Содержание
Как не оконфузиться при выборе автоматического выключателя / Хабр
Краткая заметка по поводу выбора автоматических выключателей. Искренне надеюсь, что читатель не узнает для себя ничего нового.
У поста есть видеоверсия на моем ютуб канале. Реалии времени заставляют меня делать еще и видео:
Определимся с целью
Для начала нужно определиться — для чего нам автоматический выключатель в электрощите. Задача автоматического выключателя — прежде всего защитить стационарную кабельную линию от протекания токов свыше предельно допустимых. Если ток превышен — то проводники нагреваются, с плавлением и разрушением изоляции или расплавлением самих проводников. И если не случится пожара, то случится дорогостоящий ремонт, с работами по замене замурованной в стенах электропроводки. А ток может быть превышен, если к линии подключили слишком много потребителей (происходит перегрузка) или если происходит короткое замыкание. Неправильный выбор характеристик автоматического выключателя — путь к дорогостоящему ремонту, а при особенной везучести — к пожару.
Номинальный ток
Поняв, что автоматический выключатель должен защитить кабельную линию от протекания тока свыше допустимого, мы должны понять, какой же ток допустимый. Чаще всего ссылаются на вот эту табличку из ПУЭ (таблица 1.3.4):
Но, на мой субъективный взгляд, у этой таблички есть существенный недостаток, и он указан в источнике — эта табличка составлена для окружающей температуры +25, температуры земли +15 и температуры жилы (!!!) +65. Длительная работа изоляции при повышенной температуре ускоряет процесс старения полимеров, поэтому мое личное мнение — указанные в таблице цифры стоит уменьшить хотя бы на 1/4. Если кабель проложен таким образом, что его охлаждение затруднено, то предельно допустимый рабочий ток также уменьшают. Например если кабель расположен в пучке с другими кабелями или под слоем теплоизоляции.
И вот в этом месте подходим к самой неочевидной вещи. В таблице указаны предельно допустимые токи, а на автоматических выключателях указан номинальный ток. Номинальный ток автоматического выключателя, указанный на нем — это ток, который может длительно проходить через автоматический выключатель и не вызывать его отключения. Для определения тока отключения заглянем в документацию, в график время-токовых характеристик:
Но это график конкретного экземпляра автоматического выключателя. В реальном мире, у автоматических выключателей есть разброс характеристик, даже у выключателей взятых из одной коробки. Поэтому на графике изображена область, в которой окажется характеристика случайно взятого автоматического выключателя.
В результате, если взять определенный ток, то мы получим диапазон значений времени, за которое сработает автоматический выключатель. От и до, как например вот здесь:
Думаю очевидно, что в расчетах стоит полагать, что нам попался самый плохой экземпляр, и берется самое худшее значение.
В автоматическом выключателе есть два расцепителя — тепловой, который достаточно точный, но медленный, и электромагнитный — очень быстрый, но неточный. (В посте (https://serkov.su/blog/?p=5563) я разбирал, как к такому пришли, и почему лучше пока ничего не придумали.) В итоге получается нелинейная зависимость времени срабатывания от протекающего тока. Для наглядности возьмем автоматический выключатель, на котором указан номинальный ток 16А. При перегрузке будет работать тепловой расцепитель:
До тока в 1,13 от номинального, расцепления совсем не произойдет (16*1,13=18,08А)
При токе в 1,45 от номинального тепловой расцепитель сработает, но за время менее 1 часа (!). (16*1,45=23,2А)
При токе в 2,55 от номинального тепловой расцепитель сработает за время менее 60 сек. (16*2,55= 40А)
При превышении тока еще сильнее — сработает электромагнитный расцепитель, но об этом чуть позже.
Все это становится понятнее, если взглянуть на график:
Откуда взялись эти магические цифры? Из стандарта (у нас в стране — ГОСТ 60898-1-220). Просто разработчики условились, что разброс параметров срабатывания расцепителей должны быть в этих пределах. Причем скорее всего взяли просто две удобные точки времени — 1 час и 1 минута, и воспользовались статистическими данными, чтобы получить кратности номинального тока.
Ну и чтобы совсем жизнь мёдом не казалась, стоит добавить, что в зависимости от температуры окружающей среды применяют коэффициенты. На жаре тепловой расцепитель прогревается и срабатывает быстрее, а вот на морозе наоборот.
А теперь сценарий везунчика по жизни. В частный дом заходит кабель, сечением 1,5 мм2. Щиток с автоматическим выключателем находится в холодном предбаннике, когда на улице мороз -35. Кабель от щитка идет через стену под слоем утеплителя. Автоматический выключатель на 16А почти час (!) будет пропускать ток в (16*1,45*1,25(поправочный на температуру, рис.4) = 29А. При 19А по табличке из ПУЭ у нас жилы будут горячими — +65С, а под слоем утеплителя изоляция уже начнет плавиться.
Еще раз резюмирую: Номинальный ток автоматического выключателя НЕ РАВЕН предельно допустимому току кабеля. Предельный ток кабеля должен вызывать отключение автоматического выключателя в адекватное время.
Тип электромагнитного расцепителя
Тепловой расцепитель медленный, что плохо при коротком замыкании — токи могут быть огромными, и даже за одну секунду могут наделать бед. Поэтому в конструкцию автоматического выключателя добавили электромагнитный расцепитель, который срабатывает за доли секунды. Но он настроен на ток в разы превышающий номинальный.
Дело в том, что некоторые виды потребителей при включении потребляют ток в разы, превышающий ток в рабочем режиме. Например мотор в пылесосе в момент включения кратковременно потребляет ток в 2-3 раза больший, но после разгона мотора, потребление снижается. Возможно вы замечали, как лампочки накаливания слегка притухают в момент включения чего-то как раз из-за этого. Вот график потребления тока мотора пылесоса:
Чтобы эти пусковые токи не заставляли сработать электромагнитный расцепитель, его характеристику сдвинули в зону бОльших токов, что бы такие кратковременные превышения тока были в зоне теплового расцепителя, который в силу своей инерционности такие краткосрочные процессы не замечает.
В итоге получилась линейка автоматических выключателей с одинаковыми тепловыми расцепителями, но с разными электромагнитными. Из-за огромного разброса параметров электромагнитных расцепителей — получились большие разбросы кратности тока срабатывания:
Характеристика В — электромагнитный расцепитель сработает при превышении тока в 3-5 раз
Характеристика С — электромагнитный расцепитель сработает при превышении тока в 5-10 раз
Характеристика D — электромагнитный расцепитель сработает при превышении тока в 10-20 раз
Вот они на графике:
Есть и другие характеристики (K, Z и т.д) но встречаются крайне редко и под заказ, поэтому опустим их.
Если по какой-то причине стартовые токи кратковременно попадут в зону действия электромагнитного расцепителя то возможны ложные срабатывания. И именно для исключения таких ложных срабатываний и сделали несколько типов характеристик.
Некоторые производители для упрощения указывают стартовые токи, вот например светодиодный драйвер уважаемой фирмы при включении кушает солидные 55А (из-за зарядки конденсатора в блоке питания), производитель даже сразу посчитал, сколько светодиодных драйверов можно подключить параллельно на один автоматический выключатель:
4 штуки с характеристикой В и 7 штук на автомат с характеристикой С. Кто бы мог подумать, что 150 ватт светодиодного света могут вышибать 16А автомат! Ситуация становится еще хуже, если используются некачественные светодиодные светильники, где производитель не только не предусмотрел плавный старт, да даже пусковой ток не регламентирует!
Если используется большое количество светодиодных светильников — то придется делить их на группы, чтобы одновременный пуск не вызывал срабатывание автоматического выключателя. Пытливый читатель задастся вопросом — а почему бы не взять просто автоматический выключатель с характеристикой «C» или «D»? Тогда бы пусковые токи не вызывали бы ложных срабатываний! Но не все так просто….
Ток короткого замыкания
Можно иногда услышать выражение «сопротивление цепи фаза-нуль», оно по сути про то же. Ток короткого замыкания — это величина тока в цепи, в случае если из-за повреждения случается короткое замыкание (прямое соединение фазного проводника и нейтрального, или соединение фазного и заземления) в самом дальнем участке. В идеальном мире с идеальными проводниками ток короткого замыкания был бы бесконечным. Но в реальном мире кабели имеют собственное сопротивление, и чем они длиннее тоньше — тем выше их собственное сопротивление. При обычной работе это не так важно — их собственное сопротивление много меньше сопротивления нагрузки. Но если случится короткое замыкание, ток будет ограничен именно этим собственным сопротивлением всех проводников в цепи + внутреннее сопротивление источника тока.
А теперь смотрим. В деревне Вилларибо измеренный ток короткого замыкания линии 278 Ампер, и электрик поставил автоматический выключатель С16:
Как видим все отлично — при коротком замыкании тока будет достаточно, чтобы электромагнитный расцепитель сработал. А вот в деревне Вилабаджо очень плохая проводка, и ток короткого замыкания всего 124 А. Смотрим на график:
В самом худшем случае, электромагнитный расцепитель типа «С» сработает при токе в 10 раз больше номинального (16*10=160А). А значит при 124А возможна ситуация, когда электромагнитный расцепитель при коротком замыкании не сработает, а пока тепловой расцепитель успеет сработать — по линии будет гулять ток в 124А, что может закончиться плохо. В таком случае деревне Вилабаджо нужно или менять проводку, чтобы уменьшить потери, или использовать автоматический выключатель типа В16, у которого электромагнитный расцепитель сработает в худшем случае при токе 5*16=80А. Теперь вы понимаете, почему характеристика типа D (10-20 *Iном) в некоторых случаях изощренный способ стрелять себе в ногу?
Как же определить ток короткого замыкания? Для проектируемых линий его можно расчитать — длина кабеля известна, сечение тоже. Для линий уже находящихся в эксплуатации — только измерять, поскольку никто не знает, на что пришлось пойти электрикам при ремонте поврежденных участков.
Для определения тока короткого замыкания есть специальные приборы. Показывать современные не интересно, поэтому покажу суровый советский олдскул, который есть у меня. М-417 измеряет сопротивление цепи путем измерения падения напряжения на известном сопротивлении, а ток короткого замыкания необходимо рассчитывать:
Щ41160, творение сумрачного советского гения. Устраивает короткое замыкание на доли секунды и измеряет ток непосредственно. В коричневой коробочке на проводе — предохранитель на 100А.:
Как правило, ток короткого замыкания измеряют при введении линии в эксплуатацию, и планово, раз в несколько лет. Только после измерения тока короткого замыкания можно сказать, правильно ли подобрана защита.
Ток короткого замыкания равен …Oh shi….
Если ток короткого замыкания будет черезчур большим? Вот тут мы сталкиваемся с отключающей способностью автоматического выключателя. В момент размыкания контактов выключателя загорается электрическая дуга, которая сама по себе проводит ток и гаснет неохотно. Для ее принудительного разрушения в конструкции автоматических выключателей предусмотрены дугогасительные камеры. Вот здесь на высокоскоростной съемке видно как работает дугогасительная камера:
На автоматическом выключателе в прямоугольной рамке нанесена величина отключающей способности в амперах — это максимальный ток, который способен разомкнуть автоматический выключатель без поломки. Вот на фото автоматические выключатели с отключающей способностью в 3000, 4500, 6000 и 10000 А:
Для наглядности я их разобрал. Большая отключающая способность заставляет не только делать дугогасительные камеры больше, но и усиливать другие конструктивные части, например защиту от прогара вбок.
Отключающая способность автоматического выключателя должна быть больше тока короткого замыкания в линии. Как правило, 6000 А достаточно для большинства применений. 4500А обычно достаточно для работы в линиях старых домов, но может быть недостаточным в новых сетях.
Коммутационная стойкость
При каждом включении/отключении автомата меж контактов загорается дуга, которая постепенно разрушает контактную группу. Производитель часто указывает количество циклов включения/отключения, который должны выдержать контакты:
Отсюда легко видеть, что автоматический выключатель не замена нормальному выключателю при частом использовании. Если пожадничать, и вместо пускателя с контактором заставить сотрудника включать/отключать мешалку дергая автомат по 10 раз в день, то автомат может прийти в негодность менее чем за пару лет. Вот фото автоматического выключателя, контакты которого пришли в негодность из-за большого тока:
Помните, каждая коммутация и срабатывание автоматического выключателя «съедает» его ресурс.
Класс токоограничения
Наверное самая мистическая характеристика. Указывается в виде цифры в квадратике. Про нее в рунете написано мало и чаще ерунда. Класс токоограничения, если упрощать, говорит о количестве электричества, которое успеет пройти через автоматический выключатель при коротком замыкании прежде, чем он отключит цепь, и говорит о быстродействии. Всего классов три:
Что интересно, отечественными стандартами класс токоограничения не регламентируется, поэтому на картинке выше нет кириллицы. Цифры в таблице — это величина интеграла Джоуля. Отечественные производители указывают класс просто потому что «так принято», а не того требуют отечественные стандарты 🙂 В быту на данный параметр можно не обращать внимание — классы хуже третьего встречаются в продаже не часто.
Селективность
Вам бы не хотелось, чтобы при перегрузке или коротком замыкании срабатывал автоматический выключатель где-то на столбе у ввода в дом. При последовательном соединении автоматов защиты, подбором их характеристик можно добиться селективности — свойству срабатывать защите ближайшей к повреждению, без срабатывания вышестоящей. И у меня две новости.
Хорошая — можно воспользоваться специальными таблицами, которые есть у многих производителей, и подобрать пары автоматических выключателей, которые при перегрузке будут обеспечивать селективность. На графике это видно как непересекающиеся графики работы расцепителей:
Но по графику вы могли понять, что плохая новость — обеспечить полную селективность автоматических выключателей при коротком замыкании затруднительно. Кривые пересекаются в области больших токов. Поэтому чаще всего речь о частичной селективности. Например, если синий график — автомат В10, а фиолетовый В40, то ток селективности составит 120А (значение взято из таблиц одного производителя для конкретной модели автоматов). Тоесть при токах меньше тока селективности — все отлично. При токах больше — сработать могут оба устройства защиты.
В бытовой серии модульных автоматических выключателей обеспечивать селективность, даже частичную, довольно трудно. Лишь большие и мощные устройства защиты, например на подстанциях, имеют тонкие настройки уставок расцепителей для обеспечения селективности с вышестоящими устройствами защиты.
Да скажи уже что ставить!?
Прежде всего то, что предусмотрено проектом.
Ну а если уж совсем среднестатистический случай с кучей оговорок, то:
Линия 1,5 мм2 — Автомат В10 с отключающей способностью 6000А
Линия 2,5 мм2 — Автомат В16 с отключающей способностью 6000А
Применение автоматического выключателя с характеристикой «C» или «D» вместо «B» должно иметь вескую причину.
Плюшки
Автоматические выключатели разных производителей могут содержать разные приятности/полезности, которые напрямую на защитные функции не влияют, но могут быть полезны:
Это различные шторки/колпачки/крышечки для пломбирования вводного автомата по требованию электросетевой компании.
Это визуальный индикатор фактического состояния контактов, такой индикатор останется красным, если контакты из-за перегрузки сварились
Это окошки для дополнительных нашлепок с электромагнитными расцепителями, контактами
Это дополнительное окошко у клемм для использования гребенки при подключении
и прочее и прочее.
Номинальный ток автоматического выключателя не равен предельно допустимому для кабеля! В силу особенностей конструкции автоматический выключатель может длительное время пропускать через себя токи значительно больше номинальных и не отключаться.
Разные типы электромагнитных расцепителей позволяют избежать ложных срабатываний, но использовать тип С, и в особенности тип D нужно понимая что к чему.
Если ток короткого замыкания в вашей линии мал — то использование автоматического выключателя требует вдумчивого подхода.
Если ток короткого замыкания в вашей линии огромен, то отключающая способность автоматического выключателя должна быть еще больше.
А чтобы знать ток короткого замыкания, его нужно измерить специализированным прибором. И только после измерения можно сказать, будет ли правильно работать защита
Хочу сказать спасибо всем, кто принимал участие в рецензировании черновика. Буду рад указаниям на фактические ошибки в статье и ценным дополнениям.
Время токовые характеристики автоматических выключателей. Характеристика срабатывания автоматического выключателя
При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.
Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.
Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.
Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.
В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.
При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.
По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.
Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».
Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой
Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.
Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.
Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.
Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.
Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.
Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.
Автоматы имеют несколько характеристик, самыми распространенными из которых являются:
- — B — от 3 до 5 ×In;
- — C — от 5 до 10 ×In;
- — D — от 10 до 20 ×In.
Что означают цифры указанные выше?
Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.
Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3…5)=48…80А. Для С16 диапазон токов мгновенного срабатывания 16*(5…10)=80…160А.
При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).
В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.
Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.
Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.
Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.
Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.
Что показано на графике время токовой характеристики
На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.
На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.
Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).
Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.
На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.
При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).
Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.
К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.
Автоматы с какими характеристиками предпочтительнее использовать дома
В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.
Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.
Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.
Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.
В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.
Похожие материалы на сайте:
- Принцип работы автоматического выключателя
- Устройство модульных автоматических выключателей
- Выбор автоматов для квартиры
7 Характеристики машинного обучения – Академия Magnimind
В последние годы машинное обучение стало чрезвычайно популярной темой в области технологий. Значительное количество предприятий — от малого до среднего и крупного — стремятся внедрить эту технологию. Машинное обучение начало трансформировать способы ведения бизнеса компаниями, и будущее кажется еще более ярким. Тем не менее, многие компании по-прежнему колеблются, когда дело доходит до внедрения этой технологии, в основном из-за неуверенности в том, что машинное обучение , каковы его ключевые характеристики, которые делают его одним из самых полезных достижений в технологическом ландшафте. В этом посте мы подробно рассмотрим машинное обучение и обсудим семь его ключевых характеристик, которые сделали его чрезвычайно популярным.
1- Что такое машинное обучение?
Проще говоря, машинное обучение является подмножеством ИИ (искусственного интеллекта) и позволяет машинам переходить в режим самообучения без явного программирования. Программы с поддержкой машинного обучения способны учиться, расти и изменяться сами по себе при воздействии новых данных. С помощью этой технологии компьютеры могут находить ценную информацию, не будучи запрограммированы на то, где искать конкретную информацию. Вместо этого они достигают этого, используя алгоритмы, которые итеративно изучают данные. Машинное обучение уникально в области искусственного интеллекта, поскольку оно оказало наибольшее влияние на бизнес в реальной жизни. Благодаря этому машинное обучение часто считается отдельным от ИИ, который больше ориентирован на разработку систем для выполнения интеллектуальных задач. Хотя основная концепция машинного обучения не нова, возможность автоматически — быстро и итеративно — применять сложные математические вычисления к большим данным — это недавняя разработка.
2- Основные характеристики машинного обучения
В для того, чтобы понять реальную мощность машинное обучение , вы должны учитывать характеристики этой технологии. Существует множество примеров, которые повторяют характеристики машинного обучения в современном мире, богатом данными. Вот семь ключевых характеристик машинного обучения , из-за которых компании должны предпочесть его другим технологиям.
2.1- Возможность выполнять автоматизированную визуализацию данных
Огромный объем данных генерируется предприятиями и обычными людьми на регулярной основе. Визуализируя заметные взаимосвязи в данных, компании могут не только принимать более эффективные решения, но и укреплять доверие. Машинное обучение предлагает ряд инструментов, которые предоставляют расширенные фрагменты данных, которые можно применять как к неструктурированным, так и к структурированным данным. С помощью удобных автоматизированных платформ визуализации данных в машинном обучении предприятия могут получить множество новых идей, чтобы повысить производительность своих процессов.
2.2- Автоматизация в лучшем виде
Одна из самых больших характеристик машинного обучения это его способность автоматизировать повторяющиеся задачи и, таким образом, повысить производительность. Огромное количество организаций уже используют машинное обучение для автоматизации обработки документов и электронной почты. В финансовом секторе, например, необходимо выполнять огромное количество повторяющихся, объемных и предсказуемых задач. Из-за этого в этом секторе широко используются различные типы машинного обучения решений. Делайте бухгалтерские задачи быстрее, более проницательными и точными. Некоторые аспекты, которые уже рассматривались машинное обучение включают решение финансовых вопросов с помощью чат-ботов, прогнозирование, управление расходами, упрощение выставления счетов и автоматизацию банковских выверок.
2.3- Вовлечение клиентов, как никогда раньше
Для для любой компании одним из наиболее важных способов стимулирования взаимодействия, повышения лояльности к бренду и установления долгосрочных отношений с клиентами является инициирование содержательных разговоров с целевой клиентской базой. Машинное обучение играет решающую роль, позволяя компаниям и брендам вести более ценные разговоры с точки зрения взаимодействия с клиентами. Технология анализирует определенные фразы, слова, предложения, идиомы и форматы контента, которые находят отклик у определенных членов аудитории. Вы можете вспомнить Pinterest, который успешно использует машинное обучение для персонализации предложений для своих пользователей. Он использует эту технологию для получения контента, который будет интересен пользователям, на основе объектов, которые они уже закрепили.
2.4- Возможность поднять эффективность на новый уровень при объединении с IoT
Благодаря огромной шумихе вокруг IoT, машинное обучение испытало значительный рост популярности. Многие компании определяют IoT как стратегически важную область. И многие другие запустили пилотные проекты для оценки потенциала IoT в контексте бизнес-операций. Но получить финансовую выгоду с помощью IoT непросто. Чтобы добиться успеха, компаниям, предлагающим консультационные услуги и платформы IoT, необходимо четко определить области, которые изменятся с внедрением IoT-стратегий. Многие из этих предприятий не смогли решить эту проблему. В этом случае машинное обучение — вероятно, лучшая технология, которую можно использовать для достижения более высокого уровня эффективности. Объединяя машинное обучение с Интернетом вещей, предприятия могут повысить эффективность всех своих производственных процессов.
2.5- Способность изменить ипотечный рынок
Это факт, что создание положительного кредитного рейтинга обычно требует дисциплины, времени и тщательного финансового планирования для многих потребителей. Когда дело доходит до кредиторов, потребительский кредитный рейтинг является одним из самых важных показателей кредитоспособности, который включает в себя ряд факторов, включая историю платежей, общий долг, продолжительность кредитной истории и т. д. Но было бы здорово, если бы существовал упрощенный а лучше мерить? С помощью машинное обучение , кредиторы теперь могут получить более полную потребительскую картину. Теперь они могут предсказать, тратит ли клиент мало или много, и понять его/ее переломный момент в тратах. Помимо ипотечного кредитования, финансовые учреждения используют те же методы для других видов потребительских кредитов.
2.6- Точный анализ данных
Традиционно анализ данных всегда включал метод проб и ошибок, подход, который становится невозможным, когда мы работаем с большими и разнородными наборами данных. Машинное обучение является лучшим решением всех этих проблем, предлагая эффективные альтернативы анализу огромных объемов данных. Разрабатывая эффективные и быстрые алгоритмы, а также управляемые данными модели для обработки данных в режиме реального времени, машинное обучение может генерировать точный анализ и результаты.
2.7- Бизнес-аналитика в лучшем виде
Машинное обучение характеристики в сочетании с аналитической работой с большими данными могут генерировать экстремальные уровни бизнес-аналитики, с помощью которых несколько различных отраслей реализуют стратегические инициативы. От розничной торговли до финансовых услуг, здравоохранения и многого другого — машинное обучение уже стало одной из самых эффективных технологий для ускорения бизнес-операций.
Верите вы или нет, но перечисленные выше характеристики машинного обучения в значительной степени способствовали превращению его в одну из важнейших технологических тенденций — оно лежит в основе огромного количества вещей, которые мы используем в наши дни, даже не задумываясь о них.
3- Почему мешают внедрению машинного обучения?
Невозможно предсказать, системы с поддержкой машинного обучения заменят людей или нет. Но можно сказать, что самым большим фактором, замедляющим развитие передовых технологий, таких как машинное обучение , является отсутствие человеческих навыков. Новый опрос, проведенный Cloudera, показывает, что для 51% бизнес-лидеров по всей Европе нехватка навыков мешала им внедрять новые технологии.
Машинное обучение , как и наука о данных, развивается совершенно по-другому. Поскольку эта технологическая тенденция включает в себя сбор, сопоставление и интерпретацию данных, требуется эффективное машинное обучение профессионалу в огромном количестве дисциплин — от математики и статистики до программирования — все требуется. Как вы, наверное, уже догадались, машинное обучение это довольно сложная вещь, и поэтому бизнес-руководителям стало действительно трудно найти подходящих кандидатов, которые могут помочь им достичь своих целей в области цифровой трансформации.
Тем, кто хочет стать профессионалом в области машинного обучения, следует разумно выбирать направление обучения. Хотя существуют различные способы, включая самообучение, традиционный подход, буткемпы и т. д., у большинства из них есть свои недостатки. Учитывая широкий спектр области машинного обучения и ее быстрое развитие, соискатели должны понимать, что на самом деле ни один курс не является достаточно всеобъемлющим. Если вы тоже заинтересованы в том, чтобы войти в эту область с реальными знаниями и в некоторой степени владеете основными навыками, хорошей идеей будет присоединиться к учебному лагерю, подобному тому, который предлагает Академия Magnimind.
Заключительный вывод
В наши дни , машинное обучение набирает серьезный оборот во всем мире, и одной из ключевых обязанностей руководителей высшего звена стало направлять свой бизнес в правильном направлении, используя его истинное значение. характеристики. Мы находимся на пороге того, чтобы войти в мир, в котором машины и люди будут работать в гармонии, чтобы сотрудничать, проводить кампании и продавать свои продукты/услуги инновационным способом, который является более личным, эффективным и информированным, чем когда-либо прежде. Для этого владельцам бизнеса пора подумать о том, как они могут использовать машинное обучение характеристики, как они хотят, чтобы технология работала и вела себя, чтобы продвигать бизнес. Также важно внедрить эффективную и прозрачную стратегию, охватывающую машинное обучение . Это поможет командам понять, как они могут более эффективно выполнять свои задачи, используя возможности машинного обучения .
. . .
Кому узнать больше о машинном обучении, нажмите здесь и читайте другую нашу статью.
6 Характеристики организационной зрелости машинного обучения
6 Характеристики организационной зрелости машинного обучения
Всякий раз, когда вы думаете о бизнес-аналитике, думайте о машинном обучении. Вот как выглядит предприятие со зрелой средой машинного обучения.
- Автор: Уильям Макнайт
- 28 апреля 2020 г.
Распределение компаний по уровням зрелости почти во всем всегда сильно смещено в сторону нижнего предела. То же самое и с машинным обучением, но это не должно иметь значения для любой организации, стремящейся к устойчивому успеху. Ключ к этому успеху — стать зрелым оператором машинного обучения (MMLO).
|
Как выглядит такое предприятие? Какие его характеристики указывают на то, что сложное использование машинного обучения является частью его успеха в бизнесе?
1. Специалисты по обработке данных ценятся.
С точки зрения стратегии, MMLO уже обосновал использование (и нанял) специалиста по данным. У него есть готовая среда данных, чтобы специалист по данным мог быть эффективным. Увидев полученные преимущества, предприятие пошло дальше и наняло дополнительных специалистов по данным.
Когда в организацию приглашают нового специалиста по данным, документация и определенные бизнес-цели (которые придерживаются разумных, установленных конструкций в среде данных) позволяют этим новым ученым набрать скорость за недели, а не за кварталы.
2. Машинное обучение является нормальной частью каждого проекта.
В MMLO процесс спецификации проекта имеет контрольную точку, чтобы убедиться, что ML надлежащим образом рассматривается для крупных проектов. Люди, обладающие знаниями в области машинного обучения и лидерскими качествами, будут участвовать в каждом проекте или в каждом архитектурном обзоре. Было бы легко сохранить статус-кво, использовать давно знакомые рабочие процессы и продолжать использовать только устаревшие подходы, но зрелая организация ML знает, что сегодня она должна специально включать ML.
3. Модели и данные активно управляются.
MMLO каталогизирует все модели на протяжении их жизненного цикла, чтобы модели можно было повторно использовать и использовать, а не «одну и готово». Среда данных также является зрелой: корпоративные данные каталогизированы, доступны, работают в соответствии с ожиданиями и хорошо управляются. Это означает, что все корпоративные данные и соответствующие внешние данные собираются и используются. Это означает, что существуют инфраструктуры хранилища данных и озера данных, а также каталог данных, фиксирующий местоположение информации. Это означает, что приверженность облаку реальна, а программа управления данными распространяется на основные предметные области по всему предприятию.
В этих компаниях данные считаются дисциплиной. В этих организациях работает директор по данным, а данные не являются чем-то второстепенным или второстепенным по отношению к приложениям.
4. Он серьезно относится к конфигурации и прозрачности машинного обучения.
Ошибки в конфигурации машинного обучения могут дорого обойтись, приводя к напрасным усилиям и растрате вычислительных ресурсов. Ошибки могут создать производственные проблемы. В зрелом магазине машинного обучения ручные ошибки встречаются редко, как и упущения и упущения в модели, которые приводят к потерям. Системы ML в этих магазинах прозрачны, и особое внимание уделяется тем случаям, которые могут привести к потерям, ущербу или ущербу для компании.
Их модели предсказуемы и непротиворечивы, с проверяемыми и воспроизводимыми результатами. MMLO понимает, как важно иметь возможность повторно проводить эксперименты и получать аналогичные результаты. Неиспользуемые и избыточные настройки обнаруживаются в средах зрелого оператора машинного обучения.
5. Тестирование и техническое обслуживание модели необходимы для хорошо функционирующих систем.
Опытные операторы машинного обучения выводят свои процессы на значительно более высокий уровень. Модели имеют ограничения доступа. Код, естественно, должен быть протестирован, но опытному оператору машинного обучения ясно, что некоторый объем тестирования данных также имеет решающее значение для хорошо функционирующей системы. Зрелые операторы машинного обучения проводят тестирование данных, отслеживая изменения в распределении данных.
Зрелая среда позволяет текущим задачам повторно использовать существующие модели. Вместо того, чтобы начинать с нуля, MMLO может добавлять функции, чтобы отличать новую модель. Процессы машинного обучения включают использование репозитория для моделей и надежную упаковку моделей, развертывание, обслуживание и мониторинг.
6. Этика не второстепенна.
Программы искусственного интеллекта MMLO включают этические нормы и гарантируют, что этика и безопасность имеют первостепенное значение. Например, хотя они, возможно, еще не усовершенствовали его, эти программы предприняли шаги для устранения возможности злонамеренного использования ML, которое может включать кибератаки, применение физически разрушительной силы, глубокое вторжение в частную жизнь или применение неправомерного влияния. .
Заключительное слово
У двух магазинов не может быть одинаковых маршрутов ML. Все начинается в разных точках и идет окольным путем к зрелости. Однако для большинства предприятий описанный здесь уровень машинного обучения, зрелый оператор машинного обучения, в ближайшем будущем потребуется для обеспечения устойчивости компании. Необходимо предпринять шаги для повышения зрелости машинного обучения в вашей организации.
Об авторе
McKnight Consulting Group возглавляет Уильям Макнайт . Он работает стратегом, ведущим архитектором корпоративной информации и руководителем программ для сайтов по всему миру, используя дисциплины хранения данных, управления основными данными, бизнес-аналитики и больших данных. Многие из его клиентов предали гласности свои истории успеха. Макнайт опубликовал сотни статей и официальных документов и провел сотни международных докладов и открытых семинаров. Внедрения его команд как в сфере ИТ, так и в качестве консультантов были отмечены наградами за передовой опыт.