Что такое импульсный трансформатор и как его рассчитать? Питание трансформатора от трансформатораМощный блок питания из трансформатора микроволновки своими рукамиЭтот мастер-класс буден немного противоречив и вызовет не одно разрозненное мнение. Я хочу поделиться тем, как сделать из трансформатора микроволной печи мощный выпрямитель - блок питания, на необходимое мне напряжение.Очень часто микроволновки выходят из строя и выбрасываются на помойку. У меня сломалась недавно ещё одна и я решил дать вторую жизнь её трансформатору.Трансформатор там повышающий и обычно преобразует 220 В в высокое напряжение 2000-2500 В, необходимое для возбуждения магнетрона.Я видел как много людей переделывают данные трансформаторы либо под аппарат для контактной сварки, либо аппарат для дуговой сварки. Но никогда не видел чтобы из него делали мощные блоки питания.Ведь трансформатор очень мощный, порядка 900 Вт, а это не мало. Вообщем я покажу вам как перемотать трансформатор под необходимое для вас напряжение.Разбираем трансформатор от микроволновой печиОбычно трансформатор микроволновки содержит три обмотки. Самая многочисленная, намотанная самым тонким проводом - это повышающая, вторичная, на выходе у которой 2000-2500 В. Она нам не нужна, мы ее удалим. Вторая обмотка, более толстая, с меньшим количеством проволоки по сравнению с вторичкой - это сетевая обмотка на 220 В. Ещё, между этими двумя массивными обмотками, есть самая маленькая, которая состоит из нескольких витков провода. Это низковольтовая обмотка примерно на 6-15 В, выдающее напряжение на накал магнетрона.Срезаем швы магнитопроводаНеобходимо спилить швы, удерживающие между собой «Ш»-образные пластины и «I»-образные. Швы китайского производителя на так крепки как кажутся. Спилить их можно болгаркой или вообще расколоть зубилом с молоткам. Я использовал болгарку, это гуманный способ.Снимаем катушкиСнимаем все катушки. Если они очень крепко засели - постучите аккуратно резиновым молотком. Нам пригодиться только обмотка на 220 В, остальные удаляем. Ставим обратно первичную обмотку на 220 В и помещаем её вниз «Ш»-образного сердечника.Расчет вторичной обмоткиТеперь нам необходимо рассчитать количество витков вторичной обмотки. Для этого нужно узнать коэффициент трансформации. Обычно, в таких трансформаторах он равен единице, следовательно один виток провода будет выдавать один вольт. Но это не всегда так и нужно это перепроверить.Берем любой провод и наматываем 10 витков провода на сердечник. Затем собираем сердечник и зажимаем его струбциной, чтобы он не развалился. Обязательно через предохранитель подаем 220 В на первичную обмотку. А в это время замеряем напряжение на выходе 10 -ти витковой обмотки. В теории должно быть 10 В. Если нет, значит коэффициент трансформации не такой как обычно и вам нужно производить расчеты для вычисления напряжения для вашей обмотки. Все это не сложно, математика пятый класс.У меня имеется в наличии два трансформатора. Один я буду делать на 500 В, другой на 36 В. Вы же можете сделать на любое другое напряжение.Намотка катушки трансформатора на 500 ВКоэффициент трансформации у моего экземпляра один к одному. И чтобы намотать обмотку на 500 В мне нужно соответственно сделать 500 витков провода на катушке. Берем провод.Конечно не такой, а смотанный на барабане. Прикидываем силу тока и объем катушки. Из этих значений выбираем диаметр провода.Вот такое простенькое приспособление я собрал для намотки катушки. Сам сердечник из дерева, боковины из оргстекла. Закрепить его можно на дрель или шуруповерт.Намотал, собрал, подключил. Замеряю выходное напряжение, почти попал - 513 В, что для меня приемлемо.Трансформатор на 36 ВОбмотку на 36 В можно намотать и вручную, взяв соответствующий провод. Чтобы одеть и распрямить обмотку на сердечнике можно использовать такие клинья, смотрите фото.После того как обмотка вся натянется, в образовавшиеся отверстия, после снятия клиньев положите плотно спрессованную бумагу. Это мой примитивный способ. Обмотку потом рекомендую пропитать эпоксидкой, иначе будет сильно гудеть.Работа над ошибкамиЯ перемотал обмотку, чтобы сделать её более плотной и мощной. Для этого я намотал её двойным проводом, вместо одного толстого. В конце я их соединю.После того как все обмотки закреплены, пришло время собрать сердечник трансформатора. Для этого закрепляем всю конструкцию струбциной и свариваем дуговой сваркой те же места что и были раньше. Делать толстый шов не нужно, все должно выглядеть как и было.Далее, для моего выпрямителя мне понадобятся:Я буду нагружать выпрямитель на 20 А, естественно диодный мост нужно установить на радиатор.Так же, если вы будете использовать металлический корпус как и я, то не забудьте его заземлить.О безопасностиБудьте осторожный при подключении трансформатора, никогда не торопитесь и все дважды проверяйте. Подключайте трансформатор только через предохранитель, чтобы избежать возможного замыкания цепи. Не дотрагивайтесь до токоведущих частей во время работы трансформатора.Также при обработке металла обязательно будьте внимательны и используйте средства защиты органов зрения.Помните, что все действия вы делаете на свой страх и риск!Всего доброго!Original article in Englishsdelaysam-svoimirukami.ru Питание с помощью трансформатора | Шаг за шагомТрансформатор понижает напряжение сети до величины, которая необходима для питания цепей накала (обычно 6,3 в). Нити накала сетевых ламп питаются непосредственно переменным током, так как катод их снабжен подогревателем (лист 110). Имеющийся в блоке питания выпрямитель преобразует переменное напряжение сети в постоянное напряжение, необходимое для питания анодных и экранных цепей, и поэтому такой выпрямитель называют анодным. Переменное напряжение на анодный выпрямитель подается со специальной повышающей обмотки трансформатора, и это позволяет сохранять неизменным анодное напряжение (обычно оно составляет 150-250 в) при питании аппаратуры от сети с различным напряжением 100, 127 или 220 в. В приемнике или усилителе имеется два, а иногда и три трансформатора различного назначения, и тот из них, который используется для получения необходимых питающих напряжений, называют сетевым или силовым трансформатором. Мы уже знаем, что если расположить рядом две катушки и по одной из них пропустить переменный ток, то возникающее вокруг этой катушки переменное магнитное поле наведет переменный ток во второй катушке. При этом напряжение, которое появится на концах второй катушки (обмотки), будет зависеть от того, насколько сильно обе катушки связаны общим магнитным полем, и от соотношения числа витков первой и второй обмотки: чем больше витков во второй (вторичной) обмотке, тем больше будет напряжение на ней. Так, например, если в первой (первичной) обмотке имеется 100, а во второй 200 витков и если к первичной обмотке подводится напряжение 1 в, то на вторичной обмотке появится напряжение 2 в. Если уменьшить число витков вторичной обмотки в четыре раза (50 витков), то в четыре раза уменьшится действующее на ней напряжение (0,5 в). Цифра, показывающая, во сколько раз напряжение на вторичной обмотке больше, чем на первичной, называется коэффициентом трансформации n (лист 114). Коэффициент трансформации численно равен числу витков вторичной обмотки w2, деленному на число витков первичной обмотки w1. Если w2 меньше, чем w1, то коэффициент трансформации меньше единицы и напряжение понижается (понижающий трансформатор). Иногда, правда, для удобства расчетов, в понижающем трансформаторе коэффициентом трансформации считают отношение w1 к w2, и величина п в этом случае получается больше единицы. Такое «переворачивание» формулы обычно оговаривают специальным примечанием. Следует заметить, что никакой разницы между понижающим и повышающим трансформатором нет: все зависит от того, к какой обмотке подводится напряжение, то есть от того, какую обмотку мы считаем первичной. Любой повышающий трансформатор станет понижающим, если подвести напряжение к его вторичной обмотке. Точно так же можно понижающий трансформатор включить как повышающий.
Если рядом с первичной обмоткой, к которой подводится переменное напряжение, расположить несколько обмоток с разным числом витков, то с них можно получить несколько различных напряжений. Этот принцип и используется в трансформаторах и, в частности, в силовом трансформаторе для получения нужных напряжений: высокого напряжения для анодного выпрямителя и низкого напряжения для питания нитей накала ламп. В соответствии с этим в силовом трансформаторе имеются сетевые обмотки, к которым подводится напряжение от сети 127 или 220 в, повышающая обмотка (150-300 в) и накальная обмотка (6,3 в). В большинстве силовых трансформаторов имеется еще и вторая накальная обмотка (6,3 или 5 в) для специальной выпрямительной лампы - кенотрона (лист 116). Для того чтобы усилить магнитное поле, связывающее обмотки трансформатора, их располагают на стальном сердечнике, который собирают «в перекрышку» (лист 115) из пластин толщиной 0,3-0,5 мм, имеющих форму буквы «Ш» (Ш-образные пластины). В обозначении типа пластин после букв «Ш» или «УШ» (уширенные пластины) стоит цифра, показывающая ширину среднего стержня этой пластины. В описаниях аппаратуры часто указывают сечение сердечника, которое представляет собой произведение ширины среднего стержня l на толщину набора b (лист 115). Обмотки трансформатора делают из медного провода марки ПЭ, ПЭЛ или ПЭВ. Буквы «ПЭ» говорят о том, что провод покрыт эмалевой изоляцией. Буква «Л» означает, что изоляция лакостойкая, а буква «В» - влагостойкая (лист 79). В подавляющем большинстве случаев обмоточные провода различных марок могут заменять друг друга. Как уже отмечалось, в название провода входит также цифра, указывающая диаметр этого провода. Так, например, название «ПЭ-0,12» относится к эмалированному проводу диаметром 0,12 мм. Диаметр указывают без учета изоляции, но эмалевая изоляция обычно настолько тонка (сотые и тысячные доли миллиметра), что ее можно и не учитывать. Необходимый диаметр провода определяется величиной тока, который проходит по обмотке: чем больше ток, тем более толстым должен быть провод. Все обмотки обычно располагают на каркасе из картона или другого изоляционного материала. При намотке провод укладывают тонкими слоями, между которыми делают прокладки из бумаги. Если вы будете делать трансформатор сами, то особенно внимательно следите за тем, чтобы крайние витки не проваливались и не соединялись с крайними витками других слоев. Нельзя допускать повреждения эмалевой изоляции, потому что любое замыкание витков, например замыкание двух соседних витков, приводит к перегреву трансформатора и выходу его из строя. Число витков отдельных обмоток трансформатора определяется потребляемой от него мощностью, сечением сердечника и сортом стали. Однако при любом сердечнике соотношение между числом витков отдельных обмоток определяется только необходимым коэффициентом трансформации, то есть тем, во сколько раз нужно увеличить или уменьшить напряжение. Так, если сетевая обмотка, рассчитанная на 127 в, имеет 1270 витков (10 витков на каждый вольт), то для включения трансформатора в сеть 220 в к этой обмотке нужно добавить еще 930 витков (1270+930=2200 витков). Если к выпрямителю нужно подвести напряжение 250 в, то в рассматриваемом трансформаторе повышающая обмотка должна иметь 2500 витков, а накальная обмотка (напряжение 6,3 в) - 63 витка. При расчете силового трансформатора определяют число витков, которое приходится на один вольт w', а затем, умножая это число на напряжение, которое нужно подвести к какой-нибудь обмотке (или получить с нее), определяют необходимое число витков всей обмотки. В нашем примере w'= 10. Это следует из первых же приведенных цифр: 127 в и 1270 витков, то есть на каждый вольт приходится 10 витков. Исходя из этой цифры, мы и получили данные всех обмоток, приведенные выше. При переделке старого трансформатора можно определить w' измерив напряжение на какой-нибудь обмотке, а затем подсчитав число ее витков. Иногда в подобных случаях целесообразно временно намотать специальную обмотку, содержащую 15-20 витков любого провода. В фабричных приемниках очень часто применяют трансформаторы с комбинированной сетевой обмоткой (лист 117). Здесь при напряжениях сети 110 и 127 в секции первичной обмотки включаются параллельно и по каждой из них проходит лишь половина общего тока. Это позволяет применять провод более тонкий, чем в простейшей схеме с отводами (лист 116). Для массового производства такая экономия имеет огромное значение.
На листах 118, 119 и 120 приведен порядок упрощенного расчета трансформатора. Исходные данные, которые нужны для расчета, - это накальные, анодные и экранные токи и напряжения примененных ламп. Все эти данные можно взять из таблицы параметров ламп. Если в результате расчета выяснится, что все обмотки не могут уместиться в окне сердечника, то следует увеличить сечение сердечника S и вновь произвести расчет. В результате увеличения S уменьшится число витков на 1 в (w'), а следовательно, общее число витков во всех обмотках. oldradiogid.ru Трансформатор питанияМинистерство образования и науки Украины Харьковский национальный университет радиоэлектроники Кафедра ПЭЭА РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ по дисциплине: Элементная база ЭА на тему: Трансформатор питания Выполнил Проверил Харьков 2009 Содержание Введение 1. Анализ технического задания 1.1 Анализ условий эксплуатации 1.2 Обоснование дополнительных требований и параметров 2. Обзор аналогичных конструкций и выбор направления проектирования 3. Расчет конструкции и необходимых деталей 3.1 Расчет стержневого трансформатора 4. Описание конструкции и технологии Заключение Список литературы Трансформаторы являются наиболее широко используемыми элементами в различной аппаратуре. Трансформаторы питания преобразуют переменное напряжение первичного источника в любые другие значения, необходимые для нормального функционирования аппаратуры. Кроме того, трансформатор питания позволяет получать ряд вторичных напряжений, электрически не зависимых друг от друга и от питающей сети. Наиболее просто применять для электропитающего устройства специально спроектированные трансформаторы для обеспечения высокого качества работы и требуемой надежности, низкой стоимости, минимальной массы и объема. В тех случаях, когда напряжение или ток на вторичной стороне унифицированного трансформатора не соответствует требуемым значениям, приходится рассчитывать и изготовлять трансформатор. Не применяют унифицированный трансформатор также, если остаются незадействованными некоторые секции вторичной обмотки, что приводит к нежелательному увеличению объема и массы устройства. Более высокие показатели можно обеспечить на основании детальных расчетов, что и является целью курсового проекта - расчет трансформатора питания с заданными параметрами, обеспечив при этом минимальные габаритные размеры. Исходные данные: - напряжение источника питания; - частота источника питания; - напряжение первой вторичной обмотки; - ток первой вторичной обмотки; - напряжение второй вторичной обмотки; - ток второй вторичной обмотки. Обеспечить минимальные габаритные размеры. Программа выпуска 5000 шт. в год. В условиях ТЗ не указан вид аппаратуры, в которой будет использоваться трансформатор. По ГОСТ 15150-69 он относится к первой группе исполнения УХЛ (аппаратура, работающая в жилых помещениях), категория размещения 4.2 (аппаратура, предназначенная для эксплуатации в отапливаемых помещениях). Общие нормы климатических воздействий на РЭА для исполнения УХЛ приведены в таблице 1.1 Таблица 1.1 - Общие нормы климатических воздействий на РЭА В соответствии с ГОСТ 16019-78 должна выдерживать нормативные воздействия, приведенные в таблице 1.2 Таблица 1.2 - Наземная профессиональная РЭА. Нормы климатических и механических воздействий для 1-й группы Для каждой из конструкций трансформатора существует "оптимальная геометрия" (соотношение размеров магнитопровода), обеспечивающая получение минимальной массы, объема или стоимости. Пользуясь [1, табл.13], выбираем конструкцию трансформатора с учетом его мощности и частоты сети - стержневая с двумя катушками (по сравнению с броневой конструкцией при одинаковом объеме выигрыш по мощности 6 - 25%). Стержневой двухкатушечный трансформатор обладает большей поверхностью охлаждения (за счет поверхностей катушки) и поэтому допускает большие плотности тока . По этой причине двухкатушечный ленточный трансформатор имеет удельные мощности по массе и объему больше, чем у ленточного броневого трансформатора: при 50 Гц - до 30% и при 400Гц - до 20%. Стержневой двухкатушечный трансформатор имеет меньшую индуктивность рассеяния (на каждой катушке только половина витков и поэтому толщина катушки меньшая), меньшее внешнее электромагнитное поле и меньшую восприимчивость к постоянным электромагнитным полям (наведенные ЭДС в обеих катушках вычитаются). К недостатку стержневого двухкатушечного трансформатора следует отнести уменьшенный примерно на 15% коэффициент заполнения окна медью, т.к у нее вдвое больше изоляционных материалов между отдельными обмотками и между магнитопроводом и обмоткой. С учетом, что , выбираем электротехническую сталь марки Э310 с толщиной лент . Также для обеспечения минимальных габаритных размеров принимают максимальное значение магнитно возможную индукцию магнитопровода и плотности тока в обмотках, удовлетворяя требуемым параметрам. В зависимости от технологии изготовления магнитопроводы трансформаторов небольшой мощности делятся на пластинчатые и ленточные. По конструктивному выполнению пластинчатые и ленточные магнитопроводы делятся на три основных типа: стержневые, броневые и кольцевые. Все перечисленные ранее конструкции магнитопроводов применяются в качестве сердечников в однофазных трансформаторах. В трехфазных трансформаторах обычно используется стержневая конструкция, называемая также Е - образной. Так как трансформатор имеет большие электромагнитные силовые потоки, то соответственно и большие размеры обмоток элемента. Для уменьшения размеров и массы важную роль играет грамотный подбор материалов составных частей трансформатора. В современных РЭА масса и габариты устройств питания составляют 0.5-0.1 общей массы и габаритов и на их долю приходится в некоторых случаях до 50% отказов. Что требует совершенствования трансформаторов питания. Основные трудности при этом определяются тем, что материалы сердечников имеют ограниченные магнитную проницаемость, индукцию насыщения и большие потери. Согласно условиям внешних климатических, механических и физических воздействий использование броневого трансформатора оправдано Учитывая недостатки в существующих трансформаторах, относительно проектируемого выбираем следующие направления: При стяжки трансформатора между стойкой и магнитопроводом подложить слой бумаги К-12 ГОСТ 1908-88 для того, чтобы предотвратить возможность образования короткозамкнутого витка вокруг всего сердечника или его части; образование такого витка приводит к сильному нагреву трансформатора и потере их мощности, что не допустимо для реализации минимальных габаритных размер; Фиксация всей конструкции к основанию осуществляется клеем ВК ОСТ4ГО.029.204. Обмотка трансформатора - открытого типа, то есть крышки не имеет, так как условия работы - лаборатории, жилые дома и другие подобные помещения. В качестве обмотки применяем провод марки ПЭВ-1 (ГОСТ 7262-78), допускающий перегрев до 105°С. Торцы магнитопровода покрывают эмалью МЛ-152 синяя У1 ОСТ 4.070.015. Расчет ведем, исходя из допустимого перегрева . 1. Зная величину , выбираем сталь марки Э310 с толщиной лент . 2. Определяем мощность вторичной обмотки (3.1) ; (3.1) . mirznanii.com
el-shema.ru принцип работы, виды и расчётИмпульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.
Область примененияЗадача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.
Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования. Видео: Как работает импульсный трансформатор?Требования к приборамПреобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме. Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.
Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности. Принцип работыРассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.
На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.
РазновидностиВыделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:
Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:
В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала. Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция. Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу. Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики. ПреимуществаБлоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме. Трансформаторы импульсного типа отличаются следующими преимуществами:
Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая. Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%. Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации. Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются. Разновидности материаловПредставленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:
Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта. Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки. Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление. РасчетЧтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.
Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении: П = (40-25)/2*11 = 82,5 мм². Далее можно просчитать минимальное количество витков:
На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров: Д = 78/181 = 0,43 мм. Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле: ГМ = 300 * 0,6 = 180 Вт. На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя. Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным. От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение. Интересное видео: Импульсный трансформатор своими рукамиРассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета. protransformatory.ru Уменьшить помехи от трансформатора - эффективное экранирование
Уменьшить помехи от трансформатораУменьшить помехи от трансформатора выполненного на тороидальном сердечнике — такое очень часто приходится слышать даже от профессиональных разработчиков, а также о неизбежных помехах либо наводках электрической сети оказывающих негативное влияние на сигнальные тракты электронной аппаратуры и в частности усилителей мощности. Можно с уверенностью говорить, что вопрос подавления электромагнитных помех волнует не только опытных создателей аудио-оборудования высокой точности воспроизведения звука, но и многочисленную армию простых радиолюбителей. В этой статье будет освещен только один вариант существенно уменьшающий общую составляющую магнитного поля, исходящего от трансформатора за границы своих габаритных размеров. Методов подавления наводок напряжения питания существует довольно много, по некоторым пробежимся совсем коротко только в конце — это так сказать для памяти. Эффективный способ установки двух торовЭта идея как уменьшить помехи от трансформатора не нова и была опубликована где-то в сети Интернет. Поэтому все весьма просто — если два идентичных тороидальных трансформатора, рассчитанных на приблизительно одинаковую нагрузку, установить их вертикально большей площадью друг к другу и соединить обмотки так, чтобы образованное каждым трансформатором магнитное поле находилось бы в противофазе к полю другого тора — магнитные поля образованные обоими трансформаторами в немалой степени компенсируют один другого. Вот таким не хитрым способом можно существенно уменьшить степень помех, элементарно изменив немного компоновку силового блока. p> Из всего сказанного следует вопрос — где взять два идентичных трансформатора? Бывает и очень часто, для обеспечения питающим напряжением усилителя мощности необходимы два одинаковых трансформатора, это бывает в случае эффективной компоновки элементов внутри корпуса с учетом габаритов, также бывает необходим такой вариант, чтобы развязать между собой каналы и так далее. Также как один из часто практикуемых способов создания блока питания, особенно при конструировании нового аппарата — это использование по одной вторичной обмотки каждого трансформатора, вследствие чего получаем двуполяное напряжение питание для устройства. Вот на фото ниже показан наглядны пример установки двух торов в моноблоках, мощностью по 150 Вт каждый. Правда это было очень давно.
Проверка подключенных тороидальных трансформаторов на предмет нахождения в противофазеДля такой проверки необходимо на два транса сразу намотать поверх обмотки несколько проверочных витков провода, в случае правильного соединения первичных обмоток на дополнительной проверочной шине напряжение отсутствует. И для уверенности можно еще проверить другим способом: изменить фазу первичной обмотки одного из двух торов, при этом на дополнительных витках будет присутствовать некое напряжение. Чтобы уменьшить помехи от трансформатора вот такое конструктивное исполнение позволяет добиться того, даже если нет идеальной симметрии, что магнитные помехи будут в значительной степени уменьшены.
Незначительные мелочи тоже играют важную рольИсходя из того, что возможно придется иметь дело не симметричными торами не в коим случае нельзя замыкать накоротко «нулевой» виток и всегда на будущее, помнить это правило. Опять же может возникнуть вопрос — как он там вообще появился этот нулевой виток? Такому явлению способствует как правило шпилька крепления пары трансформаторов. Эта шпилька естественно одним концом может касаться шасси и поэтому создается закороченный виток. Шайбы-изоляторы на одном из концов шпильки крепления трансформаторовИзбежать такого нюанса можно только с помощью разрыва цепи, а именно один конец шпильки изолировать от корпуса через изолятор, например: под гайку шпильки положить шайбу текстолитовую, а на саму шпильку, там где она вставляется в отверстие уголка из алюминия надеть подходящий кембрик.
Полезно знать — небольшой список иных способов для снижения помех
usilitelstabo.ru
vprl.ru | |||






- напряжение источника питания;
- частота источника питания;
- напряжение первой вторичной обмотки;
- ток первой вторичной обмотки;
- напряжение второй вторичной обмотки;
- ток второй вторичной обмотки.
. По этой причине двухкатушечный ленточный трансформатор имеет удельные мощности по массе и объему больше, чем у ленточного броневого трансформатора: при 50 Гц - до 30% и при 400Гц - до 20%.
, выбираем электротехническую сталь марки Э310 с толщиной лент
. Также для обеспечения минимальных габаритных размеров принимают максимальное значение магнитно возможную индукцию магнитопровода и плотности тока в обмотках, удовлетворяя требуемым параметрам.
.
, выбираем сталь марки Э310 с толщиной лент
(3.1)
; (3.1)
. 































Скачать архив.











