Генератор постоянного тока: устройство и принцип действия. Электрический генератор постоянного токапринцип действия, схема подключения, устройство + инструкция с фото и видеоСовременный окружающий нас мир трудно представить без электрической энергии. Одними из устройств, для производства с детства привычного нам электричества, и являются генераторы разных типов. Рассмотрим устройство генератора постоянного тока.
Любой генератор является механизмом, для преобразования любого вида механической энергии в электрическую. Любое механическое усилие, будь то рычаг, электрический или бензиновый двигатель, служит источником энергии. А подведение этого источника к генератору приводит к выработке им электрического тока. Основное отличие от генераторов переменного тока заключается в необходимости присутствия аккумулятора или ИБП. Это значительно сужает их применение в промышленности и бытовой сфере.
В последнее время, в связи с повсеместным развитием электротранспорта их используют в качестве источника питания для электромобилей, погрузчиков, троллейбусов и прочего автотранспорта.
К достоинствам можно отнести малые габариты и вес, отсутствие потерь мощности на вихревых токах и малую зависимость от климатических условий. Чтобы понять, что представляет из себя это устройство, достаточно взглянуть на фото генератора постоянного тока.
Краткое содержимое статьи: Конструкция генератораРассмотрим, что представляет собой генератор постоянного тока. Во-первых, это изготовленный из прочной стали или чугуна корпус устройства. По корпусу также проходит магнитное поле, создаваемое полюсами генератора. Во-вторых, это ротор и статор. На ферромагнитный статор закрепляется катушка возбуждения. Направление магнитного потока определяют сердечники статора, оснащённые полюсами.
Для большого КПД самого генератора, ротор собран из металлических пластин. Кроме того такая конструкция ротора позволяет значительно сократить появление вихревых токов.
На металлические пластины сердечника наматывают медную или обмедненную обмотку – обмотку самовозбуждения. Количество щеток генератора, изготавливаемых из графита, зависит от количества полюсов на нем, как минимум две. Конструкцию генератора мы можем наглядно рассмотреть на рисунке. Вывод контура генератора соединяются с помощью коллекторных пластин. Пластины делаются из доступного и хорошего проводника электрического тока – меди, а разделяются между собой диэлектриком.
Принцип действияПринцип действия генератора постоянного тока, как и любого другого устройства похожего типа основан на знакомого нам со школы явления электромагнитной индукции и появление в устройстве электродвижущей силы – ЭДС. Вспомним школьную физику: если к проводнику с вращающимся внутри него постоянным магнитом присоединить какую-либо нагрузку, то в ней появится переменный ток. Такое возможно из-за того, что поменялись местами магнитные полюса самого магнита.
Чтобы получить ток постоянный необходимо присоединять точки подключения нагрузки синхронно со скоростью вращения магнита. Для этого и предназначен в генераторе коллектор, закреплённый на роторе и крутящийся с той же частотой. Снимается полученная в результате всего этого процесса энергия с помощью графитных щёток, обладающих хорошей проводимостью и достаточно низким трением. Когда происходит переключения пластин коллектора ЭДС равна нулю, но полярность ее не меняется, за счёт переподключения на другой проводник.
КлассификацияРазделение генераторов по классам происходит по тому принципу, как они возбуждаются. Есть два основных типа классификации генераторов, это самовозбуждающиеся и генераторы с независимым возбуждением.
Первый класс это устройства, где обмотка питается непосредственно от якоря. Его можно подразделить на последовательно, параллельное и смешанное возбуждение. Второй класс подразделяется на электромагнитное и магнитоэлектрическое возбуждение. Способы возбужденияЗа счёт использования в устройствах малой мощности постоянных магнитов получается магнитное возбуждение. Соответственно при использовании электромагнитов имеем электромагнитное. Данный способ нашёл широкое применение при производстве генераторов такого типа. Ещё способы возбуждения генераторов постоянного тока зависят от назначения нужного нам генератора и от того, каким способом подключим обмотку. Если подключить обмотку через специальный реостат к внешнему истоку тока, тогда имеем независимое возбуждение. Такие генераторы находят широкое применение в электрохимическом производстве.
При подключении обмотки через все тот же реостат к клемам самого генератора, получим параллельное возбуждение. Большим плюсом генераторов с таким типом возбуждения является его защита от короткого замыкания, обусловленного все тем же способом возбуждения. Если обмотку подключить последовательно к якорю, то получится последовательное возбуждение. При таком способе подключения наблюдается сильная зависимость изменения напряжения от величины подключённой нагрузки.
При наличии в генераторе двух обмоток имеет место смешенное подключение, одну обмотку подключают последовательно, другую параллельно.
Подключение проводят таким образом, чтобы создавались магнитные потоки в одном векторе. Число витков при таком подключение в обмотках рассчитывается так, чтобы падение напряжение на одной обмотке компенсировалось другой.
Технические характеристикиПод основными техническими характеристиками генераторов можно понимать следующие величины. Это ЭДС генератора. Непосредственно с ЭДС любого генератора напрямую связана его полная электрическая мощность, которая ей прямопропорциональна.
Полная мощность возрастает при увеличении количества полюсов и частоты оборотов якоря. Полезная же мощность, передаваемая на подключённое внешнее устройство, равна произведению выходного тока на выходное напряжение.
Основная характеристика любого производящего что-либо устройства, в том числе и нашего генератора это КПД. Если генератор выключить, а потом включить, то его КПД будет уменьшаться, в связи с увеличением затрат энергии на нагрев обмотки. Различают электрический КПД и промышленный. Если генератор работает на холостом ходу или загружен не полностью, то и КПД соответственно значительно уменьшается. Для того чтобы получить комфортный в экономическом плане режим работы генератора в сети, где нагрузка постоянно изменяется, подключают несколько генераторов, соединённых между собой параллельно.
При таком подключении, причём желательно через автомат и вольтметр, добиваются равномерного распределения нагрузки между работающими генераторами. При увеличении потребления внешней нагрузки, в работу включается второй генератор, тем самым регулируя обороты первого и выравнивая напряжение.
При использовании генераторов со смешанным возбуждением происходит автоматическая регулировка характеристик работающих вместе генераторов, повышается стабильность работы. Это возможно из-за того, что в таких генераторах есть уравнительный провод, проходящий между отрицательными или положительными щётками. Именно эта шина и делает работу таких генераторов устойчивой. Фото генераторов постоянного тока
electrikmaster.ru устройство и принцип работы / действияТакая машина предназначена для генерации постоянного тока с применением перемещения проводника в магнитном поле. В данной статье рассмотрены физические принципы работы, конструкторские схемы, расчёт и сфера применения этого устройства. Промышленный генератор постоянного тока Генерация электроэнергииНа рисунке ниже изображён простейший опыт, который помогает понять принцип действия генератора. Образование тока при движении проводника Если переместить проводник в пространстве так, чтобы он пересекал линии магнитного поля, то в нём образуется электродвижущая сила (ЭДС). Это явление называют индукцией. При замыкании свободных концов в цепи будет течь ток, который можно использовать для питания лампы накаливания, или другой полезной нагрузки. На рисунке изображена правая рука с отогнутым в сторону перемещения проводника большим пальцем. Этот простой способ используют для наглядного определения направления тока в цепи. Для получения необходимого результата допустимо передвижение, как проводника, так и магнита. По указанной выше схеме действующую машину создать не получится. Но следующий вариант вполне применим на практике. Схема устройства и ЭДС на выходе На рисунке изображена рамка, вращающаяся в магнитном поле (направление силовых линии обозначены стрелкой «В»). Съёмники энергии – это специальные щётки. Рамка присоединена к половинам колец (коллекторам), разъединённым электрически с помощью особых изолирующих вставок. На выходе этого устройства электродинамическая сила будет изменяться в соответствии с приведённым графиком. Её величину определяет расчёт на основе следующей формулы: е=2В*n, где В – это поток созданного магнитного поля в Вб; n – количество полных оборотов рамки за одну секунду. Из формулы понятно, что получить больше электроэнергии можно двумя способами. Для этого надо увеличить скорость вращения либо повысить силу магнитного поля. Уменьшение пульсацииНа графике, который изображён выше, указан уровень еср. Если бы удалось стабилизировать ЭДС генератора на соответствующем значении, был бы получен нужный результат. Как такая задача решается на практике, видно из следующего рисунка. Сглаживание электромагнитных колебаний с помощью нескольких рамок Выходные электрические параметры этой машины далеки от идеала. Но ясно, что последовательное увеличение количества рамок позволит получить достаточно равномерный верхний уровень. Позитивное влияние в этом случае будут оказывать переходные процессы и взаимодействие электромагнитных полей, ведь приведённые графики иллюстрируют только примерные данные. Но даже в таком варианте ЭДС генератора на выходе будет изменяться не на всю амплитуду, а лишь на величину от Еmin до Еmax. Увеличение количества рамок (витков обмоток генератора) и коллекторов поможет сгладить колебания на выходе. Опытным путём можно подтвердить, что применение 20-22-х коллекторные конструкции позволят снизить пульсации ЭДС до 1-0,9%. Такие изменения на выходе генератора вполне приемлемы для решения многих практических задач. Особенности работы генератораВыше было отмечено улучшение качества электрических параметров при увеличении числа витков в обмотках. Но такое решение позволит получить ещё один положительный эффект. С его помощью увеличивают индуцируемую ЭДС на выходе в расчёте на один оборот ротора. Такой приём используют для того, чтобы генератор постоянного тока выполнял свои функции с высоким коэффициентом полезного действия. С целью дальнейшего улучшения работы машины, конструкторы изучили возможности постоянных магнитов. Они способны выполнять свои полезные функции в автономном режиме без подключения к внешнему источнику энергии. Однако более сильное поле с помощью таких решений создать невозможно. Необходимый результат могут обеспечить только электромагниты. Точный расчёт в этом случае будет сделать проще. Выше были рассмотрены «идеальные» ситуации. Но при реализации конкретных проектов возникали разные затруднения. Например, необходимо было найти материал, который обеспечит хорошую электрическую проводимость, но одновременно не будет провоцировать ускоренный износ поверхности коллектора. Решение известно – это графитовые стержни, которые прижимаются с помощью пружин. Такие изделия сами постепенно истираются. Поэтому необходим определённый запас щёток для своевременной замены. Для описания другой проблемы нужно пояснить некоторые процессы при вращении ротора в магнитном поле. Необходимо привести определения следующих базовых понятий:
В статическом положении эти линии совпадают. Но при начале вращения геометрическая – остаётся на своём месте, а физическая – отклоняется на определённый угол. Определённое влияние на этот процесс оказывает индуцированный ток, который индуцирует якорь. Суммарное воздействие всех полей ещё больше увеличивает угол смещения нейтрали (в сторону вращения ротора). Чтобы максимально усилить эффективность генерации, графитовые стержни должны соприкасаться в месте выхода условной физической линии из коллектора. Для этого точку прижима щёток смещают относительно геометрической центральной оси. При отклонении возникают электрические потери, образуются искры, которые попадают на коллекторные пластины. В такой ситуации появляющаяся окалина ухудшает проводимость, что ещё более снижает КПД установки. Понятно, что в реальных условиях, когда нагрузка на выходе генератора изменяется, пришлось бы постоянно выполнять коррекцию положения щёток. Никакой расчёт в этом случае не поможет, ведь механическое перемещение щёток было бы слишком сложным. Чтобы исключить подобные вредные влияния устанавливают дополнительные полюсы. С их помощью создают магнитное поле. Оно компенсирует искажения, которые вносит якорь. Эти же части конструкции выполняют ещё одну важную функцию. При правильной настройке они нейтрализуют броски, при изменении направления тока в каждый момент, когда якорь переходит через нейтраль. Схемы электрических машинГенераторы постоянного тока создают, со следующими схемами, обмоток возбуждения:
Каждый из способов работы генератора имеет свои преимущества, особенности и недостатки. Принцип независимого возбуждения понятен из названия. В этом случае напряжение питания подаётся от внешнего источника. Это может быть аккумуляторная батарея либо отдельный генератор, выполняющий вспомогательные функции. Ток в такой обмотке достигает сравнительно небольших величин. Как правило, он не превышает 5-6% от генерируемого тока. Чтобы изменять создаваемое обмоткой магнитное поле в цепь питания вставляют регулируемое сопротивление. В некоторых типовых схемах используют изменение напряжения Uв. Независимое возбуждение обмотки электрического генератора постоянного тока Чтобы понять, как работает машина, и определить оптимальный алгоритм настройки, надо измерить электрические параметры в режиме холостого хода. Он отличается отсутствием нагрузки в выходной цепи. Поэтому соответствующие влияния можно не принимать в расчёт. В таком состоянии напряжение, создаваемое генератором, будет равно ЭДС. На следующем рисунке в части а) приведён примерный график. Графики электрических параметров генератора постоянно тока с независимым возбуждением обмотки В этом эксперименте якорь вращается с неизменной скоростью (n1), поэтому только ток в обмотке возбуждения определял величину магнитного поля и, соответственно, ЭДС на выходе. Восходящий участок графика (1) показывает изменение напряжения на выходе при увеличении тока в обмотке. Нисходящий (2) – обратное действие при уменьшении тока. На нижнем графике приведены значения, которые были получены при снижении скорости вращения. В части б) размещён график, иллюстрирующий изменение напряжения при разных нагрузках. Здесь постоянными были скорость вращения ротора и ток в обмотке возбуждения. Падение U0 объясняется снижением ЭДС, которое происходит из-за паразитного действия магнитного потока, создаваемый якорем, а также падением напряжения в его цепи. Третий график (в) поясняет принципы регулировки генератора. Видно, что коррекции тока в обмотке возбуждения позволяют поддерживать напряжение на одном уровне при изменениях в цепи нагрузки. На основании полученных результатов измерений и общего анализа можно сделать следующие выводы:
На следующих рисунках приведены принципиальные схемы генераторов с последовательной, параллельной и смешанной схемой обмотки возбуждения. Принципиальные схемы генераторов обмотки возбуждения: а) последовательного, б) параллельного, в) смешанного типа Особенности схем
Устройство генератора и расчётУстройства этого типа вытесняются аналогичными установками переменного тока, которые менее критичны к нагрузкам, обладают хорошими эксплуатационными характеристиками. Расчёт промышленного генератора выполняется специализированным конструкторским бюро. На следующем рисунке приведена конструкция типичного генератора. Конструкция генератора постоянного тока в разрезе Использованы следующие обозначения:
Видео. Модель генератора постоянного токаСамостоятельный расчёт и создание генератора постоянного тока своими руками вряд ли целесообразны. При необходимости не будет трудно найти и приобрести устройство с нужными параметрами. Конструкция его слишком сложна для качественного воспроизведения в домашних условиях. Оцените статью:elquanta.ru Генератор постоянного тока: устройство и принцип действияОдним из наиболее распространенных электрических устройств является генератор постоянного тока, принцип действия которого основан на таких понятиях, как электромагнитная сила и индукция. Согласно принципу обратимости электрических машин, данное устройство, в конкретных условиях, может выполнять функцию и генератора и электродвигателя. Составные части генератораГенератор постоянного тока состоит из двух основных частей – якоря и станины, где расположены электромагниты. На внутренней стороне станины устанавливаются сердечники полюсов, концы которых имеют полюсные наконечники. С помощью наконечников, магнитная индукция более равномерно распределяется по окружности якоря. На сердечники надеваются катушки, входящие в состав обмотки возбуждения. Сама станина играет роль замыкающей части. Здесь расположены еще и дополнительные полюса, которые находятся между главными полюсами. Их катушки имеют последовательное соединение с якорем. Дополнительные полюса позволяют избежать появления искр на щетках коллектора, что значительно улучшает коммутацию. Вращающаяся часть генератора называется ротором или якорем, имеющим цилиндрическую форму. Материалом для него служит листовая электротехническая сталь, толщиной до 1 мм. В пазах якоря размещена обмотка, которая соединяется в цепь с коллектором, установленным на якорном валу. Коллектор представляет собой ряд медных пластин, изолированных между собой. Коллектор взаимодействует с угольными или медными щетками, неподвижно установленными в специальных щеткодержателях. Принцип действияГенератор постоянного тока содержит две электрические цепи –якоря и возбуждения. С помощью постоянного тока, проходящего через цепь возбуждения и обмотку возбуждения, происходит создание основного магнитного поля. В том случае, когда у генератора не два полюса, а четыре, то для обмотки якоря необходимо четыре щетки, попарно соединенные между собой. С помощью этих щеток обмотка разделяется на параллельные ветви, в количестве двух пар. Когда к первичному двигателю прикладывается посторонняя механическая сила, происходит возбуждение магнитного поля и в якоре появляется электродвижущая сила. После этого, с помощью коллектора и щеток, постоянный ток уходит к внешней цепи. В этом случае устройство работает в качестве генератора. Когда к якорю и обмотке возбуждения подключается постоянное напряжение, то проходящий через обмотку электрический ток, взаимодействует с полем, создавая вращающий момент, который приводит якорь в движение. В таком варианте, генератор функционирует как электродвигатель. electric-220.ru Лабораторная работа № 8 Генератор постоянного тока Цель работы:
147
Основные теоретические положенияЭлектрические машины постоянного тока могут работать как в режиме генератора, так и в режиме двигателя, т.е. обладают свойством обратимости. Генератор постоянного тока — это электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию постоянного тока. Электродвигатель постоянного тока —электрическая машина, предназначенная для преобразования электрической энергии постоянного тока в механическую. Общий вид электрической машины постоянного тока представлен на рис. 1. Устройство электрической машины постоянного токаКак и любая другая электрическая машина, машина постоянного тока состоит из неподвижной части — статора и вращающейся части —ротора 1, выполняющего функциюякоря, так как в его обмотках наводится ЭДС. В статоре машины находится обмотка возбуждения, создающая необходимый магнитный поток Ф. Статор состоит из цилиндрической станины 2 (стальное литье, стальная труба или сваренная листовая сталь), к которой крепятся главные 3 и дополнительные 4 полюса с обмотками возбуждения. С торцов статор закрывают подшипниковые щиты 5. В них впрессовываются подшипники и укрепляется щеточная траверса с щетками 6. Якорь состоит из цилиндрического пакета (набранного из лакированных листов электротехнической стали для ослабления вихревых токов). В пазы сердечника якоря укладывается обмотка, соединенная с коллектором7; все это закрепляется на валу якоря.
Рис. 1 Принцип действияПростейшую электрическую машину можно представить в виде витка, вращающегося в магнитном поле (рис. 2,а,б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь. Рис. 2 Принцип работы электрической машины основан на явлении электромагнитной индукции. Рассмотрим принцип работы электрической машины в режиме генератора. Пусть виток приводится во вращение от внешнего приводного двигателя (ПД). Виток пересекает магнитное поле, и в нем по закону электромагнитной индукции наводится переменная ЭДС, направление которой определяется по правилу правой руки. Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него - к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя щетка - отрицательным. При повороте витка на 1800 проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменится на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя пластина—с верхней щеткой, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т.е. являются простейшим механическим выпрямителем. Для уменьшения пульсаций в генераторе постоянного тока вместо одной катушки по окружности якоря размещается несколько равномерно разнесенных обмоток, которые образуют обмотку якоря, и присоединяются для изменения полярности ЭДС к коллектору, состоящему из большего числа сегментов. Поэтому ЭДС в цепи между выводами щеток пульсирует уже не так сильно, т.е. получается практически постоянной. Для этой постоянной ЭДС справедливо выражение Е=с1Фn , где с1—коэффициент, зависящий от конструктивных элементов якоря и числа полюсов электрической машины;Ф— магнитный поток;n— частота вращения якоря. При работе машины в режиме генератора по замкнутой внешней цепи и витку обмотки якоря протекает ток i = Iя, направление которого совпадает с направлением ЭДС (см. рис. 2,б). По закону Ампера взаимодействие тока iи магнитного поляВсоздает силуf, которая направлена перпендикулярноВиi. Направление силыfопределяется правилом левой руки: на верхний проводник сила действует влево, на нижний—вправо. Эта пара сил создает вращающий моментМвр, направленный в данном случае против часовой стрелки и равный М=с2ФIя. Этот момент противодействует моменту привода, т.е. является тормозящим моментом. Ток якоря Iявызывает в якорной обмотке с сопротивлениемRяпадение напряженияRяIя,так что при нагрузке напряжениеUна выводах щеток получается меньше, чемЭДС, а именно U = E – RяIя. studfiles.net Что такое генератор постоянного тока?Сложно себе представить нашу жизнь без электричества. Ведь от него питаются практически все приборы, без которых современный человек просто прекратил бы свое существование. Ежедневно нам требуется электроэнергия как постоянного, так и переменного тока. Получаем мы ее из разных источников. Одним из них является генератор постоянного тока. Статья эта будет интересна каждому. Ведь так приятно осознавать, что ты узнал еще что-то об устройстве этого сложного мира. Она понравится как любителям, так и профессионалам-электромеханикам. Однако может заинтересовать и человека, который только начинает познавать азы этой сложной науки. Генератор постоянного тока нашел широкое применение как в промышленности, так и в быту. Поэтому эти агрегаты весьма разнообразны: крупногабаритные и компактные, тихие и мощные, дизельные и бензиновые. По области применения генератор постоянного тока может быть бытовым или промышленным. И в том, и в другом случае он может быть использован как для восстановления электроснабжения при необходимости, так и получения его в удалении от основных сетей. В промышленности чаще всего этот агрегат используют на различных судах и других видах транспорта. Также генератор постоянного тока применяется в медицинской отрасли для обеспечения непрерывного энергоснабжения. А в бытовом масштабе используют их на дачах или небольших киосках. Также очень часто в домашних условиях используют сварочный генератор постоянного тока. Он необходим для соединения различных видов металла. Как устроен генератор постоянного тока? Агрегат этот состоит из неподвижной и вращающейся частей. Первая – индуктирующая, что означает, что она создает магнитное поле. А вторая – индуктируемая, также ее называют якорем. Неподвижная часть устройства включает в себя главные и дополнительные полюса и станину. Крепление их осуществляется при помощи болта. Главный полюс представлен магнитом, который создает поток волн. В себя включает он сердечник, обмотку возбуждения и наконечник. Первая деталь всегда отливается из стали. Катушки полюсов соединены последовательно. Это способствует образованию обмотки возбуждения. Когда по ней протекает ток, создается магнитный поток. Наконечник необходим для удержания обмотки возбуждения на полюсах. Именно поэтому магнитное поле равномерно распределяется по полюсам. При этом обязательно, чтобы наконечник имел определенную форму. Каждый добавочный полюс состоит из сердечника и обмотки. Эти детали также отливаются из стали. Обычно их столько же, как главных полюсов, а может быть и меньше в два раза. Устанавливают их преимущественно в генераторах большой мощности, а в компактных их обычно нет. Основное их предназначение – это устранение искрения. В состав вращающейся части входят сердечник, обмотка и коллектор. Первая деталь является цилиндром, который собран из листов стали. Друг от друга они изолированы при помощи лака или бумаги. Делается это для того, чтобы уменьшить потери на вихревые токи. Принцип действия генератора постоянного тока Основным является то, что устройство это способно получать электрическую энергию из механической. Принцип действия лучше рассмотреть на простейшем агрегате, который представляет собой рамку из проводника, помещенную между двумя полюсами магнита. К коллектору прижата отрицательная и положительная щетка. Между собой они замкнуты через электролампочку внешней цепью. Чтобы генератор постоянного тока работал, рамка должна вращаться. При этом по правилу правой руки в ней происходит индукция электричества. Ток этот меняет направление на каждой половине оборота. Объясняется это тем, что каждая сторона рамки пересекает магнитные линии попеременно в обоих направлениях. А по внешней цепи ток идет однонапраленно. Здесь он меняется лишь по величине. То есть коллектор преобразует переменный ток в постоянный, что весьма важно. fb.ru Генератор постоянного тока - РАДИОЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКАГенераторами называют электрические машины, преобразующие механическую энергию в электрическую. Принцип действия электрического генератора основан на использовании явления электромагнитной индукции, которое состоит в следующем. Если в магнитном поле постоянного магнита перемещать проводник так, чтобы он пересекал магнитный поток, то в проводнике возникнет электродвижущая сила (э.д.с), называемая э.д.с индукции (Индукция от латинского слова inductio — наведение, побуждение) , или индуцированной э.д.с. Электродвижущая сила возникает и в том случае, когда проводник остается неподвижным, а перемещается магнит. Явление возникновения индуцированной э.д.с. в проводнике называется электромагнитной индукцией. Если проводник, в котором индуцируется э.д.с, включить в замкнутую электрическую цепь, то под действием э.д.с. по цепи потечет ток, называемый индуцированным током.Опытным путем установлено, что величина индуцированной э.д.с., возникающей в проводнике при его движении в магнитном поле, возрастает с увеличением индукции магнитного поля, длины проводника и скорости его перемещения. Индуцированная э.д.с. возникает только тогда, когда проводник пересекает магнитное поле. При движении проводника вдоль магнитных силовых линий э.д.с. в нем не индуцируется. Направление индуцированной э.д.с. и тока проще всего определить по правилу правой руки (рис.1): если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, отогнутый большой палец показывал бы направление движения проводника, то остальные вытянутые пальцы укажут направление действия индуцированной э.д.с. и направление тока в проводнике. Магнитные силовые линии направлены от северного полюса магнита к южному. Читать далее >> www.radioingener.ru Автомобильные генераторы.Генераторные установкиГенераторная установка, или, как ее обычно называют – генератор, является основным источником электрического тока на автомобиле. Следует отметить, что генераторная установка включает не только генератор, как таковой, но и его привод, а также устройства для регулирования и преобразования вырабатываемого напряжения. Генераторами называют электрические машины, преобразующие механическую энергию в электрическую. В принципе генераторами электрической энергии являются машины, преобразующие любой вид энергии – тепловую, ядерную, химическую, световую и т. д. в электрическую. Но традиционно сложилось так, что генераторами обычно называют машины, преобразующие механическую энергию движения в электроэнергию. Чаще всего для такого преобразования в генераторах используют механическую энергию вращения одного из элементов конструкции, называемого якорем или ротором. Принципиально возможно преобразование механической энергии поступательного движения какого-либо тела в электрическую энергию, но такой тип генераторов на практике не используется из-за сложности конструкции и малой эффективности. Автомобильный генератор получает механическую энергию от коленчатого вала двигателя, с которым связан приводом, чаще всего - клиноременным или плоскоременным. Полученная в результате работы генератора электрическая энергия используется для питания электропотребителей автомобиля - системы зажигания, освещения и сигнализации, электрических приводов и контрольно измерительных приборов, компьютерных устройств и т. п., а также для зарядки аккумуляторной батареи. Поскольку количество и суммарная мощность потребителей электроэнергии в современных автомобилях прогрессивно растет, используемые для получения электрической энергии генераторы обладают высокой мощностью, которая может достигать 1 кВт и даже более. Эту мощность генератор «отнимает» у двигателя, снижая его динамические и экономические показатели. Тем не менее, с такими потерями приходится мириться, поскольку современный автомобиль, даже дизельный, без электрической энергии далеко не уедет. На автомобилях могут применяться генераторы постоянного или переменного тока. *** История изобретения генератораРабота генератора, преобразующего механическую энергию в электроэнергию, основана на явлении магнитоэлектрической индукции, которое обычно (и не совсем правильно) называют явлением электромагнитной индукции. Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Практически это может быть достигнуто, например, перемещением металлической рамки в магнитном поле, создаваемом постоянным магнитом. Явление было открыто и описано английским физиком Майклом Фарадеем (Michael Faraday, 1791–1867) в 1831 году. Изучением природы электрических явлений при воздействии на проводник постоянным магнитом занимались многие ученые, однако Фарадей первым опубликовал свои опыты и сделал надлежащие выводы. Анализируя результаты опытов по изучению электромагнитной индукции Фарадей обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током. Возникновение ЭДС объясняется действием сил магнитного поля на находящиеся в проводниках свободные электроны, которые начинают направленно перемещаться, скапливаясь на одном из концов проводника. В итоге этого движения электронов на одном конце проводника возникнет отрицательный электрический заряд, а на другом конце - положительный. Разность потенциалов на концах проводника численно равна индуцированной в проводнике ЭДС. Индуцирование ЭДС в проводнике происходит независимо от того, включен ли он в какую-либо электрическую цепь либо нет. Если присоединить концы этого проводника к какому-либо приемнику электрической энергии, то под воздействием разности потенциалов по замкнутой цепи потечет электрический ток. Считается, что первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижским изобретателем Ипполитом Пикси (Hippolyte Pixii, 1808–1835). Этот генератор годился лишь для демонстрационных целей, а не для практического использования, поскольку приходилось вручную вращать тяжёлый постоянный магнит, благодаря чему в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. В дальнейшем генератор Пикси был усовершенствован, и стал применяться в различных областях машиностроения. *** Генераторы постоянного токаДо 60-х годов основным источником энергии автомобилей являлись генераторы постоянного тока, в которых, как и следует из названия, механическая энергия преобразуется в электрическую энергию постоянного тока. Генератор постоянного тока состоит из статора - неподвижного корпуса с размещенными в нем электромагнитными элементами, вращающегося якоря с обмотками, и коллектора со щеточным узлом. Якорь снабжен несколькими обмотками из токопроводящих катушек, которые при вращении якоря пересекают магнитное поле неподвижного статора, в результате чего в обмотках индуцируется электродвижущая сила - ЭДС. Величина ЭДС в обмотках при вращении якоря постоянно изменяется по величине и по направлению в зависимости от положения катушек относительно магнитного поля статора. Посредством коллекторного узла индуцируемая в обмотках статора ЭДС снимается в электрическую цепь для дальнейшей обработки и приведения к требуемым параметрам. Принцип работы генератора постоянного тока основан на том, что если в постоянном магнитном поле вращать токопроводящую рамку с разомкнутыми концами, в ней индуцируется ЭДС, а на ее концах рамки появляется разность потенциалов. Упрощенная схема генератора постоянного тока приведена на рис. 1. В магнитном поле постоянного магнита вращается стальной цилиндрический сердечник, в продольных пазах которого размещен диаметральный виток abcd. Начало d и конец a этого витка присоединены к двум взаимно изолированным медным полукольцам, образующим коллектор, который вращается вместе со стальным сердечником. По коллектору скользят неподвижные контактные щетки А и В, от которых отходят провода к потребителю энергии R. Стальной сердечник с витком (обмоткой) и коллектором образует вращающуюся часть генератора постоянного тока – якорь. Если с помощью какой-либо внешней силы вращать якорь, то стороны витка будут пересекать магнитное поле, и в обмотках якоря будет возникать ЭДС, величина которой определяется по формуле: e = 2Blv, где B – индукция; l – длина стороны витка; v – скорость перемещения пазовых сторон витка. Так как длина и скорость перемещения пазовых сторон обмотки якоря неизменны, то ЭДС обмотки якоря прямо пропорциональна B, а форма графика ЭДС определяется законом распределения магнитной индукции B, размещенной в воздушном зазоре между поверхностью якоря и полюсом самого магнита. Так, например, магнитная индукция в точках зазора, лежащих на оси полюсов, имеет максимальные значения (рис. 2, а): под северным полюсом (N) – положительное значение и под южным полюсом (S) – отрицательное. В точках n и n’, лежащих на линии, проходящей через середину межполюсного пространства, магнитная индукция равна нулю. Допустим, что магнитная индукция в воздушном зазоре рассматриваемой схемы распределяется синусоидально: B = Bmax×sinα. Тогда ЭДС витка при вращении якоря будет также изменяться по синусоидальному закону. Угол α определяет изменение положения якоря относительно исходного положения. На рис. 2, а показан ряд положений витка abcd (обмотки) в различные моменты времени за один оборот якоря. При α = 360˚ ЭДС якоря равна нулю, а при α = 270˚ - имеет максимальное значение, причем отрицательное. Таким образом, в обмотке якоря генератора постоянного тока наводится переменная ЭДС, и, следовательно, при подключении нагрузки в обмотке будет действовать переменный ток (рис. 2, б – линия 1). За время второго полуоборота якоря, когда ЭДС и ток в обмотке якоря отрицательны, ЭДС и ток во внешней цепи генератора (в нагрузке) не меняют своего направления, т. е. остаются положительными, как и в течение первой половины оборота якоря. Действительно, при α = 90˚ щетка А соприкасается с коллекторной пластиной проводника d, расположенного под полюсом N, и имеет положительный потенциал, а щетка В – отрицательный, так как она соприкасается с пластиной коллектора, соединенной со стороной a витка, находящейся под полюсом S. При α = 270˚, когда стороны a и d поменялись местами, щетки А и В сохраняют неизменной свою полярность, так как полукольца коллектора также поменялись местами и щетка А по-прежнему имеет контакт с коллекторной пластиной, связанной со стороной, находящейся под полюсом N, а щетка В – с коллекторной пластиной, связанно со стороной, находящейся под полюсом S. В результате ток во внешней цепи не изменяет своего направления (рис. 2, б – линия 2), т. е. переменный ток обмотки якоря с помощью коллектора и щеток преобразуется в постоянный ток. Ток во внешней цепи постоянен лишь по направлению, а его величина изменяется, т. е. он пульсирует, как показано на графике рис. 2, б. Пульсация тока и ЭДС значительно ослабляются, если обмотку якоря выполнить из большого числа равномерно расположенных и распределенных по поверхности сердечника витков и увеличить соответственно число коллекторных пластин. Например, в двух витках на сердечнике якоря (четырех пазовых сторонах), оси которых смещены относительно друг друга на угол 90˚, и четырех пластинах в коллекторе (рис. 3, а). В этом случае ток во внешней цепи генератора пульсирует с удвоенной частотой, но глубина пульсации значительно меньше (рис. 3, б). Если витков в обмотке якоря от 12 до 16, то ток на выходе из генератора практически постоянен. На рис. 4 приведена конструкция генератора постоянного тока. *** Генераторы переменного тока k-a-t.ru |