редкое, поверхностное, малой амплитуды. Агония завершается последним вдохом и переходит в клиническую смерть.

Клиническая смерть. Граничное состояние перехода от гаснущей жизни к биологической смерти. Возникает непосредственно после прекращения кровообращения и дыхания.

Состояние клинической смерти характеризуется полным прекращением всех внешних проявлений жизнедеятельности, однако даже в наиболее ранимых тканях (мозг) еще не наступили необратимые изменения. Продолжительность состояния клинической смерти – 5 минут.

В течение пяти минут клинической смерти человек еще ЖИВ. Современные способы оживления, примененные в первые 2 минуты клинической смерти, позволяют спасти 92% пострадавших, в течение от 3-х до 4-х минут – 50%. От своевременности реанимационной помощи зависит жизнь или преждевременная смерть человека.

Электрическое сопротивление тела человека. При включении человека под напряжение величина тока, протекающего через человека, равна величине напряжения, под которым человек оказался включенным, поделенной на величину сопротивления тела человека. Следовательно, основными факторами, определяющими исход поражения электрическим током, являются сопротивление человека Rч и величина приложенного к нему напряжения.

Сопротивление тела человека – величина переменная, зависящая от многих факторов (например, состояния кожи, величины приложенного напряжения и протекающего тока, психофизического состояния человека и т.д.). Кожа является изолирующей оболочкой, предохраняющей человека при малых напряжениях от поражения током. Сопротивление кожи обусловливается состоянием ее верхнего рогового слоя – эпидермиса и возрастает с увеличением толщины этого слоя. Сопротивление кожи уменьшается с увеличением приложенного напряжения и длительностью воздействия тока. Чем выше приложенное напряжение или чем дольше прохождение тока, тем больше вероятность поражения током.

Влага, пот, проводящие химические вещества и пыль (металлическая, угольная и другая) значительно снижают сопротивление кожи. В среднем можно принять сопротивление для сухой кожи 100 000 Ом/см² и для влажной 1000 Ом/см². Сопротивление внутренних органов человека не зависит от места приложения контакта, величины приложенного напряжения, и оно меняется только с температурой тела. В среднем внутреннее сопротивление можно принять равным 1000 Ом. Таким образом, общее сопротивление человеческого тела может меняться в широких пределах, соответственно с чем может возникать большая или меньшая опасность поражения током.

Для расчетов при разработке средств защиты принимают сопротивление тела человека 1000 – 1200 Ом.

Живая ткань как проводник электрического тока. Возбуждение живых тканей организма протекающим через него электрическим током, проявляется в непроизвольных судорожных сокращениях различных мышц тела и называется электрическим ударом (электрическим шоком). Под угрозой поражения оказывается весь организм из-за нарушения нормальной работы различных органов и систем, в том числе сердца, легких, ЦНС и др.

Степени отрицательного воздействия электрического удара:

I степень – судорожное (едва ощутимое) сокращение мышц;

II степень – судорожное сокращение мышц с сильными болями, но без потери сознания;

III степень – судорожное сокращение мышц, потеря сознания, но есть дыхание и пульс;

IV степень – клиническая смерть, т.е. отсутствие сознания и пульса.

studfiles.net

Электрические люди или человеческое тело как проводник электричества

Электричество

Так уж сложилось исторически, что наша страна населена людьми, которые в большей мере связаны с рабочими профессиями более чем с какими либо другими. В свою очередь, значительное количество этих самых профессий напрямую связаны с использованием электрического тока. При этом существует потенциальная угроза для здоровья человека. Хотя данная опасность может подкараулить человека в домашнем быту. Проходя по человеческому организму, электрический ток воздействует на него в нескольких аспектах: термическом, электролитическом и биологическом.

Термическое воздействие может вызвать ожоги различных участков тела, нагрев кровеносных сосудов. Последствиями может стать определенные функциональные расстройства организма человека. Биологическое воздействие, как правило, проявляется через раздражительность и возбудимость живых тканей организма. При этом мышцы (в том числе и сердце) судорожно сокращаются, иногда прекращается работа органов дыхания и кровообращения. Не исключены механические повреждения тканей. Электролитическое воздействие может вызвать изменение, как физико-химического состава крови, так и ткани в целом.

Но, при всем выше перечисленном, на нашей планете существуют уникальные люди, которым под силу выдержать мощные удары электричества. Их насчитывается совсем небольшое количество. Часто, чтобы выразить восторг такими уникальными «видами», их называют суперменами, полубогами и другими красивыми словами. Многие ставят под сомнение гипотезы тех, которые утверждают, что это уникальный дар. А вдруг эта странная возможность пропадет именно в тот момент, когда обладателю дара снова захочется проявить свои умения.

Электрический человек

Электрические люди в истории

 Подобного рода феномены были знакомы человечеству во все времена, но лишь тогда, когда появилась теория электричества, машины электростатики, громоотводы и лейденская банка, вещам такого рода стали придавать большее значение.

Довольно широко известен случай, когда во Франции в 1869 году на свет появился ребенок, который излучал сильнейший статический заряд электричества. Больше всего от этого пострадала родная мать младенца, которая, намереваясь сменить пеленки, тут же получала мощнейший удар током. Еще более серьезным испытанием для нее было кормление малыша. При этом сам ребенок чувствовал себя замечательно. Некоторые очевидцы с воодушевлением рассказывали, что от пальцев новорожденного исходили небольшие молнии, а вокруг был свежий озоновый воздух. Игрушки, которыми пытался играть малыш, иногда двигались сами собой, стоило ему только потянуться к ним. Но эта история с печальным концом. Достигнув восьмимесячного возраста, мальчик умер.

В Канаде был зафиксирован еще один погожий случай, который произошел с взрослой девушкой. Все кто хотел более плотного общения с этой молодой женщиной, тут же вознаграждались ударом тока. Интересен тот факт, что девушка могла притягивать различного рода предметы, даже те, которые были крупными в размере и изготовлены из немагнитных материалов.

Приблизительно в эти же годы, был известен случай, когда 29 летняя жительница Парижа обладала подобным сомнительным «даром». С ней происходило нечто удручающее, нижнее белье так сильно прилегало к телу, что иногда снять его с себя без повреждений кожи было нереально. Так что искры из волос и притягивание предметом на этом фоне покажутся нелепой неурядицей.

Начало исследований электро людей

Одним из первых ученых, которые решили разобраться в подобных явлениях, был Франсуа Араго. Импульсом послужил случай с парижанкой Анжеликой Коэн, про которую ходили слухи, будто бы та двигает мебель легким прикосновением руки. Иногда электрические потоки создавали проблемы самой девушке, при этом резко возрастала частота пульса и, девушка билась в судорожных припадках. Но стоило Анжелине прикоснуться к дереву или опустить руки в проточную воду, как тот час все становилось на свои места.

Делая отчет о проведенной работе, ученый, не стыдясь, сделал заявление о том, что наука не на столько сильна, чтобы дать разумное объяснения подобным фактам. Да, что там говорить, даже в наше время трудно найти логическое толкование уникальных человеческих возможностей.

Франсуа Араго

Современные носители электричества

Одна из жителей Великобритании Ники Хайд-Палли довольно неожиданно для себя почувствовала в себе новые возможности, она просто превратилась в машину, которая производит электроэнергию. Получила эти уникальные способности великобританка после того, как ее ударило молнией. Разряд, угодивший в женщину, превратил ее в самого настоящего монстра, который воздействовал не только на предметы, но и на живые существа своими электроразрядами. Вся бытовая техника, которая находилась в одном помещении с Ники, сразу же становилась кучей абсолютно ненужного мусора. Этот так называемый дар, посланный свыше, имел для женщины весьма серьезные последствия. От нее ушел муж, который не стал терпеть болезненные электрические удары, которые ему наносила супруга, при этом сама того не желая. Таким образом, Ники превратилась в заключенную. Не желая наносить вред окружающим, она редко покидала пределы своего дома.

Среди кучи подобных интересных случаев можно выделить историю пенсионера из Украины. Этому человеку удавалось без особых болезненных ощущений переносить напряжение в 850 вольт. При чем после этого он не испытывал никаких проблем со здоровьем.

В одной из провинций Китая (Хэйлунцзян) живет человек, который обладает феноменальным даром. Он абсолютно не восприимчив к электрическим ударам. Ему без проблем удается зажечь лампочку легким касанием своей ладони, при этом держась рукой за провода под напряжением в 220 вольт.

При прохождении электрического потока через свое тело Ма Сяньган не испытывает какого либо дискомфорта, отшучиваясь, что таким образом он получает заряд бодрости.

Китайские телеканалы даже сделали серию репортажей про этого уникального человека. В них рассказывается, что свои неординарные способности он обнаружил еще много лет назад. Однажды телевизор Ма сломался. Пытаясь его подчинить, он ухватился за неизолированные провода. Линия была под напряжением, но на Сяньгана это не оказало никакого воздействия. Решив проверить свои способности, он самостоятельно устроил несколько экспериментов над собой. Каждый раз, когда Ма хватался за провода, тот не чувствовал никаких ударов тока.

Таким образом, он привлек интерес ученых к своей скромной персоне.

Исследовав Ма, консилиум ученных пришел к выводу о том, что объяснением всему является кожа на его ладонях. Как выяснилась, она более сухая и грубая, чем у обычного человека, что повышает сопротивление.

Житель Ингушетии, Леча Ватаев, который обладает сверхъестественными способностями организма, так же не поддается воздействию электрического тока. «Чудо-человек» без проблем работает с оголенными электрическими проводами.

Теперь Леча Ватаев пытается обнаружить в себе возможность лечить людей от многих болезней удивительными способностями своего организма, а точнее исходящими от него биотоками. Он развивает свой дар и дальше, экспериментирует над своим телом.

Наука беспомощна

Ни для кого не является секретом то, что какие либо электрические процессы постоянно проходят в теле человека. Кроме этого, от того происходят они или нет зависит успешная жизнедеятельность организма человека. Имеется в виду движение электрического тока по кровеносным сосудам, по нервам, по поверхности кожи. Наверняка вам приходилась слышать о таких диагностических методиках, как электрокардиограмма (ЭКГ) и электроэнцефалограмма (ЭЭГ), с помощью которых диагностируют работу сердца и мозга. В основу этих процессов входит определение качества электрических импульсов.

Внутри тела человека имеются определенные каналы или, как их еще называют, меридианы, в которых также фиксируется электрическая активность. Но напряжение и сила тока настолько мала, что для их фиксации потребуются сверхчувствительные приборы.

Скат

В живой природе, кроме человека, существуют другие живые организмы, способные генерировать и копить в себе мощные заряды электричества (таким примером может быть скат).

Современная наука говорит о том, что накапливание электроэнергии человеком невозможно, более того — это является смертельно опасным для его организма.

www.13min.ru

Мифы об электричестве - С любимыми не расставайтесь...

Прошло много лет исследований с тех пор, как Бенджамин Франклин проводил свои эксперименты с воздушным змеем в 1752 году, но мы до сих пор воспитываем много мифов об этой удивительной форме энергии. Пришло время забыть все, что вы знали об электричестве, и узнать что-то совершенно новое.

Батарейки хранят электрический заряд или электроны

Спросите себя: что такое батарейка? Наверняка вы ответите себе, что батарея хранит электричество или внутри нее свободно плавают электроны в какой-нибудь форме. Но это далеко не так.

Внутри батареи находится химический бульон, известный как электролит, между двумя терминалами — электродами (положительная и отрицательная стороны батареи). Когда батарея подключается к устройства (скажем, к фонарику), электролит химически преобразуется в ионы, и электроны высвобождаются на положительном электроде. Электроны притягиваются к отрицательному терминалу, но между терминалами есть устройство (в данном случае фонарик) и электроны его питают.

Электрический ток зависит от толщины провода

Существует вполне логичное заблуждение о том, что через толстые провода проходит больше тока, потому что в них шире путь и меньше сопротивление. С точки зрения здравого смысла это правильно: на четырехполосном шоссе проедет больше автомобилей за конкретный отрезок времени, чем на однополосном. Тем не менее электрический ток ведет себя по-другому.

Электрический ток можно сравнить с рекой: в широком месте река течет медленно и спокойно; в узком поток ускоряется, однако через определенную точку проходит одно и то же количество воды.

Электричество имеет нулевую массу или вес

Поскольку разглядеть электричество невооруженным глазом невозможно, легко предположить, что электричество — это просто энергия, которая течет из точки А в точку Б и не имеет массы или веса. В некотором смысле это верно: электрический ток — как река — не имеет массы или веса. Тем не менее электричество — это не просто форма невидимой энергии, это поток заряженных частиц — электронов — которые имеют массу и вес.

К сожалению, этот вес совершенно незначительный, а контур имеет круглую форму, поэтому вы никогда не соберете много электронов в одном месте. Наконец, поток заряженных частиц продвигается со скоростью нескольких сантиметров в секунду, но об этом позже.

Удар током низкого напряжения не опасен

Штепсельные розетки и вилки вызывают беспокойство у родителей, воспитывающих маленьких детей, но они совершенно не стесняются давать детям батарейки, чтобы те засунули их в игрушки. Ведь опасно только высокое напряжение, да? Нет, не да.

Вредит и убивает в токе его сила (измеряется в амперах), а не напряжение. В правильных условиях даже 12-вольтовая батарейка может причинить серьезный вред, а в особых случаях и смерть.

Деревянные и резиновые объекты — хорошие изоляторы

Работая с электричеством по дому, большинство людей первым делом снимают кольца и сережки, надевают резиновые перчатки и обувь. И хотя это хорошие первые шаги, их недостаточно, чтобы предотвратить происшествие. Вопреки расхожему мнению, большинство вещей в доме в некоторой степени являются проводниками, а не изоляторами.

Чистый каучук — отличный изолятор. Но большинство резиновой обуви, перчаток и прочих принадлежностей делают далеко не из чистого каучука. В обычной резине намешано много других дополнительных веществ, которые повышают ее стойкость. Даже дерево может быть проводником в определенных условиях.

Генераторы создают электричество

Резервный генератор энергии — отличная штука на черный день, потому что производит электричество. Что, правда производит?

Генератор преобразует механическую (или другую) энергию в электрическую. Когда генератор работает, он заставляет электроны, уже присутствующие в проводах и цепи, течь через цепь. Сердце не создает кровь, оно лишь качает ее по венам и артериям. Точно так же генератор помогает электронам течь, но не создает их.

Электрические токи — это только текущие электроны

Хотя электричество можно обобщить как «ток электронов через проводник», это не совсем корректно. Тип электрического тока в проводнике зависит исключительно от проводника.

К примеру, в случае плазмы, неоновых огней, флуоресцентных ламп и вспышки используется хитрое сочетание тока протонов и электронов. В других проводниках — вроде электролитов, соленой воды, твердого льда и жидкости для аккумулятора — электрический ток представлен потоком положительных ионов водорода, и это тоже форма электричества.

Электричество движется на скорости света

Большинство людей ассоциируют электричество с молнией с детства, и это приводит к заблуждению, что электроны и электричество движутся со скоростью света. Или почти. Хотя электромагнитная волна энергии действительно путешествует через проводник на скорости от 50 до 99 процентов световой, важно понимать, что сами электроны движутся очень медленно, не быстрее чем на пару сантиметров в секунду.

Точно так же, когда вы слышите звук с 300 метров, давление воздуха в ухе вызывается не смещением молекул от источника, а скорее волной сжатия, которая проносится рябью и затрагивает все молекулы воздуха между вами.

Линии электропередач заизолированы

Большинство проводов и кабелей, с которыми мы вступаем в контакт — зарядные устройства, лампы, шнуры питания, соединительные кабели, — надежно изолированы резиной или пластиком. Очевидно было бы предположить, что воздушные линии электропередач тоже изолированы. Птицы могут же на них сидеть без вреда для себя, не так ли? Нет, не так.

Единственная причина, по которой птицы не получают разряда, в том, что они не касаются земли, находясь на кабеле. В результате не возникает никакого тока электронов. Поскольку изоляция это очень дорого, большинство воздушных линий электропередач всегда под напряжением и могут нехило долбануть на 1000 или даже на 700 000 вольт.

Статическое электричество отличается от остального

Статическое электричество — это весело: протащите кота по пластиковому подоконнику, пока он цепляется когтями, и следующие полминуты он будет смешно потрескивать, не понимая, что происходит. Вы наверняка думаете, что статическое электричество отличается от того, которое делает нашу жизнь теплой и разнообразной. Но единственная разница между током и статическим электричеством в том, что одно — это постоянный ток, а второе — мгновенное уравнивание.

Ток в настенной розетке — это поле электромагнитной энергии, которое ждет передачи по электронам в проводнике, например, силового кабеля. После подключения поток остается постоянным, пока кабель не будет отключен от сети. Статическое электричество же появляется, когда два проводника с разными зарядами приближаются друг к другу. Когда пространство между ними — изолирующий зазор — становится достаточно малым, заряд сокращает разрыв, создавая дугу электроэнергии, поскольку два заряда уравниваются.

[link]

otevalm.livejournal.com

Проводник - электричество - Большая Энциклопедия Нефти и Газа, статья, страница 2

Проводник - электричество

Cтраница 2

Сажа является проводником электричества. При попадании в электрическую аппаратуру она может вызвать короткое замыкание и затем пожар. Возможно также поражение работающих электрическим током вследствие утечки электричества по саже при неисправности изоляции электрической аппаратуры.  [16]

Он является проводником электричества, между тем как бромистый и йодистый алюминий-изоляторы.  [17]

Металлы являются проводниками электричества и, следовательно, при наличии какого-либо источника тока ( см. ниже стр. Так, например, при электролизе разбавленной кислоты между платиновыми электродами катод непрерывно отдает электроны ионам водорода, 2Н - ( - 2е - Н - Н, но платина не ионизируется. Даже при растворении в разбавленной кислоте таких металлов, как железо или цинк, ионы металла выделяются не в том месте, где электроны передаются жидкости ( катодная область), а в другой-анодной области.  [18]

Живые организмы являются проводниками электричества. Электризация происходит тогда, когда существует разность потенциалов между двумя точками в данном организме. Важно подчеркнуть, что опасность несчастных случаев с электричеством возникает не от простого контакта с проводом, находящимся под напряжением, а скорее от одновременного контакта с проводом под напряжением и другим телом при разнице потенциалов.  [20]

Медь служит отличный проводником электричества и тепла.  [21]

Некоторые жидкости являются проводниками электричества, другие - изоляторами. Особенно интересно поведение воды и водных растворов. Чтобы экспериментально изучить это поведение, воспользуемся установкой, показанной на рис. 26.21. Соединим последовательно металлическую пластинку, прибор для измерения силы электрического тока, батарею и вторую металлическую пластинку. Затем погрузим металлические пластинки ( называемые электродами) в стакан с водой.  [23]

Карбид циркония является прекрасным проводником электричества, а в интервале 4 - 2 К обладает сверхпроводимостью; он не разлагается холодной и нагретой до кипения водой, но при нагревании в атмосфере азота переходит в нитрид карбид циркония.  [24]

ПРОВОДНИКИ ВТОРОГО РОДА - проводники электричества, прохождение тока через которые связано с переносом вещества.  [25]

ПРОВОДНИКИ ПЕРВОГО РОДА - проводники электричества, прохождение тока через которые не связано с переносом вещества.  [26]

Начато использование натрия как проводника электричества, в частности для изготовления силовых кабелей.  [27]

Поскольку ионизированный газ является проводником электричества, возможно появление заметных электромагнитных полей и сил.  [28]

Воздух между электродами становится проводником электричества. В результате этого кинетическая энергия их превращается в тепловую и поддерживает высокую температуру катода и анода.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Найдены живые проводники электричества

ВАШИНГТОН, 15 сентября. Ученые открыли живой источник бесперебойного питания.

Как передает InnovaNews, бактерии, которые производят электричество, могли бы использоваться в микробиальных топливных элементах для производства электроэнергии в малодоступных участках окружающей среды или даже для преобразования отходов в электричество.

Профессор Дерек Ловли из Массачусетского университета идентифицировал бактерии с бугристой поверхностной структурой под названием пили, которые оказались более эффективными при передаче электронов и производстве электричества, чем бактерии с гладкой поверхностью.

Ученые изолировали вид Geobacter sulfurreducens, названный KN400, который в изобилии развился на графитовых анодах топливных элементов.

Бактерии сформировали толстую электропроводимую биопленку на поверхности анода. Ученые нашли в ней большое количество пилина — белка, который производит крошечные волокна, проводящие электричество через биопленку.

«Нити формируют пили, которые действуют как микробиальные нанотрубки», - сообщил профессор Ловли. «С использованием этого бактериального штамма в топливном элементе выходная мощность клетки увеличивается», -отметил он.

Пили на поверхности бактерий, кажется, служат прежде всего для формирования электропроводимости.

Микробиальные топливные элементы могут использоваться для контроля устройств и приборов в условиях естественной окружающей среды, где нет возможности постоянно менять севшие батареи, и необходим источник бесперебойного питания.

Профессор Ловли описал, как Geobacter sulfurreducens могут использоваться в датчиках, размещенных на океаническом дне, чтобы контролировать, например, миграцию черепах.

Напомним, ранее сообщалось, что ученые из Великобритании начали работу над проектом создания робота из плесени. Основой для машины послужит слизевик Physarum polycephalum.

www.rosbalt.ru

ПРИРОДА ЭЛЕКТРИЧЕСТВА В ЖИВЫХ ОРГАНИЗМАХ

ПРИРОДА ЭЛЕКТРИЧЕСТВА В ЖИВЫХ ОРГАНИЗМАХ

Зенина Светлана Юрьевна 1

1

Текст работы размещён без изображений и формул.Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Проблема проекта:

Каждый год в школе “Логос” проходит интересная научно-практическая конференция в рамках одной большой темы “Люди, которые изменили мир”. В 2016-2017 учебном году данная тема посвящена великому физику Н. Тесла. Нас пригласили в качестве гостей на открытие конференции. Из гостей мы стали участниками. На выбор участникам конференции было предложено несколько тем, связанных с электричеством.

Изначально я хотела делать проект по биологии и физики, поэтому я выбрала тему «Природа электричества в живых организмах».

Цель проекта:

Выяснить природу электричества в живых организмах и рассказать об этом ребятам.

Продукт проекта:

  1. Макет ската, на котором показаны электрические органы;

  2. Классный час в 3 классе;

  3. Участие в конференции.

Спецификация:

  1. Научность

  2. Наглядность

  3. Адекватность

  4. Понятность для разных возрастов

Список задач:

1)Обработать литературу

2) Подобрать необходимый материал для изготовления макета

3) Создать учебный макет

4) Написать сценарий для проведения уроков в 3-х классах

5) Провести классный час в 3-х классах, выступить на научно-практической конференции в ЧОУ СОШ «Логос».

Теоретическая часть

Раздел 1. Электромагнетизм.

Сначала разберем, что такое электричество?

Существует невидимая сила, которая протекает внутри биологических объектов и неживой среды. Эта сила называется электричеством. Электричество - это энергия, создаваемая движением и взаимодействием заряженных частиц. Термин «электричество» произошел от греческого слова «электрон», которое переводится как «янтарь». Древние греки обнаружили, что, потерев этот камень, можно получить небольшой статистический заряд. Но создавать электрический ток для своих потребностей люди научились только в начале XIX века.

А электромагнетизм – это явления, возникающие в результате взаимодействия электрического тока и магнетизма. В основе этого раздела лежит учение об электрическом заряде. В природе существуют два вида электрических зарядов, которые условно названы положительные и отрицательные. Элементарные электрические заряды входят в состав атомов вещества: электрон (носитель отрицательного заряда «-») и протон (носитель положительного заряда «+») (рис.1.1).

 

Рис.1.1. Электрические заряды.

 

В зависимости от состояния электрических зарядов и различных свойств проявления их в природе, раздел электромагнетизма условно можно разделить на три подраздела, что облегчает изучение материала: электростатика, электрический ток, магнетизм.

Электростатика — раздел учения об электричестве, изучающий взаимодействие неподвижных электрических зарядов ( коли́чество электри́чества ).

Электри́ческий ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда.

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. В отличие от механических взаимодействий, где участниками физического процесса являются частицы вещества, массы, в электромагнитных взаимодействиях участвуют частицы эфира, не имеющие массы. Как в случае механических, так и электромагнитных взаимодействиях на расстоянии общим является то, что такие дистантные взаимодействия обеспечивают соответствующие физические поля, через которые передаются физические взаимодействия.

О существовании электромагнитных сил знали еще древние греки. Но систематическое, количественное изучение физических явлений, в которых проявляется электромагнитное взаимодействие тел, началось только в конце XVIII века. Трудами многих ученых в XIX веке завершилось создание стройной науки, изучающей электрические и магнитные явления. Эта наука, которая является одним из важнейших разделов физики, получила название электродинамики.

Первооткрывателем электромагнетизма считается датский физик Ханс Кристиан Э́рстед, обнаруживший воздействие электрического тока на магнит.

До начала XIX века никто не предполагал, что электричество и магнетизм что-то связывает. И даже разделы физики, в которых они рассматривались, были разными. Доказательство существования такой связи было получено Эрстедом в 1820 г. во время проведения опыта на лекции в университете. На экспериментальном столе рядом с проводником тока находился магнитный компас. В момент замыкания электрической цепи магнитная стрелка компаса отклонилась от своего первоначального положения. Повторив опыт, Эрстед получил такой же результат.

Основными объектами изучения в электродинамике являются электрические и магнитные поля, создаваемые электрическими зарядами и токами.

Электромагнитное поле — это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Тела или частицы, обладающие электрическим зарядом, создают в окружающем их пространстве электрическое поле, являющееся одним из двух компонентов электромагнитного поля.

Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.

Раздел 2. Электричество в живой природе.

Электри́ческие о́рганы (лат. Organa electricus) — органы некоторых рыб, генерирующие электрические разряды. Электрические органы (рис 1.2) возникли независимо у рыб нескольких далёких друг от друга групп (как пресноводных, так и морских). Их имели многие ископаемые рыбы и бесчелюстные; среди современных рыб эти органы известны более чем у 300 видов. Электрические органы — это видоизменённые мышцы, парные органы. У разных видов рыб они сильно отличаются расположением, формой и внутренним строением. Они могут представлять собой почковидные образования (у электрических скатов и электрических угрей), тонкий слой под кожей (электрический сом), нитевидные образования (мормировые и гимнотовые (англ. Gymnotidae)), находиться в подглазничном пространстве (североамериканский звездочёт). Их масса может достигать 1/6 (у электрических скатов) и даже 1/4 (у электрических угрей и сомов) массы тела.

Рисунок 1.2. Электрические органы угря и ската.

Каждый электрический орган состоит из многочисленных собранных в столбики электрических пластинок (рис.2.2) — видоизменённых (уплощённых) мышечных, нервных или железистых клеток, между мембранами которых может генерироваться разность потенциалов. Количество пластинок и столбиков в электрических органах разных видов рыб различно: у электрического ската около 600 расположенных в виде пчелиных сот столбиков по 400 пластинок в каждом, у электрического угря — 70 горизонтально размещённых столбиков по 6000 в каждом, у электрического сома электрические пластинки (около 2 млн.) распределены беспорядочно. Пластинки в каждом столбике соединены последовательно, а электрические столбики — параллельно. Электрические органы иннервируются ветвями блуждающего, лицевого и языкоглоточного нервов, подходящими к электроотрицательной стороне электрических пластинок.

Рисунок 2.2. Электрические органы ската.

Среди электрических рыб первенство принадлежит электрическому угрю (рис.3.2), живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

Рисунок 3.2. Электрический угорь.

В реках Экваториальной Африки обитает другая рыба - электрический сом (рис.4.2). Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Рисунок 4.2. Электрический сом

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты (рис.5.2). Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Рисунок 5.2. Электрический скат

Как уже говорилось ранее, скат вырабатывает электричество при помощи специальных электрических органов, которые находятся внутри ската (рис.2.2). Они возникли как у пресноводных, так и у морских рыб. Ученые выяснили, что такого рода органы были у некоторых их предков. Современная ихтиология насчитывает больше трехсот видов рыб, которых природа одарила электрическими органами, представляющие собой видоизмененные мышцы. У тех или иных электрических рыб они отличаются своим местоположением. К примеру, у скатов – это почковидные образования.

Если выразиться более простыми словами, то электроорганы скатов являются своеобразными мини-генераторами, которые вырабатывают весьма приличный заряд тока. Кстати, такого заряда хватит на то, чтобы обездвижить человека, не говоря уже о рыбах. Некоторые специалисты утверждают, что электрический скат вырабатывает напряжение в триста вольт. Электроорганы находятся в брюшной части и спинной и сравниваются они с электрической или гальванической батарейкой. Каждый орган состоит из большого количества электрических пластин, которые собраны в столбики. Это видоизменные мышечные, нервные и железистые клетки. Электроорганы рыбы иннервируются специальными ветвями лицевого, языкоглоточного и блуждающего нервов.

В каких случаях скат вырабатывает электричество?

Электрический скат использует свои уникальнейшие электрогенные свойства в нескольких случаях, а именно, если рыба видит, что ей угрожает опасность и во время охоты. Сами скаты, и это весьма любопытно, не страдают от выпускаемого ими электрозаряда, так как их природа одарила специальной «изоляцией». Кстати, те, кто имел неосторожность почувствовать на себе силу воздействия электрического ската, остались крайне недовольными. Как они рассказывают сами, удар тока от рыбы сопровождается продолжительной сонливостью, появляется дрожь в ногах, теряется чувствительность и происходит онемение верхних конечностей.

Любопытно, но еще в древности успешно эксплуатировалось такое удивительное электрогенное свойство скатов. Этих чудо-рыб древне греческий народ использовало для обезболивания во время оперативного вмешательства или же во время родов.

Помимо электрических зарядов большой силы dct рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы (рис 6.2) и гимнархи (рис. 7.2), обитающие в мутныхводах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, большинство рыбы, и морских, и пресноводных, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.

Рис. 6.2. Мормирус. Рис. 7.2. Гимнарх.

 

Рис.6.2. Мормирус.

 

Практическая часть.

Описание процесса

Вместе с учителем биологии мы решили создать макета ската с его электрическими органами. Очень сложно понять, каким образом происходит процесс возникновения электрического разряда в телах живых организмов.

Теперь главной задачей нашей работы было подобрать необходимый материал для создания макета. Используя опыт предыдущих проектов, за основу мы взяли флористическую пену, из которой вырезали макет ската и его электрических органов. Покрыли его краской и лаком.

Материал должен был быть гибким, эластичным, определенного цвета.

Сначала, я выбрала картинку электрического ската по образу и подобию, которой, начала делать выкройку.

Потом вырезала из губки для флористов основу-тело ската.

Теперь необходимо было сделать плавники и покрасить макет специальной краской.

Оценка результата/продукта

Результатом проекта у нас является макет ската, на котором показаны электрические органы, классный час в 3 классе, участие в конференции.

Макет ската с электрическими органами, согласно анатомическим и морфологическим особенностям. На брюшной поверхности показана имитация электрических органов, в качестве наглядного пособия для младших классов. Макет ската имеет характерные для данного вида окраску: бледно-желтое брюхо и серое тело с характерными желтыми пятнами. Так же показан хвост, который является органом, получающим электрический импульс и передающим его в тело жертвы.

Для проведения классного часа был разработан сценарий: я познакомила ребят с особенностями строения электрического ската, понятием электричества, а так же вместе с учащимися 3 класса в игровой форме мы заселили обитателей морского дна, в том числе и электрического ската. Электрические скаты- это придонные животные, родственники акул, которые питаются рыбой и ракообразными.

Третьим и окончательным этапом нашего проекта стало участие в научно-практической конференции в школе “Логос”. Данное мероприятие является важным аспектом обмена опыта между учащимися разных школ. А так же возможностью узнать новую информацию по разным предметам.

Рефлексия

Сильной стороной проекта было то, что в Интернете очень много информации на данную тему, однако поначалу нам было трудно понять, какую информацию стоит включать в свою работу, а какая является лишней и ненужной. Нашей проблемой также было то, что у нас было очень ограниченно свободное время для работы над проектом. В ходе работы нам пришлось столкнуться с нехваткой необходимых материалов в магазинах. Для нас работа над проектом была интересна, так как наличие дополнительных знаний по данной теме, приобретенных нами по ходу работы над проектом, пригодится нам во время получения высшего образования и дальнейшей работы.

Список использованных источников информации:

Электронные источники:

1) Электрический ток https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%82%D0%BE%D0%BA

2)Электрический заряд https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B7%D0%B0%D1%80%D1%8F%D0%B4

3)Магнитное поле

http://sfiz.ru/page.php?id=62

4)Электромагнетизм

http://ency.info/materiya-i-dvigenie/elektrichestvo-i-magnetizm/442-elektromagnetizm

5)Электрическое поле

http://ency.info/materiya-i-dvigenie/elektrichestvo-i-magnetizm/416-elektricheskoe-pole

6)Электрические рыбы

http://www.nkj.ru/archive/articles/10425/

http://faunazoo.ru/kak-skaty-vyrabatyvayut-elektrichestvo

https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D1%8B

Приложение 1. Календарное планирование

Декабрь 2016

Январь 2017

Февраль 2017

Сбор информации по теме

Собирание необходимых для создания макета материалов

Разработка презентации

Разработка сценария уроков для 3-х классов

Работа над макетом

Работа над макетом

Подготовка к конференции

Приложение 2. Рецензия (биолог и физик)

Рецензия на проект по биологии

ученицы 7 класса «Гимназии «Жуковка» Галенко Александры

от руководителя проекта, учителя биологии, Зениной С.Ю.

Тема работы: «Электричество в живых организмах».

1. Данная работа характеризуется кратким исследованием теоретического материала о том, как продуцируют электричество живые организмы, как устроены электрические органы животных на примере электрического ската. Приводятся примеры животных, способных производить электричество и применять его в качестве охоты и защиты. Работа носит поисково-исследовательский характер.

2. Тема реферата была выбрана на открытии научно-практической конференции в школе «Логос». Каждый год там проходят конференции «Люди, изменившие мир». В этом году ими был выбран в качестве такого человека Н. Тесло. Поэтому и возникла данная тема проекта. Более того, Саша изначально хотела метапредметный проект по физике и биологии. Проект получился больше биологическим. Однако, неоднократно, Саша брала консультации у учителя физики Барановой Е.В.

3. Практическая значимость работы заключается в поиске информации, её анализе и компоновке. Материал работы понятен любому человеку, т.к. написана она доступным языком, не перенасыщена специальной терминологией и, в тоже время, весьма познавательна и полезна.

4.В работе использован материал из источников информации, обзор которых выполнен полно и качественно.

5. В работе, самое активное участие приняла Саша, но во многом ей помогала и мама.

6.В подаче материала (через презентацию) используются интерактивные компьютерные технологии и макет, созданный самой ученицей в соавторстве с учителем биологии.

7. Не смотря на то, что времени у нас было много, проект требовал кропотливой работы, так как макет ската приходилось по долгу сушить и покрывать новым слоем краски и лака.

Саша проявила себя, как самостоятельный и пунктуальный участник проекта. Она стабильно, посещала все консультации и выполняла домашнее задание по проекту. Она сама разработала конспект классного часа (урока) для 3 класса и успешно его провела.

Именно по этим причинам, работа заслуживает высокой оценки «отлично».

Просмотров работы: 344

school-science.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта