Особенности применения и срабатывания разных защит трансформатора. Защита силовых трансформаторовДифференциальная защита трансформатора и другие виды защитИсточником питания электрооборудования на предприятиях являются силовые трансформаторы, чаще всего их работа связана с высоким напряжением (более 1000 В) и большими токами. Поэтому их габариты, стоимость, а также затраты на ремонт являются ощутимыми даже для крупного производства. В связи с этим соответственно, чтобы и сами эти дорогостоящие устройства и электрооборудование, которое с помощью их питается, были надёжно защищены применяется целый рад защит. Выбор их и настройка дело довольно непростое, поэтому стоит подробно разобрать каждый из них. Конечно же, это касается только крупных трёхфазных трансформаторов на подстанциях. Для питания и защиты маломощных трансформаторов достаточно автоматического выключателя или же предохранителей. Слишком дорого и неоправданно устанавливать полный список защит, например, на все сварочные трансформаторы, применяемые в цехе. Основные защиты трансформатораЛюбая релейная защита трансформатора направлена на срабатывание при повреждении или же ненормальном режиме работы этого устройства. Нужно отметить, что некоторые из них направлены на мгновенное отключение в случае аварии, а другие только подают предупреждающий сигнал персоналу. В свою очередь, персонал уже действует по инструкциям, которые разработаны непосредственно и индивидуально для каждой схемы снабжения и распределительной подстанции. Для того чтобы было видно какой тип аварии произошёл применяются параллельно и сигнальные реле (блинкер), которые должны быть подписаны в соответствии с правилами. Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них:
Защита трансформатора дифференциальнаяЭто одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:
а — нормальная работа, б — при возникновении короткого замыкания между обмотками. Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны. На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т — это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний. Принцип действия газовой защиты трансформаторовГазовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке. В специальном окошке при выделении газов можно увидеть пузырьки. Реле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и расширительным баком. Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения. Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка. Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус. Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них. Максимальная токовая защита трансформатораОсновную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения. Для трансформаторов выбор предохранителей осуществляется из такого соотношения
Iвс — ток плавкой вставки предохранителя; Iн. тр. — номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается. Предохранитель — самый простой способ защитить трансформатор от превышения тока. Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения. Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы. Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей. Защита печных трансформаторовРабота печей связана с резким нарастанием и снижением тока, поэтому дифференциальную защиту здесь применять не рекомендуется, а только газовую и тепловую. Нагревательные элементы таких печей могут работать от пониженного напряжения от 220–660 Вольт. Чаще всего здесь применяются специальные электропечные трансформаторы. Конечно же, речь идёт от печах для плавки металла, а не для приготовления пищи. В них режимы плавки меняются как питающим напряжением, так и величиной тока дуги. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. З. Защиту от перегрузок устанавливают на низкой стороне, а трансформаторы тока для мгновенного срабатывания на высокой стороне. При этом уставку реле настраивают таким образом, чтобы она не отключалась при нормальных эксплуатационных К. З, ведь они работают в таком режиме и при некоторых коротких замыкания отключение не должно происходить, а только лишь поднятие электродов. В любом случае в итоге хочется отметить что от настройки и правильности срабатывания зависят последствия ненормальных режимов работы трансформатора, а значит и стоимость последующего ремонта. amperof.ru Защита трансформаторов: дифференциальная, газовая, релейная, токоваяЭлектрооборудование и распределительные сети на подстанциях должны быть защищены от повреждения при аномальных токах и от неравномерного питающего напряжения. В этой статье мы рассмотрим, какие бывают виды защиты трансформаторов, зачем они нужны, принцип их работы. Виды защитВсе используемое оборудование в силовых распределительных установках защищено от кратковременных перегрузок и отключений от сети. Защита трансформатора от перенапряжений нужна, чтобы убедиться, что устройство выдержит напряжение гораздо выше номинального. Для защиты от перенапряжений осуществляется подбор предохранителей. При аварийном отключении одного из трансформаторов, несколько таких же устройств, введенных в работу, будут компенсировать номинальное напряжение в сети, благодаря чему удастся избежать аварийной ситуации. Основные и резервные виды защиты силовых трансформаторов:
Видео: проверка защиты трансформатора Трехфазные выключатели и предохранителиДанный вид защиты трансформаторов применяется для контроля в достаточно мощных распределительных сетях. Также с их помощью удается осуществлять надежную защиту от грозовых скачков напряжения. Они очень эффективны в условиях производства для защиты и стабилизации напряжения. Принцип действия газовой защитыВ типовой защите силового трансформатора имеется газовое реле. Оно состоит из двух отделений, каждое из которых выполняет определенную функцию. Первая из камер служит для контроля нагнетающего газа из масла, она установлена прямо над расширительным баком. Когда уровень газа, проходя через масло, доходит до максимума, камера начинает в небольших количествах его выпускать, это происходит в виде небольших выхлопов или постепенного открытия клапанов. В данной конструкции сигнализатором допустимого уровня газа служит простой поплавок. Фото – Газовая защитаИндикатор может не только показывать уровень заполнения резервуара маслом, но и контролировать проходимость газов, диагностируя режим работы трансформатора в целом. Настроить правильную работу данного реле может обученный работник электроустановки. Второе отделение газового реле подключается непосредственно к масляному контуру трансформатора и соединяет его вертикальные каналы, открывая путь для поднимающегося газа. Мембрана в расширительном баке выступает в качестве индикатора изменения давления. Внезапное повышение давления масла сжимает мембрану, и диафрагма начинает двигаться. Также это движение может происходить из-за изменения атмосферного давления. Благодаря этому срабатывает специальный клапан, который отключает трансформатор, и включается короткозамыкатель. Мембрана газового реле – это очень нежная антикоррозийная деталь, при малейшем отклонении или повреждении она перестает корректно работать и нуждается в полной замене. Автоматическая релейная защитаРеле защиты в трансформаторе представляет собой небольшую емкость с маслом, совмещенную с соединительной трубкой, выходящей из главного резервуара устройства. Используется в установках, таких как трансформаторы дуговой плавки, морская техника, ГПП и т.д. Служит для защиты от коротких замыканий. Реле состоит из двух основных элементов: резервуара и поплавка. Поплавок крепится на шарнире таким образом, что он может двигаться вверх и вниз в зависимости от уровня масла в резервуаре реле. На поплавок установлен ртутный выключатель. Положение выключателя зависит от положения поплавка. Фото – Защита релеНижний элемент состоит из перегородки и ртутного индикатора. Эта пластина крепится плавкими шарнирами прямо напротив входа реле в трансформатор таким образом, что при поступлении масла с высоким давлением происходит его вытеснение. Помимо этих основных элементов реле в нем есть также газовые камеры, провода, клеммы, сигнальные кабеля и т.д. Помимо этих основных элементов реле, в нем есть также газовые камеры, провода, клеммы, кабеля нейтрали и т.д. Принцип действия релейной защиты трансформатора очень прост, схема дана ниже. Он является механическим приводом, и всякий раз, когда появляются незначительные внутренние неисправности в трансформаторе, такие как нарушение изоляции, поломка сердечника трансформатора и прочее, падает уровень масла в баке трансформатора, из-за чего ртутный индикатор отключает его от сети питания. Конечно, это не решает проблему, но все же значительно продлевает срок службы кабелей, нормализуя предусмотренный ток в линии. Фото – Принцип работыПринцип действия токовой дифференциальной защитыКак правило, дифференциальная или тепловая защита устанавливается в высоковольтных «сухих» трансформаторах мощностью не более 5MVA с выключателями и контроллерами для защиты от замыканий и перенапряжений. Фото – Продольная дифференциальная защитаУ такой защиты есть определенные преимущества по сравнению с прочими видами:
Дифференциальная защита имеет самый простой принцип работы и устанавливается прямо в трансформаторный шкаф. Дифференциальные реле сравнивают между собой первичный и вторичный ток нагрузки, если находят дисбаланс между ними, то срабатывает защита. Как видите, технологические способы защиты трансформатора основаны на контроле неравенства номинальных показателей. Это может быть уровень масла, тока, напряжения сети и т.д. Особое внимание нужно уделять защите масляных трансформаторов. В частности диагностика параметров с применением микропроцессорных технологий сможет решить многие проблемы. Микропроцессор автоматически контролирует уровень поступающего масла в резервуар. Как только оно достигнет критического уровня, защита отключает питание устройства. Данная технология контроля в основном используется для собственных, распределительных сетей, подстанций, трансформаторов «масляного типа» с мощностью до 10-15 кВ. Согласно ПУЭ, дистанционная или программная защита трансформатора устанавливается при напряжении сети от 6кВ до нагрузки и от 35кВ после нее, расчет установок производится только квалифицированным работником. Ранее для защиты пользовались вакуумными методиками, но поплавки оказались более действенными, значительно увеличив порог срабатывания защиты. Купить устройства для защиты трансформаторов можно в любом городе России и Украины: Киеве, Москве, Санкт-Петербурге Вологде. Средняя стоимость – от 8000 рублей. www.asutpp.ru 2.Какие защиты устанавливаются на силовых трансформаторах, и от каких повреждений?В соответствии с назначением для защиты трансформаторов (автотрансформаторов) при их повреждениях и сигнализации о нарушении нормальных режимов работы применяются следующие типы защит : 1. Дифференциальная защита для защиты при повреждениях обмоток, вводов и ошиновки трансформаторов (автотрансформаторов).
Кроме того, в отдельных случаях на трансформаторах (автотрансформаторах) могут устанавливаться и другие виды защиты. 2.Виды оперативного тока используемые для защит силового трансформатора (автотрансформатора). Достоинства и недостатки. Блоки питания и заряда.Защиты трансформаторов мощностью 6,3 и 10 МВА выполнены на переменном оперативном токе, а 16 и 25 МВА на выпрямленном оперативном токе. Оперативным током называется ток питающий цепи дистанционного управления выключателями, оперативные цепи релейной защиты, автоматики, телемеханики и различные виды сигнализации. Питание оперативных цепей и особенно тех ее элементов от которых зависит отключение поврежденных линий и оборудования должно отличаться особой надежностью. Поэтому главное требование, которому должен отвечать источник оперативного тока, состоит в том, чтобы во время к. з. и при ненормальных режимах в сети напряжение источника оперативного тока и его мощность имели достаточную величину как для действия вспомогательных реле защиты и автоматики, так для надежного отключения и включения соответствующих выключателей. Для питания оперативных цепей применяются источники постоянного и переменного тока. Постоянный оперативный ток В качестве источника постоянного тока используются аккумуляторные батареи с напряжением 110-220 В, а на небольших подстанциях 24-48 В, от которых осуществляется централизованное питание оперативных цепей всех присоединений. Для повышений надежности сеть постоянного тока секционируется на несколько участков, имеющих самостоятельное питание от сборных шин батареи. Аккумуляторные батареи обеспечивают питание оперативных цепей в любой момент времени с необходимым уровнем напряжения и мощности независимо от состояния основной сети и поэтому являются самым надежным источником питания. В то же время аккумуляторные батареи значительно дороже других источников оперативного тока, для них требуются зарядные агрегаты, специальное помещение и квалифицированный уход. Кроме того, из-за централизации питания создается сложная, протяженная и дорогостоящая сеть постоянного тока. В связи с этим за последнее время получает широкое применение и переменный оперативный ток. Переменный оперативный ток Для питания оперативных цепей переменным током используется ток или напряжение сети. В соответствии с этим в качестве источников переменного оперативного тока служат трансформаторы тока, трансформаторы напряжения и трансформаторы собственных нужд. Трансформаторы тока являются весьма надежным источником питания оперативных цепей для защит от к.з. При к.з. ток и напряжение на зажимах трансформаторов тока увеличиваются, поэтому в момент срабатывания защиты мощность трансформаторов тока возрастает, что и обеспечивает надежное питание оперативных цепей. Однако трансформаторы тока не обеспечивают необходимой мощности при повреждениях и ненормальных режимах, не сопровождающихся увеличением тока на защищаемом присоединении. Поэтому их нельзя использовать для питания защит от замыкания на землю в сети с изолированной нейтралью, защит от витковых замыканий в трансформаторах и генераторах или защит от таких ненормальных режимов, как повышение или понижение напряжения и понижение частоты. Трансформаторы напряжения и трансформаторы собственных нужд непригодны для питания оперативных цепей защит от к.з., так как при к. з. напряжение в сети резко снижается и может в неблагоприятных случаях стать равным нулю. В то же время при повреждениях и ненормальных режимах, не сопровождающихся глубокими понижениями напряжения в сети, трансформаторы напряжения и трансформаторы собственных нужд могут использоваться для питания таких защит, как, например, защиты от перегрузки, от замыканий на землю, повышения напряжения и т. д. Заряженный конденсатор. Помимо непосредственного использования мощности трансформаторов тока и напряжения можно использовать энергию, накопленную в предварительно заряженном конденсаторе. Разрядный ток конденсатора, имеющий необходимые величину и продолжительность, может питать оперативную цепь в момент действия защиты независимо от характера повреждения или ненор- мального режима в сети. Предварительный заряд конденсатора обычно осуществляется в нормальном режиме от напряжения сети. При исчезновении напряжения на подстанции запасенная конденсатором энергия сохраняется. Поэтому заряженный конденсатор может использоваться также для питания защит и автоматов, которые должны работать при исчезновении напряжения на подстанции. Питание цепей управления выключателей. Дистанционное управление выключателями и их автоматическое включение от АПВ или АВР должно производиться при любых нагрузках на присоединении и при отсутствии напряжения на шинах подстанции, чего не обеспечивают трансформаторы тока. Поэтому питание цепей дистанционного управления, АПВ и АВР производится от трансформаторов напряжения, трансформаторов собственных нужд и заряженных конденсаторов. Таким образом, каждый источник переменного оперативного тока имеет свою, рассмотренную выше, область применения. При этом возможность использования того или иного источника определяется мощностью, которую он может дать в момент производства операций. Мощность источника питания должна некоторым запасом превосходить мощность, потребляемую оперативными цепями, основной составляющей которой является мощность, затрачиваемая приводом на отключение и включение выключателей. Наибольшие затруднения из-за недостаточной мощности возникают при применении трансформаторов тока и трансформаторов напряжения. Учитывая, что включение и отключение выключателей является кратковременной операцией, можно допускать значительные перегрузки Какие реле используются для защиты силового трансформатора. Их устройство и назначение. Дифференциальная защита с токовыми реле, включенными через быстронасыщающиеся трансформаторы Схема и принцип действия. Применение быстронасыщающихся трансформаторов (БНТ) позволяет выполнить простую и быстродействующую дифференциальную защиту, надежно отстроенную от токов небаланса и бросков намагничивания. На рис. 16-30, а представлена схема дифференциальной защиты с реле типа РНТ-565. Переходные токи небаланса и броски намагничивающих токов силовых трансформаторов расположены асимметрично относительно оси времени и содержат вследствие этого значительную апериодическую составляющую, которая не трансформируется на вторичную сторону БНТ, а почти полностью идет на намагничивание его сердечника. В реле защиты попадает лишь переменная составляющая тока небаланса и броска намагничивающего тока силового трансформатора. Ток срабатывания защиты должен отстраиваться от переменной составляющей переходных токов намагничивания и небаланса. В результате этого чувствительность защиты с насыщающимися трансформаторами оказывается выше, чем токовой отсечки. Опыт эксплуатации показывает, что ток срабатывания можно выбирать в пределах (1-2) Iном.т. При этом предполагается, что трансформаторы тока подобраны по 10%-ным кривым. Выше отмечалось, что реле РНТ-565 совмещает в себе устройство для выравнивания вторичных токов защиты и БНТ, питающий реле. Обмотки wД и w2 образуют насыщающийся трансформатор; первая из них включается по дифференциальной схеме (на разность токов), а вторая - питает реле Т (типа РТ-40). Уравнительные обмотки включаются в плечи защит и служат для уравнивания вторичных токов. В защитах двухобмоточных трансформаторов используется одна обмотка. Число витков уравнивающей обмотки регулируется с помощью отпаек и подбирается так, чтобы при внешнем к. з. ток в реле, а следовательно, и в обмотке w2 отсутствовал, т. е. /р = /2 = 0. Для обеспечения этого условия намагничивающие силы уравнительной и дифференциальной обмоток должны уравновешиваться. Ток срабатывания защиты регулируется изменением числа витков обмотки wД. На магнитопроводе реле РНТ имеется коротко-замкнутая обмотка wK. Она повышает отстройку реле от токов небаланса и бросков намагничивающих токов силового трансформатора особенно, когда эти токи не полностью сдвинуты относительно нулевой линии. Подобные токи имеют значительную периодическую составляющую и относительно небольшую апериодическую, что понижает эффективность действия БНТ. Короткозамкнутая обмотка wR ограничивает периодический ток, возникающей во вторичной обмотке РНТ, но не изменяет подмагничивающее действие апериодической составляющей. Короткозамкнутая обмотка уменьшает трансформацию периодической составляюobй тока в реле и не влияет на величину и действие апериодической составляющей. Реле с магнитным торможением. Реле состоит из трехстержневого насыщающегося трансформатора , питающего обмотку электромагнитного реле . Насыщающийся трансформатор имеет, как и обычный БНТ, первичную рабочую обмотку wР и вторичную обмотку w2, в цепь которой включено дифференциальное реле. Для осуществления торможения на магнитопровод насыщающегося трансформатора насажена третья - тормозная обмотка wT. Рабочая обмотка включается дифференциально, а тормозная - в рассечку плеча токовой цепи защиты, т. е. так же, как соответствующие обмотки обычного тормозного реле. Тормозная и вторичная обмотки реле состоят из двух секций: А и В, расположенных на крайних стержнях магнитопровода. Рабочая обмотка помещена на среднем стержне. Параметры трансформатора подбираются с таким расчетом, чтобы обеспечить коэффициент торможения kT = 30-1-60%; его величина остается постоянной в пределах 10—50 а, увеличиваясь при больших значениях тормозного тока. При отсутствии тока в тормозной обмотке рассматриваемое реле работает как обычное реле с БНТ. При внешнем к. з. ток, проходящий по тормозной обмотке, насыщает крайние стержни магнитопровода, в результате чего ток срабатывания реле возрастает, одновременно с этим ухудшается трансформация тока небаланса, появляющегося в рабочей обмотке трансформатора токов небаланса. Отечественная промышленность выпускает реле типа ДЗТ, основанные на рассмотренном принципе. Эти реле содержат в себе трансформатор для выравнивания токов в плечах защиты. Имеются реле с одной тормозной обмоткой ДЗТ-11, предназначенные для двухобмоточных трансформаторов, с тремя (ДЗТ-13) и четырьмя (ДЗТ-14) тормозными обмотками, применяемые на многообмоточных трансформаторах. Конструкции газовых реле имеют три разновидности, различающиеся принципом исполнения реагирующих элементов. Первоначально применялись реле с ревизующим элементом в виде поплавка, затем появились реле у которых реагирующим элементом служит лопасть, в последнее время применяются реле с реагирующим элементам имеющим вид чашки. Устройство поплавкового газового реле. Реле состоит из чугунного кожуха имеющего вид тройного патрубка с фланцами для соединения с грубой к расширителю. Внутри кожуха реле расположены два подвижных поплавка, выполненные в виде тонкостенных полых цилиндров, герметически запаянных и плавающих в масле. Каждый плавок свободно вращается на оси, закрепленной, на стойке. На торце поплавков располагаются ртутные контакты , представляющие собой стеклянные колбочки с впаянными в нее контактами и ртутью внутри. При определенном положении поплавков ртуть замыкает контакты. Выводы от контактов на наружную сторону кожуха выполнены с помощью гибких изолированных проводников, которые не должны ограничивать свободного вращения поплавков. Контакты верхнего поплавка действуют на сигнал а нижнего - на отключение транс- форматора. Верхний поплавок находится в верхней части кожуха реле, нижний :раcполагается на уровне соединительной трубы к расширителю так, чтобы поток масла мог воздействовать на него. Принцип действия реле. Кожух реле находится ниже уровня масла в расширителе, поэтому он всегда заполнен маслом. Поплавки, стремясь всплыть, занимают самое верхнее положение, возможное по условиям их крепления на оси. При этом положении поплавков контакты реле разомкнуты. При небольших повреждениях «образование газа происходит медленно, и он небольшими пузырьками поднимается к расширителю трансформатора. Проходя через реле, пузырьки газа заполняют верхнюю часть его кожуха, вытесняя оттуда масло. По мере понижения уровня масла верхний контакт опускается и через некоторое время, зависящее от интенсивности газообразования, поплавок достигает такого положения, при котором его контакт замыкается. Если повреждение трансформатора значительное, то под влиянием давления, создаваемого бурно образующимися газами, масло приходит в движение, сообщая толчок нижнему поплавку. Под его воздействием поплавок мгновенно замыкает свои контакты, посылая импульс на отключение. Движение масла может носить толчкообразный характер, поэтому контакты нижнего поплавка замыкаются кратковременно. промежуточного реле П1, последнее срабатывает и удерживается сериесными катушками 2 и 3 до отключения выключателей. Из рассмотренного принципа действия газового реле следует, что оно способно различать степень повреждения в трансформаторе. При малых повреждениях оно дает сигнал, при больших - производит отключение. Сигнализация о небольших повреждениях вместо отключения позволяет перевести нагрузку на другой источник питания и отключить после этого трансформатор без ущерба для потребителей. Газовая защита реагирует также на понижение уровня масла в трансформаторе. В этом случае первым сработает сигнальный контакт, а затем при продолжающемся снижении уровня масла срабатывает отключающий контакт, выключая, трансформатор. Действие последнего полезно, в случае быстрой утечки масла, угрожающей понижением уровня масла ниже обмотки трансформатора до того как дежурный успеет принять меры к разгрузке и отключению трансформатора, а также на автоматизированных подстанциях, не имеющих дежурных. Отечественная промышленность ранее выпускала реле ПГ-22, РГЗ-22 и ПГЗ-6Г. Реле ПГЗ-6Г отличается конструкцией ртутных контактов меньшей степени реагирующей на: вибрацию трансформатора; и толчки масла при внешних к.з. studfiles.net Защита силового трансформатора | кратко об основном«Сердцем» любой трансформаторной подстанции является силовой трансформатор. При этом данное оборудование является крайне дорогостоящим, поэтому при любых видах повреждениях данного оборудования оно должно незамедлительно отключаться. Реализовать это можно только одним способом – установкой быстродействующих и чувствительных защит по высокой и низкой стороне трансформатора. В данной статье постараемся кратко разобрать основные виды защит, зоны их работы и особенности. Итак, трансформаторы мощностью менее 1 кВА защищаются чаще всего с помощью обычных предохранителей по высокой стороне и автоматических выключателей – по низкой, а это отдельная тема. Сейчас же поговорим об особенностях защиты мощных трансформаторов от 2,5 кВА и выше. Итак, для начала необходимо сказать, что защиты трансформатора бывают основными и резервными. К основным защитам относится дифференциальная защита и газовая защита трансформатора. Дифференциальная защита работает без выдержки времени. Это защита с абсолютной селективностью, то есть она реагирует на все виды двухфазных и трехфазных КЗ в зоне действия. Зона работы дифзащиты ограничена трансформаторами тока по сторонам высокого и низкого напряжения. Газовая защита трансформатора также относится к основным, то есть она работает без выдержки времени и защищает исключительно силовой трансформатор от внутрибаковых повреждений. Газовая защита имеет две ступени. Первая ступень срабатывает при плавном снижении уровня масла в банке трансформатора. При этом отключения силового оборудования не происходит, и срабатывает лишь соответствующее указательное реле. Вторая ступень срабатывает уже на отключение силового трансформатора. Работает эта защита при возникновении серьезного повреждения внутри бака силового трансформатора и выброса масла, а также в случае снижения уровня масла в оборудовании ниже уровня газового реле. С основными защитами силового трансформатора мы разобрались – переходим к резервным. Наиболее важной (если можно так выразиться) резервной защитой является МТЗ. К преимуществам данной защиты можно отнести возможность дальнего резервировании при коротком замыкания. Это значит, что данная защита будет чувствительной не только при КЗ на силовом трансформаторе, но и в случае возникновении аварии на отходящем присоединении. Время срабатывания защиты выбирается, исходя из принципов селективности, и может составлять от 0,5 до 4 секунд. Токовая резервная защита также воздействует на отключение силового трансформатора. Назначение данного устройства, построенного на блоках ПР 4700 или РЗТ, заключается в резервировании основных защит при их отказе или в случае потери опертока. Основным преимуществом данной защиты является полная независимость от оперативного тока на подстанции. Время срабатывания токовой резервной защиты обычно максимальное (от 3 до 6 секунд). Защита минимального напряжения (ЗМН) работает в случае обесточения силового трансформатора и воздействует на до отключение выключателя низкой стороны перед действием АВР. Время работы ЗМН может различным – от 6 до 20 секунд, в зависимости от типа нагрузки и требований потребителя. Из защит, действующих на сигнал, стоит выделить защиту от перегруза, которая работает в случае превышения номинальной мощности трансформатора в среднем на 25 процентов. Время срабатывания такой защиты составляет обычно девять секунд. При повышении температуры масла в баке силового трансформатора будет работать защита от перегрева. При этом установка по температуре зависит от вида охлаждения силового трансформатора. Защита также работает на сигнал. Время срабатывания также эквивалентно времени срабатывания предупредительной сигнализации на подстанции. Конечно, выше перечислены далеко не все защиты силового трансформатора. Но приведенной информации вполне достаточно, чтобы хотя бы частично усвоить данный вопрос. grimmi.ru Релейная защита силовых трансформаторовРелейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению.К ненормальным и опасным режимам работы силового трансформатора относятся:
Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения. Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок. Для этих целей служат несколько видов релейных защит.Защита по максимальному току (МТЗ)– срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А0 и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С. При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т. Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле Рис.1 L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле. Разновидностью МТЗ является защита по току отсечки.При удалении трансформатора по линии от источника энергии ток короткого замыкания становится меньшим из-за потерь на сопротивление. Вместе с тем задержка по времени для МТЗ не позволяет быстро отключить трансформатор при внутренних межфазных замыканиях, приводящих к выходу трансформатора из строя. Конструктивно защита по токовой отсечке (Рис. 2) отличается от МТЗ отсутствием реле времени. Селективность реле достигается подбором тока срабатывания реле автоматики. Данный ток должен быть равным току КЗ на защищаемом участке. Релейная защита силовых трансформаторов Рис. 2 Рис.3 Срабатывание МТЗ по току обладает недостаточной чувствительностью в некоторых случаях, например при защите повышающего трансформатора. В данном случае защита запускается по напряжению (Рис. 3). Трансформаторы напряжения включенные между фазовых шин управляют работой реле автоматики А0 и А1. Срабатывание этих реле происходит при понижении порога напряжения короткого замыкания. Алгоритм работы аналогичен МТЗ, но сторона подключения – всегда источник энергии. Для отключения трансформатора приоднофазных и многофазных замыканий на землю служит защита от токов нулевой последовательности.Для эффективно заземленных схем(Рис. 4 слева) трансформатор тока автоматики включается непосредственно на нейтраль. Превышение тока по нулевому проводу запускает через реле автоматики А реле времени Т, которое спустя некоторое время включает промежуточное реле L и устройство отключения YAT. Для остальных случаев защита нулевой последовательности выполняется аналогично МТЗ, только трансформаторы тока подключаются одним выводом к заземлению (Рис.4 справа). Рис. 4 Релейная защита должна удовлетворять нескольким требованиям. КЗ на одном участке не должно приводить к отключению всей цепи электроснабжения и осуществляться с минимальным временем. Измерительные цепи должны обеспечивать надежное срабатываниепри заданных значениях тока или напряжения в защищаемых линиях. Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное. elektronchic.ru 78. Защита силовых трансформаторов.Маломощные трансф-ры (от 1МВА-6,3МВА) защищают с помощью предохранителей, а более мощные с помощью диффзащиты, газовой защиты, МТЗ, ТО. МТЗ срабат. при ↑ токозащищаемого эл-та сверх установленного тока срабатывания (уставки). МТЗ явл-ся основной защитой шин НН, а также резервной защитой для эл-тов сети НН. Расчетные коэфф-ы для выполнения мтз таковы: - коэф-т кратности макс.I;- коэф-т схемы включения реле;- коэф-т отстройки;- коэф-т возврата реле. Рис.Функциональная схема МТЗ Макс. раб. ток принимается = ном. току трансф-ра, т.е:(А). Лин-е знач-я тока 3х.ф КЗ при к.з. в зоне защиты. Основной ток:. За трансф-ром:;. Ток срабатывания релеи защиты: Расчетный:(А). Принятый:-расчетныйI, округленный до ближайшего целого числа Первичный: ; Коэф-тыдля опред-я чувствит-и:От сборных шин до трансф-ра, за трансф-ром:=1. Чувств-ь защиты при 2хф к.з. : В зоне защиты от сборных шин до трансф-ра:. За трансф-ом в зоне защиты:. Выбираем токовое реле. Токовая отсечка(ТО) Разновидность токовой защиты, которые испол-ся в качестве первых ступеней токовых защит. Защиты, позволяющие без выдержки времени, отключать КЗ. в сети. Селективность действия ТО достигается выбором Iсз. ТО бывают селективные и неселективные, мгновенного действия и с выдержкой времени, направлен. и ненаправл. Iсз д. б. выбран так, чтобы защита отключала КЗ на своей линии и не отключала на соседней, т.е. , где- макс. знач-е Iкз при к.з. в начале следующей ЛЭП; введя kн получим, kн= 1,2 ÷ 1,3. Расчет защиты по току 2-хфазного к.з., который меньше, чемI 3-хфазного к.з., то возможно неселективное действие ТО при к.з. на последующей линии. Время действия складывается из времени замыкания контактов реле, входящих в схему защиты. Это время действия промежуточных реле. tсз находится:0,02 ÷ 0,06 с. Точка , в которой Iкз = Iсз, делит линию на 2 части: где Iсз < Iкз - зона работы защиты и, где Iсз > Iкз - «мертвая зона»-защита не работает. Мертвая зона явл-ся существенным недостатком ТО. Величина «мертвой зоны» м. б. определена графически. Допустимо применение ТО, если ее зона охватывает более 20% от длины линии. Для защиты части линии, не попавшей в зону ТО, применяют еще одну ТО с выдержкой времени, которая выступает в качестве второй зоны токовой защиты. Газовая защита - для защиты силовых трансф-ров с масляным заполнением, снабженных расширителями, от всех видов внутренних повреждений, сопровождающихся выделением газа, ускоренным перетеканием масла из бака в расширитель,от утечки масла из бака трансф-ра. Газовая защита-очень чувствительная и часто позволяет обнаружить повреждение в трансф-ре в начальной стадии. При повреждениях трансф-ра газовая защита действует быстро: 0,1-0,2с. Газовая защита устанавл-ся на всех трансф-рах мощ-ю 6,3МВА и более, а также на всех внутрицеховых понижающих трансф-рах, начиная с мощ-и 630кВА. 78.1.Дифференциальная токовая защита(ДЗТ) МТЗ и ТО отключение КЗ без выдержки времени не выполняют, что связано с их принципами действия и особенностями. Одним из видов защит, позволяющих выполнять отключение без выдержки времени при КЗ в любой точке защищаемого элемента являются дифф. защиты. Принцип действия продольных диффзащит основан на сравнении величин и фаз токов в начале и конце защищаемого элемента. Дифф. защиты делятся на продольные и поперечные. В продольных дифзащитах токи сравниваются по концам защищаемого элемента (линии, трансф-ра и др.),в поперечных дифзащитах токи сравниваются в параллельных ветвях защищаемого элемента (паралл. линиях, паралл. ветвях обмотки статора генератора). ДЗТ(продольная) - быстродействующая защита трансф-ров с обмоткой ВН 3кВ и выше от КЗ на выводах, внутр. повреждений. Продольная ДЗТ без выдержки времени предусматриваться на трансф-рах 4МВА и выше, 4МВА при их паралл-ой работе и на трансф-рах меньшей мощ-ти (не < 1МВА), если ТО не удовлет-ет требов-ям чувствит-ти. Рис.4 Схема поперечной диф.защиты Ток небаланса :где- обусловлен погрешностью ТА;- обусловлен неравенством сопротивлений линий. 1е условие определения :. 2е условие -, где- суммарный ток нагрузки параллельных линий. Это условие предотвращает срабатывание защиты при отключении ЛЭП с противоположного конца. 3е условие- условие недействия защиты при отключении одной из ЛЭП и внешнем КЗ. studfiles.net 2. Защиты силовых трансформаторов.В процессе эксплуатации в обмотках трансформаторов могут возникать КЗ между фазами, замыкание одной или двух фаз на землю, замыкание между витками одной фазы и замыкания между обмотками разных напряжений. Дифференциальная защитаДифференциальная защита, выполненная на принципе сравнения токов на входе и выходах, применяется в качестве основной быстродействующей защиты трансформаторов и автотрансформаторов. Защита абсолютно селективна, реагирует на повреждения в обмотках, на выводах и в соединениях с выключателями, и действует на отключение трансформатора со всех сторон без выдержки времени. Зона действия дифференциальной защиты трансформатора (ДЗТ) ограничивается местом установки трансформаторов тока, и включает в себя ошиновку СН, НН и присоединение ТСН, включённого на шинный мост НН. Ввиду её сравнительной сложности, дифференциальная защита устанавливается в следующих случаях: - на одиночно работающих трансформаторах (автотрансформаторах) мощностью 6300 кВА и выше; - на параллельно работающих трансформаторах (автотрансформаторах) мощностью 4000 кВА и выше; - на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности при КЗ на выводах высшего напряжения (), а максимальная токовая защита имеет выдержку времени более 0,5 сек. При параллельной работе трансформаторов (автотрансформаторов) дифференциальная защита обеспечивает не только быстрое, но и селективное отключение повреждённого трансформатора (автотрансформатора). Если параллельно работающие трансформаторы Т1 и Т2 оснащены только максимальными токовыми защитами, то при повреждении на вводах низшего напряжения трансформатора, например в точке К, подействуют МТЗ обоих трансформаторов, а так как их выдержки времени одинаковы, отключатся оба трансформатора. Дифференциальная защита, действующая без выдержки времени, обеспечивает в рассмотренном случае отключение только повреждённого трансформатора. Для выполнения дифференциальной защиты трансформатора (автотрансформатора) устанавливаются ТТ со стороны всех его обмоток. Вторичные обмотки ТТ соединяются в дифференциальную схему и параллельно к ним подключается токовое реле. Аналогично выполняется дифференциальная защита автотрансформатора. При рассмотрении принципа действия дифференциальной защиты условно принимается, что защищаемый трансформатор имеет коэффициент трансформации, равный единице, одинаковое соединение обмоток и одинаковые ТТ с обеих сторон. При прохождении через трансформатор сквозного тока нагрузки или КЗ ток в реле равен:
При принятых выше условиях и пренебрегая током намагничивания трансформатора, который в нормальном режиме имеет малое значение, можно считать, что первичные токи равны () и, следовательно, вторичные токи. С учётом этого:
Прохождение тока КЗ и действие МТЗ Принцип действия ДЗТ: при повреждении одного из параллельно а – токораспределение при сквозном КЗ; работающих трансформаторов б – то же при КЗ в трансформаторе (в зоне действия дифференциальной защиты) studfiles.net |