Мировой гидроэнергетический потенциал речного стока. Одним из крупнейших в мире гидроэнергопотенциалом обладаетВопросы для проведения контрольной работы по теме "Природные ресурсы мира" (10 класс)1 вариант
1) Азии; 2) Австралии и Океании; 3) Африке; 4) Латинской Америке.
Если объем добычи не изменится, то страной, наиболее обеспеченной запасами нефти, следует считать: 1) Саудовскую Аравию; 2) Кувейт; 3) Ливию; 4) Венесуэлу.
1) Германия и Индонезия; 2) Индия и Великобритания; 3) Колумбия и Австралия; 4) США и Россия.
Если объем добычи не изменится, то страной, наиболее обеспеченной запасами угля, следует считать: 1) Польшу; 2) Китай; 3) Австралию; 4) Индию.
1) Ирана и Австралии; 2) Индии и Индонезии; 3) Германии и Италии; 4) Норвегии и Габона.
1) Азии; 2) Латинской Америке; 3) Африке; 4) Европе.
1) Новой Зеландии и Аргентине; 2) Дании и Бангладеш; 3) Украине и Казахстане; 4) Боливии и Монголии.
1) Азии; 2) Северной Америке; 3) Африке; 4) Европе.
1) Габона и Лаоса; 2) Конго и Венесуэлы; 3) Туркменистана и Ливии; 4) Швеции и Колумбии.
2 вариант
Если объем добычи не изменится, то страной, наименее обеспеченной запасами нефти, следует считать: 1) Иран; 2) ОАЭ; 3) Великобританию; 4) Ирак.
1) Турция, Бразилия и Италия; 2) Австралия, Польша и ЮАР; 3) Мексика, Нигерия и Таиланд; 4) Бельгия, Пакистан и Чили.
Если объем добычи не изменится, то страной, наиболее обеспеченной запасами железной руды, следует считать: 1) Швецию; 2) Канаду; 3) Бразилию; 4) Австралию.
1) Дания и Нидерланды; 2) Суринам и Ямайка; 3) Болгария и Польша; 4) Перу и Австралия.
1) Финляндия и Нидерланды; 2) Канада и Бангладеш; 3) Египет и Саудовская Аравия; 4) Монголия и Афганистан.
1) Новой Зеландии и Либерии; 2) Конго и Бангладеш; 3) Кипра и Египта; 4) Ливии и Израиля.
настоящее время используется уже на 2/З, обладает: 1) Перу; 2) Германия; 3) Канада; 4) Бразилия.
душу населения характерна для: 1) Швейцарии и Вьетнама; 2) Пакистана и Китая; 3) Канады и Аргентины; 4) Южной Кореи и Бельгии.
1) Греции и Польше; 2) Исландии и Уругвае; 3) Экваториальной Гвинее и Шри-Ланке;4) Перу и Колумбии.
3 вариант
1) Румыния и Австрия; 2) Германия и Венгрия; 3) Великобритания и Норвегия; 4) Швеция и Чехия.
Если объем добычи не изменится, то страной, наименее обеспеченной запасами природного газа, следует считать: 1) Иран; 2) Алжир; 3) США; 4) Венесуэлу.
1) Португалия, Нидерланды и Финляндия; 2) Греция, Венгрия и Болгария; 3) Исландия, Чехия и Хорватия; 4) Великобритания, Германия и Польша.
1) Либерия и Мавритания; 2) Перу и Франция; 3) Бразилия и Индия; 4) Швеция и Чили.
1) США, Казахстан и Марокко; 2) Япония, Нидерланды и Куба; 3) Мавритания, Филиппины и Аргентина; 4) Канада, Нигерия и Пакистан.
1) Россия; 2) Бразилия; 3) Швеция; 4) Бангладеш.
1) Венгрия и Пакистан; 2) Китай и Бразилия; 3) Иран и Йемен; 4) Швеция и Австрия.
сих пор практически не используется, обладает: 1) Япония; 2) Норвегия; 3) Австралия; 4) демократическая Республика Конго.
1) Бразилии и Австралии; 2) России и Венгрии; 3) Индии и Финляндии; 4) Польше и Южной Корее.
душу населения характерна для: 1) Казахстана и Австралии; 2) Аргентины и России; 3) США и Австралии; 4) Японии и Бангладеш.
1) Афганистана и ЮАР; 2) Монголии и Алжира; 3) Папуа — Новой Гвинеи и Финляндии; 4) Мавритании и Саудовской Аравии.
1) Перу и Намибии; 2) Эстонии и ОАЭ; 3) Греции и Финляндии; 4) Египте и Бразилии. infourok.ru Гидроэнергетика в мире — Мегаобучалка
На 2005 год гидроэнергетика обеспечивает производство до 63 % возобновляемой и до 19 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 715 ГВт. Абсолютным лидером по выработке гидроэнергии на гражданина является Исландия, кроме неё этот показатель наиболее высок в Норвегии, Канаде и Швеции. Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира. На 2008 год крупнейшими производителями гидроэнергии (включая переработку на ГАЭС) являются следующие страны:
Преимущества и недостатки ГЭС
Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы. Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами, в отличии от выбросов СО2, производимыми ТЭС и возможными авариями на АЭС, которые могут понести за собой глобальные катастрофические последствия. Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Плотины часто перекрывают рыбам путь к нерестилищам, нарушают естественное течение рек, приводят к развитию застойных процессов, снижают способность к «самоочищению», а следовательно резко изменяют качество воды. Себестоимость производимой энергии на ГЭС гораздо ниже, чем на атомных и тепловых электростанциях, и они способны быстрее выходить на режим выдачи рабочей мощности после включения, однако их строительство обходится дороже. Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто. Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы ГЭС - около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.
Аварии и происшествия на ГЭС
17 мая 1943 года — подрыв Британскими войсками по операции Chastise плотин на реках Мёне (водохранилище Мёнезее) и Эдер (водохранилище Эдерзее), повлекшие за собой гибель 1268 человек, в том числе около 700 советских военнопленных. 9 октября 1963 года — одна из крупнейших гидротехнических аварий на плотине Вайонт в северной Италии. В ночь на 11 февраля 2005 года в провинции Белуджистан на юго-западе Пакистана из-за мощных ливней произошел прорыв 150-метровой плотины ГЭС у города Пасни. В результате было затоплено несколько деревень, более 135 человек погибли. 12 сентября 2007 года — на Новосибирской ГЭС произошел крупный пожар на одном из трансформаторов по причине замыкания и вследствие этого возгорания битума и обшивки трансформатора. 5 октября 2007 года на реке Чу во вьетнамской провинции Тханьхоа после резкого подъема уровня воды прорвало плотину строящейся ГЭС Кыадат. В зоне затопления оказалось около 5 тысяч домов, 35 человек погибли. 3 августа 2009 года — возгорание на трансформаторе напряжения открытого распределительного устройства 200 кВ Бурейской ГЭС. 16 августа 2009 года — пожар в мини-АТС Братской ГЭС, выход из строя аппаратуры связи и телеметрии ГЭС (Братская ГЭС входит в тройку крупнейших ГЭС России). 17 августа 2009 года — крупная авария на Саяно-Шушенской ГЭС (Саяно-Шушенская ГЭС самая мощная электростанция России).
Заключение Потенциал гидроэнергетики можно определить, суммировав все существующие на планете речные стоки. Расчёты показали, что мировой потенциал равен пятидесяти миллиардам киловатт в год. Но и эта весьма впечатляющая цифра составляет лишь четверть от количества осадков, ежегодно выпадающих во всём мире. С учётом условий каждого конкретного региона и состояния мировых рек действительный потенциал водных ресурсов составляет от двух до трёх миллиардов киловатт. Эти цифры соответствуют годовой выработке энергии в 10000 - 20000 миллиардов киловатт в час. Чтобы осознать потенциал гидроэнергетики, выраженный этими цифрами, следует сопоставить полученные данные с показателями нефтяных теплоэлектростанций. Чтобы получить такое количество электроэнергии, станциям, работающим на нефти, требовалось бы около сорока миллионов баррелей нефти каждый день. Вне всяких сомнений, гидроэнергетика в перспективе не должна оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов. Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов. Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко, так как сегодня разработка методов определения экологического энергопотенциала не производится.
megaobuchalka.ru Мировой гидроэнергетический потенциал речного стокаГидроэнергией (водной энергией) называют энергию, которой обладает вода, движущаяся в потоках по земной поверхности. Существуют три категории гидроэнергетического потенциала (гидроэнергетических ресурсов): теоретический, технический и экономический. При определении теоретического гидро-энергопотенциала (его называют также потенциальным и валовым) учитывается полный поверхностный сток рек, который, как уже отмечено, составляет 48 тыс. км3/год. Если принять среднюю высоту суши равной 800 м, то теоретический потенциал будет исчисляться в 1000 млн кВт возможной мощности, что соответствует выработке около 35 трлн кВт» ч в год. Впрочем, есть и другие оценки этого потенциала, которые колеблются в пределах от 35 трлн до 40 трлн кВт-ч. Технический гидроэнергопотенциал – это та часть теоретического потенциала, которая технически может быть использована с учетом годовых и сезонных колебаний стока в реках, наличия подходящих створов для сооружения ГЭС, а также потерь воды вследствие испарения, фильтрации и т. д. Коэффициент пересчета теоретического потенциала в технический для разных регионов Земли и стран не одинаков, но в среднем его обычно принимают равным 0,5. Чаще всего мировой технический гидроэнергопотенциал оценивается в 15 трлн кВт-ч возможной выработки. Наконец, экономический гидроэнергопо-тенциал – это та часть технического потенциала, использование которой в данных конкретных условиях места и времени можно считать экономически оправданным. Он меньше технического потенциала и, по оценкам, составляет 8—10 трлн кВт-ч в год, что соответствует мощности в 2340 млн кВт. Можно добавить, что эту цифру нельзя рассматривать как абсолютно стабильную. Например, после мирового энергетического кризиса середины 1970-х гг. и роста цен на топливо коэффициент пересчета технического потенциала в экономический возрос до 70–80 %, и его стали оценивать уже в 15 трлн кВт-ч в год. Но затем этот коэффициент снова снизился. Априори можно предположить, что распределение гидроэнергетического потенциала по территории земной суши неравномерно. И действительно, согласно имеющимся данным, по размерам теоретического потенциала впереди стоит Азия (42 % мирового), за которой следуют Африка (21), Северная и Южная Америка (по 12–13 %), Европа (9) и Австралия и Океания (3 %). За этими общими цифрами географ конечно же видит размещение крупнейших речных систем мира. Установлено, что примерно половина мирового речного стока приходится на 50 крупнейших рек, бассейны которых покрывают 40 % земной суши. В том числе 15 из них (9 в Азии, 3 в Южной, 2 в Северной Америке и 1 в Африке) имеют средний расход воды в размере 10 тыс. м3/с или более. Но этот показатель сам по себе еще не определяет роль той или иной реки в гидропотенциале. Например, Амазонка выносит в океан в пять раз больше воды, чем вторая по водоносности река мира – Конго. Однако Конго благодаря топографическим и геологическим особенностям территории, по которой она протекает, имеет значительно больший гидроэнергетический потенциал, чем Амазонка. Распределение экономического гидроэнер-гопотенциала по регионам мира показано в таблице 27. Приведенные в таблице 27 данные позволяют сделать несколько выводов. О том, что крупные регионы Земли по масштабам экономического гидропотенциала «выстраиваются» следующим образом: Зарубежная Азия, Латинская Америка, Африка и Северная Америка, СНГ, зарубежная Европа, Австралия и Океания. О том, что пока еще экономический гидропотенциал Земли используется лишь на 21 % (это означает, что в принципе годовое производство электроэнергии на ГЭС можно увеличить примерно в пять раз). Наконец, о том, что степень освоенности гидроэнергетического потенциала особенно велика в зарубежной Европе, где для сооружения ГЭС использовано уже большинство выгодных речных створов, и в Северной Америке. Наиболее благоприятные ресурсные предпосылки для развития гидроэнергетики имеют Азия, Африка и Латинская Америка. Можно добавить, что на развивающиеся страны в целом приходится еще примерно 2/3 всего неосвоенного мирового гидроэнергопотенциала. Таблица 27 МИРОВОЙ ЭКОНОМИЧЕСКИЙ ГИДРОЭНЕРГОПОТЕНЦИАЛ И ЕГО ИСПОЛЬЗОВАНИЕ * Без стран СНГ. Среди стран по размерам экономического гидроэнергетического потенциала особо выделяется первая пятерка в составе Китая (1260 млрд кВт-ч), России (850 млрд), Бразилии (765 млрд), Канады (540 млрд) и Индии (500 млрд кВт ч), на долю которой приходится почти 1/2 всего этого потенциала. Затем следуют ДР Конго (420 кВт-ч), США (375), Таджикистан (265), Перу (260), Эфиопия (260), Норвегия (180), Турция (125), Япония (115 кВт – ч). Степень использования этого потенциала в странах очень различна. Во Франции, в Швейцарии, Италии, Японии он использован уже почти полностью, в США и Канаде на 38–40 %, тогда как в Китае – на 16, в Индии – на 15, в Перу – на 5, а в ДР Конго – на 1,5 %. Россия обладает очень большими гидроэнергетическими ресурсами. Ее теоретический потенциал оценивается в 2900 млрд кВт-ч, технический – в 1670 млрд, а экономический, как уже отмечено, – в 850 млрд кВт ч в год. Но распределяется он по стране крайне неравномерно: на европейскую ее часть приходится 15 %, а на азиатскую – 85 %. Освоено из него пока лишь 18 % (в том числе в европейской части – 50 %, в Сибири – 19 и на Дальнем Востоке – 4 %).
Похожие статьи:poznayka.org Мировая гидроэнергетика: настоящее и будущееМировой опыт показывает, что освоение гидропотенциала малых рек решает проблемы энергоснабжения мелких потребителей. Например, в Китае построено более 90 тысяч малых ГЭС, которые обеспечивают 30 процентов энергопотребления в сельских районах. В США разработана государственная программа развития малой гидроэнергетики: до 2020 года планируется ввести малые ГЭС суммарной мощностью 50 тысяч МВт, что обеспечит производство 200 миллиардов кВт-ч электроэнергии. При этом стоимость 1 кВт-ч электроэнергии, выработанной на малой ГЭС, составляет 1,8-2,4 цента (на больших ГЭС – 3,2-5,5 цента, на АЭС – 2,8-3,9 цента). В одном из журналов, вышедших в США в декабре 1900 года, журналисты сделали прогноз, как изменится мир через сто лет. В отличие от других Нострадамусов, они многое угадали. Но самый интересный прогноз касался развития гидроэнергетики. По мнению людей, живших сто лет назад, в каждой реке будет установлено специальное оборудование для производства электричества. Вдоль побережья морей и океанов появятся устройства, превращающие энергию волн в электрическую. Что ж, XX век действительно можно назвать веком гидроэнергетики. Однако что будет с ней в XXI веке? Что сделано, что предстоитСейчас крупнейшими производителями гидроэнергии (включая гидроаккумулирующие станции) в абсолютных значениях являются Китай, Канада, Бразилия и США, замыкает пятерку лидеров Россия. Однако абсолютный лидер по выработке гидроэнергии на душу населения – Исландия. Кроме нее, этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке – 98 процентов), Канаде и Швеции. Однако в развитых странах уже освоена большая часть экономически целесообразного гидропотенциала, в частности в Европе это 75 процентов, в Северной Америке – около 70 процентов, и возможности для строительства крупных ГЭС практически исчерпаны. В то же время Африка (21 процент мировых гидроэнергетических ресурсов) и Азия (39 процентов) вносят в мировую выработку гидроэлектроэнергии лишь 5 и 18 процентов, соответственно. Южная Америка и Австралия вместе взятые, располагая примерно 15 процентами ресурсов, дают только 11 процентов производимой в мире гидроэлектроэнергии. Так что смело можно прогнозировать, что новые большие ГЭС будут строить в основном в Африке, Азии и Южной Америке, так как на других континентах, везде, где только можно построить большую ГЭС, они уже стоят. Эти выводы подтверждаются тем, что крупнейшие ГЭС мира находятся именно в этих регионах. Так, именно в Азии, в Китае, располагается крупнейшая ГЭС мира «Три ущелья» на реке Янцзы. Мощность этой станции составляет 22,4 ГВт (для сравнения – мощность крупнейшей гидроэлектростанции России Саяно-Шушенской ГЭС составляла до аварии 6,4 ГВт). Кроме того, в Китае ведется строительство крупнейшего по мощности каскада ГЭС. Вторая по величине гидроэлектростанция в мире называется «Итайпу» и стоит на реке Парана, на границе Бразилии и Парагвая. Ее мощность – 14 ГВт. Наконец, «тройку призеров» замыкает гидроэлектростанция имени Симона Боливара, или «Гури», в Венесуэле, на реке Карони. Ее мощность – 10,3 ГВт. Однако все эти достижения инженерной мысли меркнут перед ГЭС «Гранд Инга». Эта гидроэлектростанция, мощность которой составит 39 ГВт, планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир). У «Гранд Инга» будут пятьдесят две гидротурбины по 750 МВт каждая, плотина высотой 150 метров, будет использоваться часть потока скоростью 26400 кубометров в секунду. В случае успеха проекта «Гранд Инга» вдвое превзойдет «Три ущелья». Стоимость сооружения составит около 80 миллиардов долларов США. Ожидается, что строительство начнется в 2014 году и может быть завершено около 2025 года. Удел развивающихся стран?Однако на фоне успехов гидроэнергетики не стоит забывать и о минусах, которые она несет окружающей среде. К тому же эти минусы приобретают все больший вес в глазах общественности и могут кардинальным образом сказаться на будущем отрасли. Поскольку строительство крупных ГЭС, как правило, сопряжено с существенными экологическими проблемами – затоплением больших территорий, изменением климата (например, в Красноярске из-за ГЭС не замерзает Енисей, лед здесь не образуется на протяжении 80 километров вниз по течению от плотины гидростанции [кромка полыньи в отдельные годы может спускаться более 270 км от плотины]) в странах с высокими природоохранными стандартами это стало дополнительным барьером для развития крупной гидрогенерации. Кстати, недостаточно изучен вопрос, как нивелировать экологические последствия при выводе ГЭС из эксплуатации, так как ни одну из крупнейших гидроэлектростанций еще не выводили. Ясно одно: вывод ГЭС из эксплуатации потребует больших бюджетных затрат. В результате происходит отчетливая «миграция» гидроэнергетики в развивающиеся страны, где велик неосвоенный гидропотенциал, а экологические соображения играют меньшую роль (как в силу менее строгих экологических стандартов, так и по причине невысокой политизированности вопросов экологии). В результате, по оценкам Международного энергетического агентства, в предстоящие полтора-два десятилетия до 80 процентов прироста мощностей гидрогенерации придется на развивающиеся государства. Еще одним минусом гидроэнергетики можно назвать довольно низкий коэффициент использования установленной мощности. Этот общий показатель для энергетики у атомных станций составляет порядка 80-85 процентов, самый высокий из всех видов генерации. А у ГЭС он лишь порядка 50 процентов. То есть один гигаваттный блок в лучшем случае выдает 500 мегаватт, что также сказывается на перспективах развития гидроэнергетики. Значит ли это, что времена расцвета гидроэнергетики в прошлом и ее ждет угасание? Конечно же, нет. Об этом можно судить по тому, какими темпами развивается малая гидроэнергетика, не требующая больших территорий, приближенная к потребителю и быстро окупающаяся. За последние десятилетия малая энергетика заняла устойчивое положение во многих странах мира. Мировой опыт показывает, что освоение гидропотенциала малых рек решает проблемы энергоснабжения мелких потребителей. Например, в Китае построено более 90 тысяч малых ГЭС, которые обеспечивают 30 процентов энергопотребления в сельских районах. В США разработана государственная программа развития малой гидроэнергетики: до 2020 года планируется ввести малые ГЭС суммарной мощностью 50 тысяч МВт, что обеспечит производство 200 миллиардов кВт-ч электроэнергии. При этом стоимость 1 кВт-ч электроэнергии, выработанной на малой ГЭС, составляет 1,8-2,4 цента (на больших ГЭС – 3,2-5,5 цента, на АЭС – 2,8-3,9 цента). Альтернативы развитияВпрочем, помимо традиционной малой гидроэнергетики, в настоящее время активно продвигают и другие способы получения электроэнергии от воды. Основные направления развития альтернативной гидроэнергетики связаны с использованием механической энергии приливов, волн, течений и тепловой энергии океана. Только один приливно-отливный цикл Мирового океана энергетически эквивалентен 8 триллионам кВт-ч. По экспертным оценкам, технически возможно использование примерно 2 процентов этого потенциала. Наибольшими запасами приливной энергии обладают Атлантический и, в меньшей мере, Тихий океаны. Одним из наиболее существенных факторов, влияющих на возможность использования энергии приливов, являются особенности береговой линии, а также прибрежного и придонного рельефа. В длинных узких заливах с пологим дном приливы имеют максимальную высоту, иногда превышающую 10 метров, что существенно повышает эффективность энергетического использования приливно-отливного цикла. Есть мнение, что работа приливных электростанций тормозит вращение Земли, что может привести к негативным экологическим последствиям, однако, с точки зрения большинства экспертов, ввиду колоссальной массы Земли влияние приливных электростанций незаметно. Первые экспериментальные приливные электростанции (ПЭС) появились в начале XX века, однако серьезный интерес к приливной энергетике возродился опять-таки во времена энергетического кризиса, в середине 1970-х годов. Преимущества ПЭС – экологичность и низкая себестоимость производства энергии. Недостатки – высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов. В 1984 году в Канаде была построена ПЭС «Аннаполис» мощностью 20 МВт. Активно развивают направление ПЭС США и Франция. Энергетический потенциал ПЭС в США оценивается в 350 миллиардов кВт-ч в год. Перспективные возможности сооружения ПЭС во Франции оцениваются в 40 миллиардов кВт-ч в год. Постепенно к развитию ПЭС присоединяются и другие страны. Так, в прошлом году в Южной Корее была запущена крупнейшая в мире приливная электростанция Shihwa. В начале августа 2011 года запустили шесть из десяти ее генераторов. После полного запуска в эксплуатацию мощность сеульской электростанции составит 254 МВт. Электроэнергии, которую она будет вырабатывать, будет достаточно для обеспечения города с населением в 500 тысяч человек. Как считают южнокорейские специалисты, с помощью приливной электростанции Южная Корея будет экономить каждый год более 860 тысяч баррелей нефти и тем самым сможет снизить выбросы углекислого газа на 3,2 миллиона тонн в год. Однако быть крупнейшей ПЭС ей осталось недолго: в 2012 году во французской Бретани завершится строительство приливной электростанции, которая, согласно утверждению французов, станет самым крупным подобным объектом в мире. Проект стоимостью 55 миллионов долларов США был разработан в 2004 году. Строительство электростанции началось в 2008-м, и вот теперь компании заявляют, что ее запуск будет осуществлен в начале следующего года. Компания OpenHydro поставила для проекта четыре двухмегаваттные турбины, которые в настоящее время устанавливаются на глубине 115 метров у побережья. Еще одно направление развития альтернативной гидроэнергетики – волноприбойная энергетика. Технический потенциал энергии волн оценивается примерно в 3 миллиарда кВт-ч в год, однако реальные возможности его использования по целому ряду причин (в том числе из-за непостоянства ветров и волн) существенно ниже. Экспериментальные волноприбойные электростанции (ВПЭС) в основном строятся по поплавковым схемам: в электричество преобразуется работа волн по поднятию расположенных на водной поверхности систем поплавков. Еще одним перспективным техническим вариантом ВПЭС считается «поршневая» схема, в которой волновые колебания уровня воды в вертикальных колодцах используются в качестве «поршней», прогоняющих через турбины воздух, находящийся над водой в этих колодцах. Пока эксплуатация опытных ВПЭС ведется только в Великобритании и Японии. Однако разработками в этом направлении активно занимаются в США, Канаде, Австралии и других странах. Почти фантастика. ПокаЕсли же взглянуть в будущее гидроэнергетики чуть дальше, то человечеству стоит задуматься об энергетическом потенциале океанских и морских течений, который составляет сотни миллиардов киловатт-часов в год. Так, Гольфстрим, основная часть которого проходит между Флоридой и Багамскими островами, имеет эквивалентную энергетическую мощность в 50 миллионов кВт, и эксперты в США считают, что реально использовать примерно 10 процентов этой мощности. Возможная технология – погружение систем низкооборотных турбин (скорость течения – менее 1 м/с) в поток. Однако воплощение таких проектов – дело будущего. Еще одним направлением может стать использование тепловой энергии океана. Его перспективы основаны на том, что между водой на поверхности и водой на глубинах уже в первые сотни метров существует очень значительная разница температур. Поскольку такое явление наблюдается повсеместно в низких широтах, теоретический потенциал данного типа энергетики очень велик. Программы «Преобразование термальной энергии океана» уже осуществляются в США, Японии, Франции. Построены опытные моретермальные электростанции у Гавайских островов, острова Науру, у побережья Кот-д’Ивуара. МТЭС работают с применением испарительно-конденсационного цикла теплоагента, на принципе испарения жидкого аммиака, фреона или другого теплоносителя за счет отбора тепла глубинной холодной водой. Испаренный теплоноситель используется в турбинах низкого давления либо в поршневых системах для выработки электроэнергии. Впрочем, пока их мощность не превышает первых сотен киловатт, коэффициент преобразования энергии 10-15 процентов, а себестоимость энергии неконкурентоспособна с большинством других традиционных и нетрадиционных энерготехнологий. Основные перспективы развития МТЭС связывают с технологиями сооружения крупных плавающих станций погружного или полупогружного типа большой мощности; расчеты показывают, что при этом коэффициент преобразования энергии можно поднять более чем вдвое. Однако для МТЭС с такими технологиями пока не вполне решены проблемы накопления и передачи выработанной энергии к потребителям на материке. И все же рано или поздно эти технологические проблемы будут решены. И кто знает, может быть, в будущем большую часть энергии человечество будет получать от воды. А значит, гидроэнергетика не утратит своего значения ни в XXI, ни даже в XXII веке. Антон КАНАРЕЙКИН www.plotina.net 2.2. Гидроэнергетические ресурсы и их использование2.2. Гидроэнергетические ресурсы и их использованиеДля оценки потенциальных гидроэнергетических ресурсов (без учета потерь при преобразовании водной энергии в электрическую) определяется валовой гидроэнергетический потенциал. Он характеризуется среднемноголетней годовой потенциальной энергией Э по т и среднегодовой потенциальной мощностью N по т. Годовая потенциальная энергия, исходя из 8760 ч использования в году потенциальной мощности, может определяться по формуле Э пот = 8760 N пот . Валовой теоретический гидроэнергетический потенциал рек мира оценивается в 39100 млрд. кВт·ч. Технический гидроэнергетический потенциал характеризует ту часть водной энергии, которую можно использовать технически. При определении технического гидроэнергетического потенциала учитываются все потери, связанные с производством электроэнергии, включая невозможность полного использования стока, что вызвано недостаточной емкостью водохранилищ и ограничением мощности ГЭС, в связи с ограниченным использованием верховых и низовых участков рек с малой потенциальной мощностью, потерями на испарение с поверхности водохранилищ и на фильтрацию из водохранилищ, потерями напора и мощности в проточном тракте и энергетическом оборудовании ГЭС. Экономически эффективный гидроэнергетический потенциал определяет ту часть технического потенциала, которую в настоящее время экономически целесообразно использовать. Следует отметить условность определения экономически эффективного потенциала, так как он базируется на техникоэкономическом сравнении с альтернативными источниками электроэнергии, в качестве которых выступают тепловые электростанции, и не учитывает достаточно полно эффективность комплексного использования водных ресурсов. Кроме того, в связи с ростом стоимости органического топлива, а также увеличением стоимости строительства ТЭС с учетом ужесточения требований по охране окружающей среды и др. можно прогнозировать увеличение в перспективе экономически эффективного потенциала, который будет приближаться к техническому гидроэнергетическому потенциалу. Рис. 2.2. Распределение экономически эффективного гидроэнергетического потенциала и его использования по континентам
Таблица 2.1 Данные о гидроэнергетическом потенциале и его использовании в странах, имеющих наибольшие гидроэнергетические ресурсы
Рис. 2.2. Распределение экономически эффективного гидроэнергетического потенциала и его использования по континентам Глобальное потепление климата на Земле, возможность которого обосновывается многими исследованиями, может повлиять на сток рек и гидроэнергетические ресурсы. Так, по приближенной оценке среднемноголетняя выработка ГЭС в России может увеличиться до 12%. Мировой технический гидроэнергетический потенциал (на уровне 2008 г.) оценивается в 14650 млрд. кВт·ч, а экономически эффективный – в 8770 млрд. кВт·ч. Распределение экономического эффективного потенциала и его использования по континентам на уровне 2000 г. приведено на рис. 2.2. Несмотря на резкое повышение требований по охране окружающей среды, за 25 лет с 1975 по 2000 гг. мировой объем выработки электроэнергии на ГЭС вырос с 1165 до 2650 млрд. кВт·ч и составил около 19% мирового производства электроэнергии. При этом используется только треть экономически эффективного гидроэнергетического потенциала. Во всем мире установленная мощность ГЭС, находящихся в эксплуатации, в 2000 г. составила 670 млн.кВт, а к 2008 г. достигла 887 млн.кВт, а выработка – 3350 млрд.кВт·ч. Данные о гидроэнергетическом потенциале стран, обладающих наибольшими гидроэнергетическими ресурсами, и его использовании на уровне 2008 г. приведены в таблице 2.1. Полный объем всех водохранилищ в мире превысил 6 тыс. км 3 (ресурсы речного стока оцениваются в 37 тыс. км 3). На средние и большие водохранилища объемом более 100 млн. м 3 приходится свыше 95% суммарного объема всех водохранилищ, причем подавляющее большинство этих водохранилищ имеют ГЭС. Гидроэнергические ресурсы не беспредельны, и приходит понимание, что они такое же национальное богатство, как нефть, газ, уголь, уран, в отличие от которых являются возобновляемыми ресурсами. Самые крупные эксплуатируемые ГЭС имеют установленную мощность: Три ущелья (Китай) – 18,2 млн. кВт, Итайпу (Бразилия – Парагвай) – 12,6 (14,0) млн.кВт, Guri (Венесуэла) – 10,3 млн.кВт, Тукуру (Бразилия) – 7,2 млн.кВт, Гренд Кули (США) – 6,5 млн.кВт, Саяно–Шушенская – 6,4 млн.кВт и Красноярская (Россия) – 6 млн.кВт, Черчилл-Фолс – 5,4 млн.кВт и Ла Гранде (Канада) – 5,3 млн.кВт. Таблица 2.2 Данные о гидроэнергетическом потенциале стран, максимально его использующих (на уровне 2008 г.)
Анализируя мировой опыт развития энергетики, следует отметить, что практически все наиболее развитые страны в первую очередь интенсивно осваивали свои гидроэнергетические ресурсы и достигли высокого уровня их использования (табл. 2.2). Так, гидроэнергетические ресурсы в США использованы на 82%, в Японии – на 90%, в Италии, во Франции, в Швейцарии – на 95–98%. В Украине экономически эффективный гидроэнергетический потенциал использован на 60%, в России – на 21%. В мире сохраняется тенденция к постоянному увеличению использования вечно возобновляемых гидроэнергетических ресурсов, особенно в слаборазвитых и развивающихся странах, развитие энергетики в которых идет по пути первоочередного применения именно гидроэнергетических ресурсов. При этом строительство ГЭС в основном перемещается в предгорья и горные районы, где их отрицательное влияние на окружающую среду значительно уменьшается. Панорама ГЭС Итайпу «Итайпу» – одна из крупнейших ГЭС мира на реке Парана, за 20 км до г. Фос-ду-Игуасу (Foz do Iguacu) на границе Бразилии и Парагвая. По мощности уступает лишь ГЭС «Три ущелья» (Китай), однако на 2008 год была крупнейшей по выработке электроэнергии. Вид на плотину ГЭС «Три ущелья» ГЭС «Три ущелья» – самая большая за всю историю мировой гидроэнергетики. В состав сооружений ГЭС входят: бетонная глухая плотина, здание ГЭС с 26 агрегатами, водосбросная плотина, 2 нитки шлюзов по 5 камер с напором на каждую камеру 25,4 м, судоподъемник. Полная и полезная емкость водохранилища – 39,3 и 22,1 млн. м 3, его максимальная глубина – 175 м. Установленная мощность ГЭС 18 200 МВт. energetika.in.ua |