Энергия из биомассы. Энергия биомассыЭнергия биомассы.Одним из наиболее перспективных источников энергии на Земле является биомасса. Биомасса - это термин, объединяющий все органические вещества растительного и животного происхождения. Она делится на первичную (растения, животные, микроорганизмы и т.д.) и вторичную (отходы при переработке первичной биомассы и продукты жизнедеятельности человека и животных). Получение энергии из биомассы является одной из наиболее динамично развивающихся отраслей во многих странах мира. Этому способствуют такие ее свойства, как большой энергетический потенциал и возобновляемость. А также тот фактор, что она может быть произведена и использована без значительных финансовых затрат, что немаловажно для малоразвитых стран. В зависимости от влажности биомасса перерабатывается термохимическими или биологическими способами. Биомасса с низкой влажностью (сельскохозяйственные и городские твердые отходы) перерабатывается термохимическими процессами: прямым сжиганием, пиролизом (термическое разложение), ожижением, гидролизом. В результате получают водяной пар, электроэнергию, топливный газ, водород, жидкое топливо, древесный уголь, глюкозу. Биомасса с высокой влажностью (сточные воды, бытовые отходы, продукты гидролиза органических остатков) перерабатывается биологическими процессами: анаэробным сбраживанием и ферментацией. В результате этих процессов получают биогаз (метан и углекислый газ), органические кислоты, спирты, ацетон. Биогаз может использоваться как топливо в двигателях внутреннего сгорания для производства механической и/или электрической энергии. В настоящее время в мире действуют десятки установок для получения биогаза из мусора с использованием его в основном для производства электроэнергии и тепла суммарной мощностью сотни МВт. Одним из самых широко применяемых методов переработки биомассы является прямое сжигание (древесины и древесных отходов, соломы, торфа, городских твердых отходов и др.). В сельскохозяйственном производстве в качестве источников тепла можно принять любые растительные отходы, непригодные для использования по прямому назначению или не нашедшие иного хозяйственного применения. Теплотворная способность сжигания 1 т сухого вещества соломы эквивалентна 415 кг сырой нефти, теплотворность 1 кг пшеничной соломы и сухих кукурузных стеблей равна 15,5 МДж, соевой соломы - 14,9, рисовой шелухи - 14,3, подсолнечной лузги - 17,2 МДж. По этому показателю растительные отходы полеводства приближаются к дровам - 14,6-15,9 МДж/кг и превосходят бурый уголь - 12,5 МДж/кг. geograf-stud.ru Энергия из биомассы | ЭнергияТермин биомасса описывает широчайший спектр животных и растительных отходов. Дословно он означает «биологический материал». Биомасса — старейший источник энергии, используемый человечеством. Его возникновение относят ко времени овладения людьми огнем. Виды биомассы и топлива из нееБиомасса считается возобновляемым источником энергии, так как содержащаяся в ней энергия производится в процессе фотосинтеза, когда растения преобразуют лучистую энергию солнца в углеводороды. Выращивание растений специально для превращения в биомассу, по сути, есть форма сохранения солнечной энергии. При сгорании углеводороды выделяют тепло, двуокись углерода (CO2, так называемый «парниковый» газ) и воду. Двуокись углерода возвращается в окружающую среду и участвует в биохимическом углеродном цикле (круговороте углерода), способствуя росту других растений и восполнению сожженной биомассы. Таким образом, сжигание биомассы при правильной организации процесса не приводит к дополнительному загрязнению окружающей среды двуокисью углерода. Вода возвращается в природный гидроцикл (круговорот воды в природе). Тепло можно использовать для выработки электричества, а также для удовлетворения других энергетических потребностей человечества. Некоторые виды биомассы — дерево, например, — можно просто сжигать, чтобы получить энергию биомассы. Однако существуют и технологии, позволяющие получать из дерева и других биологических материалов жидкие и газообразные виды топлива. Их можно использовать вместе (а возможно, в будущем и вместо) с бензином, дизельным топливом, метаном и пропаном. Основные виды сырья для получения электроэнергии из биомассы включают в себя следующее.
Пример биогазаВ результате перегнивания (компостирования) растительных и животных отходов может образоваться горючий газ метан. Приходилось ли вам слышать о так называемом болотном газе, накапливающемся в заболоченных местах и время от времени возгорающемся? Это и есть природный биогаз. По сути, это тот же самый биогаз, который производят в коммерческих или частных целях для обогрева, электрификации или для использования в качестве топлива. www.enersy.ru Энергия биомассы. Биогазовая энергетикаНа территории Российской Федерации имеется огромное количество сырья для генерации энергии из биомассы. Только в результате деятельности сельскохозяйственных и животноводческих предприятий ежегодно вырабатывается около 250 млн. тонн органических отходов, из которых можно получить первоклассное биотопливо. В условиях Белгородской области особенно перспективным направлением является переработка отходов агропромышленного комплекса. Суммарный годовой объем отходов отраслей птицеводства, свиноводства и разведения КРС в регионе превышает 15 миллионов тонн. Белгородская область является крупнейшим в России производителем мяса птицы и свинины. На территории региона, которая составляет 1% территории страны, уже производится порядка 1,2 тыс. тонн в год мясной продукции, т.е. 25% всего российского производства.
Интенсивное развитие животноводства и птицеводства привело к появлению проблемы переработки сельскохозяйственных отходов. Между тем, энергетический потенциал переработки отходов составляет более 200 МВт электрической мощности, 80 млн. кубометров биогаза в год. Производимых на территории региона отходов достаточно для самообеспечения всей инфраструктуры животноводческих и птицеводческих комплексов энергией, теплом, топливом, а также для получения собственных высококачественных органобактериальных удобрений, способных обеспечить высокие урожаи, восстановить урожайность почвы. Таким образом, природный потенциал Белгородской области достаточен для того, чтобы развивать возобновляемую энергетику. И биогазовые установки - отличное решение этой задачи. Биогазовая энергетика – надежная и экономически выгодная альтернатива магистральному природному газу и централизованному электроснабжению. Сырьем для производства биогаза могут стать отходы животноводства, растениеводства, пищевой промышленности и канализационные стоки. Органические отходы перерабатываются в биогаз на биогазовой установке. При этом вы получаете:
Процесс получения биогаза из органических отходов позволяет предотвратить выброс в атмосферу метана, который в 20 раз сильнее влияет на парниковый эффект, чем углекислый газ, и находится в атмосфере порядка 12 лет. Производство 1000 м куб. биогаза обеспечивает замещение 10 т выбросов СО2. Помимо выбросов метана, накопление органических отходов ведет к проблемам окисления почв, отчуждению сельскохозяйственных земель и загрязнению грунтовых вод. Переработка отходов АПК в биогаз и удобрения решает эту проблему. Работа биогазовой установки непрерывна и регулируется автоматикой. Все компоненты подаются в приёмные резервуары. После смешивания сырьё поступает в ферментаторы через теплообменники, находящиеся в насосной станции. В результате процесса ферментации вырабатывается биогаз, который подаётся в резервуары дображивания, где завершает процесс ферментации. Газ через систему охлаждения и очистки поступает в блочную ТЭЦ, где вырабатываются электроэнергия и тепло, а продукт ферментации (биологические удобрения) — в хранилище удобрений. В результате технологического цикла образуются биогаз и биологические удобрения. Биогаз – горючая смесь газов, образующаяся при разложении органических субстанций в результате анаэробного микробиологического процесса (метанового брожения). Количество биогаза зависит от состава субстратов и содержания в них органических веществ. На 1 м3 биогаза производится от 2 до 4 кВт э/э. Химический состав биогаза: 50-87 % метана, 13-50 % углекислого газа, незначительные примеси водорода, сероводорода и аммиака. В результате очистки получается биометан, который является аналогом природного газа. 10-15 % образующегося биогаза идет на обслуживание ферментатора (поддержание температуры 35-40 0С). Из оставшегося биогаза вырабатывается электрическая и тепловая энергия. Химический состав биогаза:
Преимущества биоудобрений перед другими органическими удобрениями (навозом, пометом, торфом)
www.altenergo-nii.ru Энергия биомасс | СуперОкс для детейБиомассы — Возобновляемый источник энергии из растений и животных Биомасса - это органический материал, получаемый из растений и животных (микроорганизмов). Биомассы содержат запасы энергии солнца. Растения поглощают энергию солнца в процессе, называемом фотосинтезом. Химическая энергия растений передается животным и людям, которые едят их. Биомасса является возобновляемым источником энергии, потому что мы всегда можем вырастить больше деревьев и посевов, и отходы будет существовать всегда. Некоторые виды топлива получаются из древесины, злаковых культур, навоза и некоторого мусора. При сжигании химической энергии биомассы выбрасывается в виде тепла. Если у вас есть камин, то древесина, которую вы сжигаете в нем, - это топливо биомасс. Древесные отходы или мусор могут быть использованы для производства пара для подачи электроэнергии, или для отопления и производственных нужд. Преобразование в другие формы энергии биомассы Сжигание биомассы не единственный способ получения ее энергии. Биомасса может быть преобразована в другие виды топлива, такие как метан или транспортное топливо, например, этанол и биодизель. Газ метан является основным ингредиентом природного газа. Так как некоторые виды бактерий умеют превращать органические вещества (например, сено) в метан, его иногда называют «биогаз». Из сельскохозяйственных культур, таких как кукуруза и сахарный тростник, можно производить этанол. Биодизель, другое транспортное топливо, может быть получен из оставшихся пищевых продуктов: растительных масел и животных жиров. Древесина и древесные отходыСжигание древесины: ничего нового. Наиболее распространенной формой биомассы является древесина. Тысячи лет люди жгли древесину для отопления домов и приготовления пищи. Дерево было основным источником энергии до середины XIX века. Древесина продолжает оставаться основным источником энергии во многих развивающихся странах. Многие производственные предприятия в деревообрабатывающей и бумажной промышленности используют отходы древесины для производства электроэнергии. Это экономит компании деньги, т.к. решает вопрос с утилизацией ее отходов, и позволяет сократить затраты на электроэнергию. Отходы для производства энергииЭнергия из мусора Биомассы (или биогенные) материалы содержит такой мусор, как бумага, картон, оберточная бумага, трава, листья, древесина и кожаные изделия, а также не биогенные горючие материалы, главным образом пластмасса и другие синтетические материалы из нефти. Заводы по производству энергии из отходов и удаления отходов Но выработка электроэнергии не является основным преимуществом заводов по производству энергии из отходов. Это на самом деле более затратно, чем производить ее из угля, на атомной или гидроэлектростанции. Основным преимуществом сжигания отходов является то, что это уменьшает объем мусора, который мы хороним на свалках. Заводы по производству энергии из отходов утилизируют отходы от 40 миллионов человек. БиогазСбор газа со свалок Свалки могут быть источником энергии. Анаэробные бактерии, которые живут в продуктах разложения органических отходов, могут производить биогаз, который содержит метан. Метан – такой же насыщенный газ, как и природный газ, который используется для отопления, приготовления пищи и производства электроэнергии. Метан не имеет цвета и запаха и является очень сильным парниковым газом. Природный газ обладает неприятным запахом, поэтому его утечку из трубопроводов легко обнаружить. Биогаз также может быть опасен для людей или окружающей среды. Необходимо контролировать выделение метана для безопасности и борьбы с загрязнением. На некоторых свалках просто сжигают метан, чтобы избавиться от него. Но метан также может использоваться в качестве источника энергии. www.superox.ru Использование биомассы для получения энергииБиоэнергетикаЧеловечество может получить достаточное количество электроэнергии, не вырабатывая ее на ГЭС, АЭС или ТЭС, работающих на угле, нефти, природном газе и горючих сланцах. Можно необходимую энергию получать, используя альтернативные источники энергии, например ветровые, приливные, геотермальные, солнечные и волновые электростанции или ТЭС, работающие на биомассе. Под альтернативной энергией понимаются биогаз, биодизель и другие углеводороды, полученные в результате переработки биомассы. Ресурсы данных источников колоссальны, но ограниченны. Альтернативная энергетика удовлетворить потребность человечества может только при экономии энергии. Например, в Индии правительство на федеральном и региональном уровнях выделяет значительные субсидии для реализации программ по установке усовершенствованных печей. К концу 2000 года в стране работало 32,6 миллиона таких печей. Использование улучшенных печей спасло от уничтожения более 13 миллионов тонн древесины в год. А если усовершенствовать печи по всему миру? Использование биомассы в энергетических целях дает большие перспективы: можно использовать отходы сельского хозяйства (получение биогаза в животноводстве, использование на ТЭС отходов растениеводства), а также получать топливо (выращивание энергетических лесов). Что можно сделать из биомассы?Биогаз. Всего в мире в настоящее время используется или разрабатывается около шестидесяти разновидностей технологий получения биогаза. Наиболее распространенный метод - анаэробное сбраживание в метатанках, или анаэробных колоннах. Биомасса (экскременты сельскохозяйственных животных; солома и прочие отходы растениеводства) сбраживаются в результате жизнедеятельности метанобактерий, в результате чего образуются биогаз и побочные продукты (витамин В, удобрение). Потенциал: Россия ежегодно накапливает до 300 миллионов тонн в сухом эквиваленте органических отходов.250 млн. т. в сельскохозяйственном производстве и 50 млн. т в виде бытового мусора. Эти отходы являются сырьем для производства биогаза. Потенциальный объем ежегодно получаемого биогаза может составить 90 млрд. м3. Биодизельное топливоБиодизель - это экологически чистое топливо для дизельных двигателей, получаемое путем химической обработки растительного масла или животных жиров, которое может служить добавкой к дизельному топливу или полностью заменять его. Биодизель, как показали опыты, при попадании в воду не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 28 дней перерабатывают 99 процентов биодизеля, что позволяет говорить о минимизации загрязнения рек и озер. Производство биодизеля позволяет ввести в оборот не используемые сельскохозяйственные земли, создать новые рабочие места в сельском хозяйстве, машиностроении, строительстве и т.д. Например, в России с 1995 по 2005 год посевные площади сократились на 25,06 миллиона гектаров. Выращивание биомассы для синтеза топливаДля создания плантаций энергетических лесов в умеренной климатической зоне наиболее перспективны разновидности быстрорастущих сортов тополя (волосистоплодного и канадского) и ивы (корзиночной и козьей), а в южной части страны - акации и эвкалипта. Посадка энергетических плантаций ведется черенками или саженцами квадратно-гнездовым способом или в шахматном порядке с различной шириной междурядий (от 0,8 до 2 метров). Для тополя плотность посадок обычно составляет 3 5 тысяч экземпляров на 1 гектар, однако общих рекомендаций пока не выработано. Период ротации составляет 6 7 лет. Уход за плантацией заключается в бороновании междурядий, внесении удобрений и орошении в засушливые периоды. Плантации могут быть монокультурными и комбинированными. Последние заслуживают особого внимания, поскольку способствуют диверсификации посевов и посадок различных культур, что должно повысить устойчивость к заболеваниям и вредителям, тем самым снижая потребность в ядохимикатах. Кроме того, подобные плантации рациональнее используют поступающую солнечную энергию для формирования биомассы. Принцип комбинированных посевов и посадок различных культур на одном участке хорошо известен в тропиках, где так называемые "огороды" дают урожаи различных культур на протяжении нескольких лет подряд без применения удобрений и ядохимикатов. Различные варианты комбинированных посевов и посадок разнообразных культур, включая энергетические, уже испытаны в одном из графств Великобритании. В посадках используют тополь и ячмень в междурядьях, либо тополь, ясень, ольху с подсолнечником и люпином в междурядьях, или с горохом полевым, ячменем, клевером, зелеными культурами и т.д. Пример комбинированного использования энергетических лесов известен в Греции, где на плантациях шелковицы выкармливают шелковичного червя. Зимой годовой прирост ветвей обрезают и используют как биомассу. На европейской территории России, где до 80 процентов электроэнергии вырабатывается на ТЭЦ, многие из которых расположены в лесных районах, безусловно, имеются возможности для создания плантаций энергетических лесов либо частичного использования местных лесных ресурсов (отходы заготовки и переработки древесины). Количество энергии, которое можно получить с энергетической плантации при урожайности 15 тонн сухой биомассы с гектара в год (теплотворная способность 15 МДж/кг), составляет 225 ГДж/га. При КПД газотурбинной электростанции 40 процентов, один гектар энергетической плантации может обеспечить экологически чистым топливом производство 252 МВт-ч электроэнергии в год. В настоящее время рассматриваются различные схемы использования энергетических лесов с короткими севооборотами (как правило, предлагаются севообороты с шестилетним циклом). При этом энергоотдача (отношение количества энергии, которое получают от системы, к энергетическим затратам на ее создание и эксплуатацию, включая все косвенные расходы) таких энергетических плантаций колеблется между тремя и четырьмя, что оказывается вполне приемлемой величиной, если учесть, что энергоотдача для тепловых станций, работающих на угле, составляет четыре-пять единиц. Растительное масло имеет большую теплотворную способность (38 МДж). Кроме того, растительное масло можно переработать на биодизель. А вот сколько масла можно получить с гектара пашни, засеянного масличными культурами? Конечно, использование пищевых продуктов (в данном случае растительное масло) не является выходом из энергетической проблемы. Но данный ресурс рассматривать вполне целесообразно. Метод прямой конверсии биомассы в топливоНедавно Джоржем Хубером и двумя его студентами из университета штата Массачусетс был разработан метод прямой конверсии биомассы в топливо. Они опубликовали в журнале ChemSusChem статью с описанием метода селективного каталитического пиролиза целлюлозы, результатом которого является образование ароматических соединений (нафталин, толуол, этилбензол и др.), среди побочных продуктов - твердый углеродный материал, СО, СО2 и вода. Реакцию проводили при 600 C на цеолитном катализаторе ZSM5. Процесс завершался всего за две минуты. Исходным реагентом служил очищенный порошок целлюлозы. Представления о механизме процесса включают несколько элементарных реакций - разложение целлюлозы с образованием органических соединений, содержащих кислород, затем реакции этих соединений внутри пор катализатора, где происходит дегидрирование, декарбонилирование, олигомеризация и другие химические превращения. Эксперты высоко оценили новую работу, хотя сами авторы признают, что это лишь первый шаг к эффективному преобразованию биомассы в моторное топливо. Первым делом предстоит изучить возможность использования сырой биомассы, а не порошка целлюлозы. Далее, основными продуктами пиролиза являются ароматические соединения, а их, согласно требованиям правительственной организации США - Агентства по охране окружающей среды - не должно быть больше 25% в общей массе бензина. Значит, придется ограничиться добавкой полученной ароматики к алканам, либо проводить дополнительную реакцию гидрирования. Тем не менее, несмотря на все эти ограничения, процесс д-ра Хубера привлечет большое внимание коллег и даст толчок к дальнейшим исследованиям в области экологически чистой энергетики, не приводящей к росту содержания углекислого газа в атмосфере. Выращивание и переработка водорослейСпециальное выращивание биомассы в виде микроскопических водорослей с последующим ее перебраживанием в спирт или метан позволяет создать искусственный аналог процесса образования органических топлив, превосходящий по скорости естественные процессы в миллионы раз. Соотношение между величиной первичной биологической продукции и веществом, захороненным и сохранившимся в морских осадках, составляет 1000:1. Создание специальных условий может многократно ускорить образование топлива. КПД фотосинтеза благодаря оптимизации питания биогенными элементами, температуре и перемешиванию может быть увеличен от 1,1 до 10 процентов. В процесс переработки биомассы в газ и нефть может быть включено все вещество, а не 0,001 его часть, как происходит в природе, то есть естественный процесс образования углеводородов может быть значительно интенсифицирован. С этой точки зрения, большой интерес вызывает одноклеточная водоросль ботриококкус, содержание углеводородов в которой достигает 80 процентов от сухого веса. Углеводороды локализуются в основном на наружной поверхности клеток, и, следовательно, их можно удалять простым механическим способом или, например, применяя центрифуги, причем клетки при этом не разрушаются и их можно возвращать обратно в культиватор. Состав углеводородов, продуцируемых ботриококкусом, позволяет использовать их в качестве источника энергии или как сырье в нефтехимической промышленности (непосредственно или после неполного крекинга). После гидрокрекинга на выходе получается 65 процентов газолина, 15 процентов авиационного топлива, 3 процента остаточных масел. mirznanii.com Энергия биомассыПонятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта. Одно из наиболее перспективных направлений энергетического использования биомассы – производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность – 5-6 тыс. ккал/м3 . Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 куб. м метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. куб. м метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. куб. м метана. Для тех же целей возможна утилизация ботвы культурных растений , трав и др. Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина. Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую. Установки по производству биогаза размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья. ЗаключениеНеоспоримая роль энергии в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы, прямо или косвенно, большей энергии, чем могут дать мускулы человека. Потребление энергии – важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж; в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом – 100 МДж. За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник бал исчерпан. Сейчас, в начале 21-го века, начинается новый значительный этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, заботился об охране уже сильно поврежденной биосферы. На пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость : создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т.д, В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию. 20 studfiles.net Энергетическое использование биомассы. Биомасса как возобновляемый источник энергииЭнергетическое использование биомассы. Рациональные пути снижения повышения экологической безопасности. Использование биомассы как возобновляемого источника энергииВ последние годы в мире возникла большая заинтересованность в использовании биомассы для выработки тепловой и электрической энергии, ее вовлечение в топливно-энергетический баланс регионов и стран в целом. Об этом говорят многочисленные исследования в странах Европейского союза и США, направленные на выявление оптимальных путей использования биомассы в энергетике, а также в России. Интерес к широкому использованию биомассы определен следующими основными обстоятельствами:
Масштабное использование природных энергетических ресурсов для производства энергии на тепловых электрических станциях приводит к значительному загрязнению природной окружающей среды такими вредными выбросами в атмосферу, как диоксид углерода (СО2), оксиды серы (SO2 и др.), азота (NОх), а также твердой пыле-взвеси. Обычный каменный уголь выделяет, например, около 3 т СО2 на каждую тонну сожженного топлива. В то же время такой выброс, как СО2, является основным компонентом парникового газа. Несмотря на то, что климатологи мира не могут окончательно договориться о причинах глобального потепления (за 100 лет на 0,6°С, а по различным сценариям к концу столетия температура на планете может возрасти на 1,5…2 и даже 6°С) международными экологическими протоколами на уровне ООН для стран–производителей энергии устанавливаются ограниченные квоты на массовые выбросы СО2. Такие протоколы приняты в Монреале, Рио-де-Жанейро и Киото. Известно, что доля США, например, составляет 35% мировых выбросов углекислого газа, а в России – 17%. Киотский протокол предусматривает добровольное обязательство стран с развитой экономикой с 2008 по 2012 годы увеличивать выбросы СО2 не более 5,2% по сравнению с уровнем 1990г. Если страна-участница протокола сократит выбросы сверх утвержденной нормы, она может продать сэкономленные выбросы условного топлива «перебравшим» лимиты государствам. Те же государства, которые «выбросили» слишком много парниковых газов, должны будут либо купить квоты, либо заплатить штраф. Санкции могут быть настолько большими (до 300…400 долларов за каждую лишнюю тонну углекислого газа), что странам-нарушителям придется или тратить огромные деньги на техническое перевооружение, или закрывать энергозатратные производства. По расчетным прогнозам цена квоты за тонну углекислого газа может составлять от 5 до 80 евро. Энергетика в России эмитирует до 45% парниковых газов. РАО «ЕЭС России» в 2001г. учредило для участия в разработке механизма переуступки квот на сэкономленные выбросы специальный некоммерческий Углеродный фонд России. Фонд собирает заявки от Российских компаний для участия в тендерах на продажу сертифицированных квот на выбросы парниковых газов. Рациональными путями снижения выбросов СО2, повышения экологической безопасности при производстве энергии являются:
При этом использование биомассы является одним из радикальных путей решения проблемы снижения выбросов парниковых газов (СО2) в топливоиспользующих установках, а также снижения выбросов других вредных ингредиентов:
Кроме того, эффективное использование биомассы как энергетического топлива снижает негативное ее влияние на окружающую среду от гниения, сжигания в случайных установках и условиях с целью очистки от них и др. Используя механизмы финансирования, в соответствии с Киотским протоколом, например Санкт-Петербургский лесопромышленный концерн «Лемо», подготовил проект замены угольной ТЭС на энергоузел, работающий на биотопливе. Энергоузел будет обслуживать комбинат по производству пиломатериалов на территории Сясьского ЦБК. Это предприятие будет использовать технологию полного цикла утилизации промышленных отходов в биологически чистое топливо для выработки электроэнергии. Этот проект, как и три других проекта (перевод Амурской ТЭЦ «Хабаровскэнерго» с угля на газовое топливо; совершенствование системы централизованного теплоснабжения на Улан-Удэнской ТЭЦ-1; энергосберегающий проект Невинномысской ГРЭС), принят Углеродным фондом России (РАО «ЕЭС») для участия в тендерах на продажу сертифицированных квот на выбросы парниковых газов. Другим стимулом использования биомассы в энергетике является вовлечение ее, как источника химической энергии, в топливно-энергетический баланс в качестве возобновляемого источника в структурно-энергетическом балансе (наряду с механической энергией гидро- и ветроэнергетики, тепловой энергией градиента температур и геотермальных установок). Известно, что уже в обозримом будущем человечество может начать испытывать дефицит в природных энергетических ресурсах. С учетом темпов их наращивания, обеспеченность в мире запасами органических топлив при существующих темпах ежегодного спроса на электроэнергию в цивилизованных странах 2,5…3% в год составляет (по разным источникам): нефти 25–48 лет; газа 35–64 года; угля 228–330 лет (кстати, запасы урана также могут быть исчерпаны в 30–60 лет). В то же время последними исследованиями установлено, что экономически оправданное использование биомассы, как энергетического топлива, позволяет покрыть 26% мировой энергетической потребности. При этом, как показано, за счет использования биомассы в качестве возобновляемого источника энергии сохраняются природные ресурсы, в значительной степени решается проблема выбросов СО2, повышается экологическая безопасность за счет снижения вредных выбросов. Между тем существуют факторы, препятствующие широкому внедрению биомасс:
Растительные биомассы считаются одним из наиболее «благородных» видов топлива и во многих странах рассматриваются, как перспективный источник энергии на ближайшее будущее. Ежегодный воспроизводимый потенциал биомасс оценивается в 10 раз выше мировой добычи полезных ископаемых. При этом, однако, необходимо учитывать, что доступность и экономическая целесообразность использования разных видов биомасс различна. И все же, в конечном счете, при любом способе энергетического использования биомасс как возобновляемых источников энергии:
Все это делает весьма перспективной проблему использования биомасс в энергетике. Однако следует учитыват, что ряд их характеристик имеют уникальные особенности и кардинально отличаются от освоенных и используемых в энергетике углей. Это обстоятельство ограничивает и затрудняет их использование и требует разработки и внедрения нового оборудования и модернизации существующего. Указанным обстоятельствам по внедрению и оптимизации способов использования биомассы как возобновляемого источника энергии в крупной энергетике в последнее время стали активно уделять внимание во многих странах мира. Об этом говорят многочисленные публикации в разных изданиях. К сожалению, в России этим вопросам уделено пока недостаточно внимания. Однако в малой (промышленной) энергетике и в России выполнен большой комплекс исследований и разработок по использованию биомасс различного происхождения. При этом следует иметь в виду, что по запасам биомассы Россия занимает первое место в мире, а лесные запасы уже сами по себе оказывают благотворный экологический эффект на климат всей планеты. Особой актуальностью этой проблемы обеспокоено Европейское сообщество, которое даже вступление России во Всемирную торговую организацию (ВТО) обусловило необходимостью ратификации Россией Киотского протокола (и принятие в соответствии с ним обязательств по снижению вредных выбросов). Хотя обеспокоенности по отношению к запасам угля не существует (по сравнению с ограниченными запасами нефти и газа, которые не смогут быть использованы как энергетическое топливо в ближайшем будущем, запасов угля может хватить на многие сотни лет), однако его использование в энергетике (объемы использования постоянно растут) создает проблему совместимости существующих технологий его сжигания и окружающей среды. Сжигание угля вызывает значительные выбросы в атмосферу таких вредных веществ, как SОx, NОx, золовые частицы, тяжелые металлы, а также увеличивает массовые выбросы относительно безвредного, но создающего парниковый эффект диоксида углерода (СО2). Уже в течение многих лет общественность озабочена выбросами в атмосферу таких загрязнений, как SОx, NОx, золовые частицы и тяжелые металлы. В 2004г. разработаны нормы для регламентирования выбросов тяжелых металлов, что потребует новых затрат для их соблюдения. При этом будет осуществлен переход на ограничение выбросов микрочастиц (2,5 микрона и менее), так как в них концентрируется содержание вредных тяжелых металлов (ртути и др). Эти нормы потребуют значительно более совершенных и дорогостоящих способов очистки газа. Особое внимание в последнее десятилетие будет уделяться в дальнейшем и выбросам диоксида углерода (СО2) – конечного продукта сжигания ископаемого топлива. Это объясняется главным образом его влиянием на изменение климата. Вред природе наносят не сами выбросы СО2, а их накопление в атмосфере. Проведенные измерения показали, что концентрация СО2 в атмосфере выросла с 280 ррm (в так называемый доиндустриальный период, середина XVIII в.) до 370 ррm в 2003г. Более половины выбросов СО2, образовавшихся при сжигании ископаемых топлив, не поглощается биосферой и поверхностью океана, а накапливается в атмосфере. Темп роста концентрации СО2 составляет 47 ррm/год. В таком случае даже при умеренном росте мировой экономики (не превышающем 2 % в год) концентрация СО2 в атмосфере к 2050г. превысит 500 ррm. Для прекращения роста концентрации СО2 в атмосфере необходимо в ближайшие 10–20 лет снизить его выбросы до уровня в 3 раза ниже уровня выбросов 1990г. Использование растительной биомассы выгодно отличается от углеводородного сырья своими экологическими достоинствами (малая зольность, практическое отсутствие серы и, безусловно, – снижение парникового эффекта) и позволяет в значительной мере решить эту климатологическую и экологическую проблему. Далее следуют статьи по данной теме: www.gigavat.com |