Eng Ru
Отправить письмо

Проведение периодических проверок, измерений и испытаний силовых кабельных линий. Испытание и проверка силовых кабелей


Испытание и проверка силовых кабелей

   В брошюре излагаются объем, нормы и методы испытаний и проверок силовых кабелей.

 Рассмотрены основные причины различных дефектов кабельных линий и меры по их устранению.

 Приведены следующие испытания и проверки: определение целости жил и правильности выполненной маркировки; фазировка кабелей; измерение заземления; испытание кабельных линий повышенным напряжением; измерение блуждающих токов; определение допустимой длительной токовой нагрузки на кабельную линию; контроль правильности распределения нагрузок на одножильных кабелях; контроль осушення изоляции вертикальных и крутонаклонных участков трассы кабелей.

 Брошюра рассчитана иа электромонтеров, занятых на проверке и испытаниях силовых кабелей, ведущих текущий ремонт и производящих профилактические испытания.

 

                                              СОДЕРЖАНИЕ

Введение              3

Определение целости жил и правильности выполненной маркировки                 4

Фазировка кабелей          6

Измерение заземления         13

Испытание кабельных линий повышенным   напряжением выпрямленного тока    16

Испытание повышенным напряжением промышленной ча­стоты       40

Испытательные установки высокого напряжения   ...      47

Измерение блуждающих токов       75

Определение допустимой длительной токовой нагрузки на кабельную линию         88

Контроль правильности распределения нагрузок на одно­жильных кабелях   98

Контроль осушения изоляции вертикальных и крутонаклон­ных участков трассы кабелей              100

Определение электрического  сопротивления токопроводящей жилы кабеля      105

Литература    

Назад в раздел Библиотека электромонтера

dialin.ru

И. Н. Привалов Современные методы и технические средства для испытаний и диагностики силовых кабельных линий

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕПЕТЕРБУРГСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

ПОВЫШЕНИЯ КВАЛИФИКАЦИИ РУКОВОДЯЩИХ

РАБОТНИКОВ И СПЕЦИАЛИСТОВ

(ПЭИПК)КАФЕДРА ДИАГНОСТИКИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

И.Н. Привалов

Современные методы и технические средства

для испытаний и диагностики силовых кабельных линий

номинальным напряжением до 35 кВ включительно

Учебное пособие

Санкт-Петербург

2008

УДК 621.315.2

ПРИВАЛОВ ИГОРЬ НИКОЛАЕВИЧ, кандидат технических наук

Современные методы и технические средства для испытаний и диагностики

силовых кабельных линий номинальным напряжением до 35 кВ включительно

Учебное пособиеОдобрено и рекомендовано к опубликованию ученым советом института.

Протокол № от 2008 г.

Выполнен обзор и анализ применяемых в России и за рубежом методов испытаний и диагностики силовых кабельных линий номинальным напряжением до 35 кВ включительно с разными типами изоляции, а также методов обнаружения и локализации повреждений в них.

Рассмотрены как регламентированные, традиционно применяемые в России, методы испытаний и контроля состояния силовых кабельных линий, так и современные щадящие и неразрушающие методы испытаний и диагностики силовых кабельных линий в условиях эксплуатации. Приведены описание и технические характеристики современного испытательного и диагностического оборудования последних разработок как зарубежных, так и отечественных фирм.

Выбраны наиболее эффективные методы щадящих и неразрушающих испытаний и диагностики применительно к распространенным в России типам силовых кабелей напряжением до 35 кВ включительно, внедрение которых будет способствовать повышению надежности электроснабжения потребителей, а также позволит эффективнее планировать ремонт и замену кабельных линий по их фактическому техническому состоянию.

Учебное пособие предназначено для работников кабельных сетей энергосистем и промышленных предприятий.

Научный редактор:

 Петербургский энергетический институт повышения квалификации руководящих

работников и специалистов

Санкт-Петербург

2008

Введение.

В настоящее время нормальная работа систем электроснабжения промышленных предприятий, транспорта, сельского, коммунального и других отраслей хозяйства невозможна без надежной работы силовых кабелей низких и средних классов напряжения.

В России силовые кабели на номинальное напряжение до 35 кВ включительно выпускаются с пропитанной бумажной изоляцией [1],  c пластмассовой изоляцией [2] и c резиновой изоляцией [3], причем наиболее массовым видом продукции являются кабели с пропитанной бумажной изоляцией (кабели с вязкой пропиткой).

Наиболее удобны в эксплуатации силовые кабели с экструдированной пластмассовой изоляцией. При этом наибольшее распространение получили силовые кабели с изоляцией из сшитого полиэтилена (СПЭ-кабели, XLPE-кабели). Преимущества кабелей с изоляцией из сшитого полиэтилена обусловили повсеместное их применение в развитых странах и заметное сокращение использования других типов силовых кабелей в распределительных сетях. В России силовые кабели с изоляцией из сшитого полиэтилена на номинальное напряжение до 35 кВ включительно также находят все более широкое применение. Ряд кабельных заводов России освоил производство этих кабелей [4] с использованием современных технологий. Выпускаемые кабели с изоляцией из сшитого полиэтилена соответствуют международному стандарту [5].

В процессе эксплуатации силовые кабельные линии (КЛ) подвергаются комплексному воздействию различных факторов: воздействие электрического поля, вызывающее электрическое старение изоляции; воздействие теплового поля,  вызывающее тепловое старение и окисление изоляции; увлажнение изоляции, приводящее к ухудшению электрофизических характеристик изоляции; механическое старение и повреждение под воздействием вибрации,  электродинамических усилий и механических нагрузок; химическое старение под влиянием агрессивных веществ. Старение изоляции силовых кабелей в результате длительного воздействия эксплуатационных факторов может привести к пробою кабелей при достижении предельных значений характеристик изоляции.

Для предупреждения аварий на КЛ и разработки стратегии по замене силовых кабелей с опасными дефектами или с выработанным ресурсом изоляции необходимо иметь достоверную информацию о текущем состоянии изоляции кабелей. Для оценки состояния изоляции силовых кабелей в условиях эксплуатации применяются различные методы испытаний и диагностики, в том числе традиционно используемые и новые современные методы.

1. Регламентированные методы испытаний и контроля состояния силовых кабельных линий напряжением до 35 кВ в условиях эксплуатации.

Силовые КЛ на номинальное напряжение до 35 кВ включительно при вводе в эксплуатацию, а также в процессе эксплуатации подвергаются испытаниям и контролю состояния в соответствии с действующими в России нормативными документами [6, 7, 8].

Нормы испытаний силовых КЛ на номинальное напряжение до 35 кВ включительно в условиях эксплуатации приведены в табл. 1. Они включают в себя следующие виды проверок, измерений и испытаний:

1) Измерение сопротивления изоляции.

Измерение сопротивления изоляции производится при вводе КЛ в эксплуатацию, после ремонта и в процессе эксплуатации до и после испытания повышенным напряжением.

Измерения сопротивления изоляции кабелей производится между жилой и металлическим экраном (оболочкой) или между жилами (для трехжильных кабелей в общей оболочке) мегаомметром на напряжение 2500 В. Отчеты величины сопротивления изоляции по шкале мегаомметра производятся через 1 мин с момента приложения напряжения.

У силовых КЛ на напряжение 1 кВ и ниже значение сопротивления изоляции должно быть не ниже 0,5 Мом. Величина сопротивления изоляции силовых КЛ на напряжение выше 1 кВ не нормируется.

2) Испытания изоляции силовых кабелей повышенным выпрямленным напряжением.

Испытание изоляции кабелей повышенным выпрямленным напряжением производится при вводе КЛ в эксплуатацию, после ремонта КЛ, а также в процессе эксплуатации между ремонтами.

Длительность приложения испытательного напряжения при приемо-сдаточных испытаниях после монтажа составляет 10 мин, а в процессе эксплуатации – 5 мин.

Периодичность испытаний КЛ на напряжение 2–35 кВ составляет 1 раз в год в течение 2-х лет после ввода КЛ в эксплуатацию, а в дальнейшем: 1 раз в 2 года – для КЛ, у которых в течение первых 2-х лет не наблюдалось аварийных пробоев при профилактических испытаниях; 1 раз в год для КЛ, на трассах которых производились строительные и ремонтные работы и на которых систематически происходят аварийные пробои изоляции; 1 раз в 3 года – для КЛ на закрытых территориях, а также во время капитальных ремонтов оборудования для КЛ, присоединенных к агрегатам, и кабельных перемычек 6-10 кВ между сборными шинами и трансформаторами в ТП и РП.

Таблица 1

Нормы испытаний силовых КЛ на номинальное напряжение до 35 кВ

Наименование

испытания

Вид испы-тания Нормы

испытания

1. Измерение

сопротивления изоляции

П, К, М Производится мегаомметром на напряжение 2500 В. Сопротивление изоляции для силовых кабелей напряжением до 1 кВ – не ниже 0,5 МОм. Сопротивление изоляции для силовых кабелей напряжением выше 1 кВ не нормируется.
2. Испытание изоляции повышенным выпрямленным

напряжением

П, К, М В течение 10 мин при приемо-сдаточных испытаниях, в течение 5 мин в эксплуатации. Величина испытательного напряжения, допустимые токи утечки

и коэффициенты ассиметрии в соответствии с нормами.

3. Определение целостности жил кабелей и фазировка КЛ П, К Все жилы должны быть целыми и сфазированными.
4. Определение сопротивления жил кабелей П Активное сопротивление жилы постоянному току, приведенное к удельному значению – не более 0,01793 Ом для медной жилы и не более 0,0294 Ом

для алюминиевой жилы.

5. Определение электрической емкости кабелей П Измеренная емкость, приведенная к удельному значению, должна отличаться от заводских измерений не более чем на 5 %.
6. Контроль степени осушения вертикальных участков М Разность в нагреве отдельных точек при токах, близких

к номинальным, не должна быть более 2-3 0С.

7. Измерение токораспределения по одножильным кабелям П, К Неравномерность распределения токов по жилам и оболочкам кабелей не должна быть более 10 %.
8. Проверка заземляющих

устройств

П, К В соответствии с разд. 28 “Объем и норм испытаний электрооборудования” и разд. 26 “ПТЭ ЭП”.
9. Измерение температуры кабелей М Температура кабелей должна быть не выше допустимых значений.
10. Измерение удельного термического сопротивления грунта М Удельное термическое сопротивления грунта не должно быть выше допустимых значений.
11. Проверка антикоррозийных защит. П, М При проверке измеряются потенциалы и токи в оболочках кабелей и параметры электрозащиты (ток и напряжение катодной станции, ток дренажа) в соответствии с руководящими указаниями по электрохимической защите подземных энергетических сооружений от коррозии.

Оценку коррозионной активности грунтов и естественных вод следует производить в соответствии с требованиями ГОСТ.

Сроки проведения измерений блуждающих токов в земле определяются техническим руководителем предприятия, но не реже 1 раза в 3 года.

12. Испытание пластмассовой оболочки (шланга) повышенным выпрямленным напряжением. П, К, М Испытательное напряжение 10 кВ прикладывается между металлической оболочкой (экраном) и землей, длительность приложения испытательного

напряжения – 1 мин.

Примечание: П – испытание при вводе в эксплуатацию КЛ;

К – испытание при капитальном ремонте КЛ;

М – испытание в процессе эксплуатации между ремонтами КЛ.

Величина испытательного напряжения для кабелей напряжением 6 и 10 кВ составляет 6Uном, а для кабелей напряжением 20 и 35 кВ – 5Uном. Исходя из местных условий, как исключение, допускается уменьшать уровень испытательного напряжения для КЛ 6 и 10 кВ до 4Uном.

В процессе испытаний повышенным выпрямленным напряжением контролируются ток утечки и коэффициент асимметрии. Величины допустимых значений тока утечки и коэффициента асимметрии для силовых кабелей на номинальное напряжение 6–35 кВ приведены в табл. 2.

Таблица 2

Допустимые значения тока утечки и коэффициента асимметрии

для силовых кабелей 6–35 кВ

Номинальное

напряжение,

кВ

Испытательное

напряжение,

 кВ

Допустимые значения

тока утечки,

мА

Допустимые значения

коэффициента ассиметрии (Imax / Imin)

6 36

45

0,2

0,3

8

8

10 50

60

0,5

0,5

8

8

20 100 1,5 10

35

140

150

175

1,8

2,0

2,5

10

10

10

КЛ считается выдержавшей испытания, если во время испытаний не произошло пробоя изоляции или перекрытия по поверхности концевых муфт. Абсолютное значение тока утечки не является браковочным показателем. КЛ с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытания ток утечки должен уменьшаться. Если не происходит уменьшение значения тока утечки, а также при его увеличении или нестабильности тока, испытание следует производить до выявления дефекта, но не более чем 15 мин.

Для проведения испытаний силовых КЛ на номинальное напряжение 6-35 кВ используется ряд испытательных установок постоянного тока: АИД-70, АИИ-70, МИУ-60, PTS-100, PTS-200 и др.

3) Определение целостности жил кабелей и фазировка КЛ.

Определение целостности жил кабелей и фазировка КЛ производится после окончания монтажа, перемонтажа муфт или отсоединения жил кабелей в процессе эксплуатации.

Определение целостности жил кабелей напряжением до 20 кВ производится мегаомметром, а кабелей напряжением 20 и 35 кВ – при измерении активного сопротивления жил.

После включения КЛ под напряжение производится проверка правильности ее фазировки. Сущность фазировки под напряжением заключается в определении соответствия фазы кабеля, находящейся под напряжением от распределительного устройства с противоположного конца кабеля, предполагаемой одноименной фазе шин распределительного устройства, где производится фазировка.

Для фазировки КЛ 6 и 10 кВ под напряжением применяются указатели напряжения 10 кВ в комплекте с добавочным сопротивлением. Кабели более высокого напряжения фазируются с помощью трансформаторов напряжения, установленных в центрах питания.

4) Определение сопротивления жил кабелей.

Определение сопротивления жил кабелей производится при вводе в эксплуатацию КЛ на напряжение 20 и 35 кВ. Активное сопротивление жил кабелей постоянному току, приведенное к удельному значению (на 1 мм2 сечения, 1 м длины, при температуре 20 С) должно быть не более 0,0179 Ом для медной и 0,0294 Ом для алюминиевой жил. Измеренное сопротивление может отличаться от указанных значений не более чем на 5 %.

Измерение сопротивления жил постоянному току производится с помощью моста типа Р-333 по четырехзажимной схеме, в которой практически исключается влияние сопротивления соединительных проводов (суммарное сопротивление соединительных проводов – не более 0,005 Ом) или с помощью универсального измерительного прибора типа Р-4833.

rykovodstvo.ru

Испытания силовых кабельных линий и силового кабеля

Перед сдачей в эксплуатацию смонтированные силовые кабельные линии проходят следующие испытания:

1. Проверка целости и фазировки жил кабеля. До начала и после испытания с помощью мегомметра проверяют исправность жил и правильность присоединения одноименных фаз с обоих концов кабельной линии всех напряжений.

2. Измерение сопротивления изоляции. Измерение проводят мегомметром при напряжении обмотки 2,5 кВ в течение 1 мин. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей свыше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания повышенным напряжением.

3. Испытание повышенным напряжением выпрямленного тока. Силовые кабели свыше 1 кВ испытываются повышенным напряжением выпрямленного тока. Повышенным напряжением проводят испытания каждой жилы по отношению к двум другим, соединенным с оболочкой и броней кабеля.

Значение испытательного напряжения и длительность его приложения при приемосдаточных испытаниях приведены в табл. 1

Таблица 1

Испытательное напряжение выпрямленного тока для силовых кабелей

Испытательное напряжение выпрямленного тока для силовых кабелей

В процессе испытания отмечается характер изменения тока утечки. Кабель считается выдержавшим испытания при отсутствии пробоя изоляции, скользящих разрядов и толчков (или нарастания) тока утечки после того, как испытательное напряжение достигнет нормативного значения. После испытания исправный кабель необходимо разрядить.

4. Измерение распределения тока по одножильным кабелям проводится на линиях всех напряжений. Неравномерность распределения тока на кабеле не должна превышать 10 %.

5. Измерение сопротивления заземления производится на линиях всех напряжений для концевых заделок. Значения сопротивления должны соответствовать приведенным в ПУЭ.

www.eti.su

Информационный ресурс энергетики - Испытание кабелей

Силовая кабельная линия - это линия для передачи электрической энергии, состоящая из одного или нескольких параллельных кабелей с соединительными. стопорными и концевыми муфтами (заделками) и крепежными деталями. В силовых кабельных линиях наиболее широко используются кабели с бумажной и пластмассовой изоляцией. Тип изоляции силовых кабелей и их конструкция влияют не только на технологию монтажа, но и на условия эксплуатации силовых кабельных линий. В особенности это касается кабелей с пластмассовой изоляцией. Так в результате изменяющихся при эксплуатации нагрузок и дополнительного нагрева, обусловленного перегрузками и токами короткого замыкания, в изоляции кабелей возникает давление от увеличивающегося при нагреве полиэтилена (поливинилхлорида), которое может растягивать экраны и оболочки кабелей, вызывая их остаточные деформацию. При последующем охлаждении вследствие усадки в изоляции образуются газовые или вакуумные включения, являющиеся очагами ионизации. В связи с этим будут изменяться ионизационные характеристики кабелей. Сравнительные данные по величине температурного коэффициента объемного расширения различных материалов, используемых в конструкциях силовых кабелей приведенные в таблице 1.

Таблица 1. Температурные коэффициенты объемного расширения материалов, применяемых в конструкции силовых кабелей

№ п/п

Наименование материалов

Температурный коэффициент объемного расширения на 1°С при 20°С

1

Медь

50

2

Алюминий

77

3

Свинец

87

4

Полиэтилен высокого давления

0-50°С - 670 50-100°С - 1560-1650

5

Полихлорвиниловый пластикат

70-200

При этом следует отметить, что наибольшая величина температурного коэффициента объемного расширения имеет место при температурах 75-125°С. соответствующего нагреву изоляции при кратковременных перегрузках и токах короткого замыкания.

Бумажная пропитанная изоляция жил кабелей имеет высокие электрические характеристики. продолжительные срок службы и сравнительно высокую температуру нагрева. Кабели с бумажной изоляцией лучше сохраняют свои электрические характеристики в процессе эксплуатации при возникавших частых перегрузах и связанных с этим дополнительных нагревах.

Для обеспечения длительной и безаварийной работы кабельных линий необходимо, чтобы температура жил и изоляции кабеля в процессе эксплуатации не превышала допустимых пределов.

Длительно допустимая температура токопроводящих жил и допустимый их нагрев при токах короткого замыкания определяются материалом изоляции кабеля. Максимально допустимые температуры жил силовых кабелей для различного материала изоляции жил приведены в табл. 2.

Таблица 2. Максимально допустимые температуры жил силовых кабелей

Изоляция жил

Напряжение кабеля, кВ

Длительно допустимая температура жил кабеля, РС

Допустимый нагрев жил при токах короткого замыкания, °С

Бумажная пропитанная

1-6

10

20

35

80

65

65

60

200

200

130

130

Пластмассовая:

   

поливинилхлоридный

пластикат

 

70

160

полиэтилен

 

70

130

вулканизирующийся

полиэтилен

 

90

250

Резиновая

 

65

150

Резиновая повышенной теплостойкости

 

90

250

Примечание: Допустимый нагрев жил кабелей из поливинилхлоридного пластиката и полиэтилена в аварийном режиме должен быть не более 80°С, из вулканизирующегося полиэтилена – 130°С.

Продолжительность работы кабелей в аварийном режиме не должна превышать 8 ч в сутки и 1000 час. за срок службы. Кабельные линии напряжением 6-10 кВ, несущие нагрузки меньше номинальных, могут кратковременно перегружаться при условиях, приведенных в табл. 3.

Таблица 3. Допустимые перегрузки по отношению к номинальному току кабельных линий напряжением 6-10 кВ

Коэффициент предварительной нагрузки

Прокладка кабеля

Допустимая перегрузка длительностью, час.

0,5

1

3

0,6

В земле

В воздухе

В трубах (в земле)

1,35

1,25

1,3

1,15

1,1

1,1 5

1,1

1,0

0,8

В земле

В воздухе

В трубах (в земле)

1,2

1,15

1,1

1,15

1,0

1,05

1,1

1,05

1,0

Примечание: Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%. Перегрузка кабельных линий на напряжение 20 ÷35 кВ не допускается.

Любая силовая кабельная линия помимо своего основного элемента - кабеля, содержит соединительные и концевые муфты (заделки), которые оказывают значительное влияние на надежность всей кабельной линии.

В настоящее время при монтаже, как концевых муфт (заделок) так и соединительных муфт широкое применение находят термоусаживаемые изделия из радиационно-модифицированного полиэтилена. Радиационное облучение полиэтилена приводит к получению качественно нового электроизоляционного материала, обладающего уникальными комплексами свойств. Так, его нагревостойкость возрастает с 80 °С до 300°С при кратковременной работе и до 150 °С при длительной. Этот материал отличается высокими физико-механическими свойствами: термостабильностью, хладостойкостью, стойкостью к агрессивным химическим средам, растворителями, бензину, маслам. На ряду со значительной эластичностью он обладает высокими диэлектрическими свойствами, сохраняющимися при весьма низких температурах. Термоусаживаемые муфты и заделки монтируют как на кабелях с пластмассовой, так и кабелях с бумажной пропитанной изоляцией.

Проложенный кабель подвергается воздействию агрессивных компонентов среды, которые обычно являются разбавленными в той или иной степени химическими соединителями. Материалы, из которых изготовлены оболочка и броня кабелей, имеют разную коррозийную стойкость.

Свинец устойчив в растворах, содержащих серную, сернистую, фосфорную, хромовую и фторно-водородную кислоты. В соляной кислоте свинец устойчив при ее концентрации до 10%.

Наличие хлористых и сульфатных солей в воде или почве вызывает резкое торможение коррозии свинца. поэтому свинец устойчив в солончаковых почвах морской воде.

Азотно-кислотные соли (нитраты) вызывают сильную коррозию свинца. Это весьма существенно, так как нитраты образуются в почве в процессе микробиологического распада и вносятся в нее в виде удобрений. Почвы по степени возрастания их агрессивности по отношению к свинцовым оболочкам можно распределить следующим образом:

а) солончаковые; б) известковые; в) песчаные; г) черноземные; д) глинистые; е) торфяные.

Углекислота и фенол значительно усиливает коррозию свинца. Свинец устойчив в щелочах.

Алюминий устойчив в органических кислотах и неустойчив в соляной, фосфорной, муравьиной кислотах. а также в щелочах. Сильно агрессивное действие на алюминий оказывают соли, при гидролизе которых образуются кислоты или щелочи. Из нейтральных солей (рН=7) наибольшей активностью обладают соли, содержащие хлор, так как образующиеся хлориды разрушают защитную пленку алюминия, поэтому наиболее агрессивными для алюминиевых оболочек являются солончаковые почвы. Морская во да, главным образом из-за наличия в ней ионов хлора, также является для алюминия сильно агрессивной средой. В растворах сульфатов, нитратов и хромов алюминий достаточно устойчив. Коррозия алюминия значительно усиливается при контакте с более электроположительным металлом, например свинцом, что, имеет место при установке соединительных муфт, если не принято специальных мер.

При монтаже свинцовой соединительной муфты на кабеле с алюминиевой оболочкой образуется контактная гальваническая пара свинец-алюминий, в которой алюминий является анодом, что может вызвать разрушение алюминиевой оболочки через несколько месяцев после монтажа муфты. При этом повреждение оболочки происходит на расстоянии 10-15 см от шейки муфты, т.е. на том месте, где с оболочки при монтаже снимаются защитные покровы. Для устранения вредного действия подобных гальванических пар муфту и оголенные участки алюминиевой оболочки покрывают кабельным составом марки МБ-70(60), разогретом до 130 °С, и сверху накладывают липкую поливинилхлоридную ленту в два слоя с 50%-ным перекрытием. Поверх липкой ленты накладывают слой просмоленной ленты с последующим покрытием ее битумным покровным лаком марки БТ-577.

Поливинилхлоридный пластикат негорюч, обладает высокой стойкостью против действия большинства кислот, щелочей и органических растворителей. Однако его разрушают концентрированные серная и азотная кислоты, ацетон и некоторые другие органические соединения. Под воздействием повышенной температуры и солнечной радиации поливинилхлоридный пластикат теряет свою пластичность и морозостойкость.

Полиэтилен обладает химической стойкостью к кислотам, щелочам, растворам солей и органическим растворителям. Однако полиэтилен под воздействием ультрафиолетовых лучей становится хрупким и теряет свою прочность.

Резина, применяемая для оболочек кабелей, хорошо противостоит действию масел, гидравлических и тормозных жидкостей, ультрафиолетовых лучей, а также микроорганизмов. Разрушающие действуют на резину растворы кислот и щелочей при повышенных температурах.

Броня, изготавливаемая из низко углеродной стали, обычно разрушается намного раньше, чем начинает коррозировать оболочка. Броня сильно коррозирует в кислотах и весьма устойчива в щелочах. Разрушающее действуют на нее сульфатвосстанавливаю щие бактерии, выделяющие сероводород и сульфиды.

Покровы из кабельной пряжи и битума практически не защищают оболочку от контакта с внешней средой и довольно быстро разрушаются в почвенных условиях.

Электрохимическая защита кабелей от коррозии осуществляется путем катодной поляризации их металлических оболочек, а в некоторых случаях и брони, т.е. накладыванием на последние отрицательного потенциала. В зависимости от способа электрической защиты катодная поляризация достигается присоединением к оболочкам кабелей катодной станции, дренажной и протекторной защиты. При выборе способа защиты учитывается основной фактор, вызывающий коррозию в данных конкретных условиях.

Марка силового кабеля характеризует основные конструктивные элементы и область применения кабельной продукции.

Буквенные обозначения конструктивных элементов кабеля приведены в табл. 4.

Таблица 4. Буквенные обозначения конструктивных элементов кабеля

Конструктивный элемент кабеля

Материал

Буквенное обозначение

Жила

Медь Алюминий

Нет буквы А

Изоляция жил

Бумажная Полиэтиленовая Поливинилхлоридная Резиновая

Нет буквы П В Р

Поясная изоляция

Бумажная Полиэтиленовая Поливинилхлоридная Резиновая

Нет буквы П В Р

Оболочка

Свинцовая Алюминиевая гладкая Алюминиевая гофрированная Поливинилхлоридная Полиэтиленовая негорючая резина

С А АгВ П Н

Подушка

Бумага и битум Без подушки Полиэтиленовая (шланг) Поливинилхлоридная: один слой пластмассовой ленты типа ПХВ два слоя пластмассовой ленты типа ПХВ

Нет буквы б в

л

Броня

Стальная лента Проволока плоского сечения Проволока круглого сечения

БП К

Наружный кабельный покров

Кабельная пряжа Без наружного кабельного покрова Стеклянная пряжа из штапелированного волокна (негорючий кабельный покров) Полиэтиленовый шланг Поливинилхлоридный шланг

Нет буквы,

Г

Н Шп

Шв

Примечание: 1. Буквы в обозначении кабеля располагаются в соответствии с конструкцией кабеля, т.е. начиная от материала жилы и заканчивая наружным кабельным покровом.

2. Если в конце буквенной части марки кабеля стоит буква "П", написанная через черточку, то это означает, что кабель имеет по сечению плоскую форму, а не круглую.

3. Обозначение контрольного кабеля отличается от обозначения силового кабеля только тем, что после материала жилы кабеля ставится буква "К".

После букв стоят числа, указывающие число основных изолированных жил и их сечение (через знак умножения), а также номинальное напряжение (через тире). Число и сечение жил у кабелей с нулевой жилой или заземляющей жилой обозначается суммой чисел.

Наиболее широкое применение находят кабели следующих стандартных сечений жил: 1,2; 1,5; 2,0;2,5; 3; 4; 5; 6; 8; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240 мм.

Объем приемо-сдаточных испытаний.

В соответствии с требованиями ПУЭ объем приемо-сдаточных испытаний силовых кабельных линий включает следующие работы.

1. Проверка целостности и фазировки жил кабеля.

2. Измерение сопротивления изоляции.

3. Испытание повышенным напряжением выпрямленного тока.

4. Испытание повышенным напряжением промышленной частоты.

5. Определение активного сопротивления жил.

6. Определение электрической рабочей емкости жил.

7. Измерение распределения тока по одножильным кабелям.

8. Проверка защиты от блуждающих токов.

9. Испытание на наличие нерастворенного воздуха (пропиточное испытание).

10. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.

11. Контроль состояния антикоррозийного покрытия.

12. Проверка характеристик масла.

13. Измерение сопротивления заземления.

Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13.

Силовые кабельные линии напряжением выше 1 кВ и до 35 кВ - по п.п.1-3, 6, 7, 11, 13, а напряжением 110 кВ и выше - в полном объеме, предусмотренным настоящей инструкцией.

Проверка целостности и фазировки жил кабеля.

Перед включением кабеля в работу производится его фазировка, т.е. обеспечивается соответствие фаз кабеля фазам присоединяемого участка электроустановки. Проверка производится прозвонкой с помощью телефонных трубок или мегаомметра. На основании проверки производится раскраска жил в соответствии с раскраской принятой на данной установке.

Технология "прозвонки" с помощью телефонных трубок заключается в следующем: один работник подсоединяет свою телефонную трубку к жиле кабеля и оболочке (заземленной части электропроводки), а другой поочередно к жилам кабеля со своей стороны, пока не дойдет до той жилы, к которой подключился первый работник. При этом устанавливается телефонная связь между работниками и они могут договориться о порядке проверки другой жилы. На проверенные жилы навешивают временные бирки с соответствующей маркировкой. Проверка жил "прозвонкой" будет успешной, если исключить возможность образования обходных цепей. Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле; для этого подсоединяют трубку к каждой из оставшихся жил и убеждаются, что связи по ним нет. Для "прозвонки" используют низкоомные телефонные трубки, а в качестве источника питания - батарейку от карманного фонаря.

После предварительной прозвонки перед включением кабельной линии в работу производится фазировка ее под напряжением. Для этого с одного конца кабеля подается рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений между одноименными и разноименными фазами. Газировка производится вольтметрами (в сетях до 1кВ) или вольтметрами с трансформаторами напряжения, а также с помощью указателей напряжения типа УВН-80, УВНФ и др. (в сетях напряжением выше 1 кВ)

Измерение сопротивления изоляции.

Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется, но должно быть порядка десятка МОм и выше. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Методика измерения сопротивления и приборы, используемые при этом, представлены испытаниях изоляции электрооборудования повышенным напряжением.

Перед началом измерения сопротивления изоляции на кабельной линии необходимо:

1.      Убедиться в отсутствии напряжения на линии.

2.      Заземлить испытуемую цепь на время подключения прибора.

После окончания измерения, прежде чем отсоединять концы от прибора необходимо снять накопленный заряд путем наложения заземления.

Разрядку кабеля необходимо производить при помощи специальной разрядной штанги сначала через ограничительное сопротивление, а затем накоротко. Короткие участки кабеля длиной до 100 м можно разряжать без ограничительного сопротивления.

При измерении сопротивления изоляции кабельных линий большой длины, необходимо помнить, что они обладают значительной емкостью, поэтому показания мегаомметра следует отмечать только после окончания заряда кабеля.

Категорически запрещается измерять сопротивление изоляции на кабельной линии, если она хотя бы на небольшом участке проходит вблизи другой линии, находящейся под напряжением.

Испытание повышенным напряжением выпрямленного тока.

Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока.

Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 5.

Таблица 5. Испытательные напряжения выпрямленного тока для силовых кабелей

Тип кабеля

Испытательные напряжения, кВ; для кабелей на рабочее напряжение, кВ

Продолжительность испытания, мин

2

3

6

10

10

35

110

220

Бумажная

12

18

36

60

100

175

300

450

10

Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД

-

6

12

-

-

-

-

-

5

Пластмассовая

-

15

-

-

-

-

-

-

10

Методика проведения испытания повышенным напряжением выпрямленного тока, а также установки и оборудование для испытания представлены испытаниях изоляции электрооборудования повышенным напряжением.

При испытании напряжение должно плавно подниматься до испытательной величины и поддерживаться неизменным в течение всего периода испытания. Подъем испытательного напряжения для кабельных линий напряжением до 10 кВ осуществляется в течение 1 мин, а для кабельных линий 20-35 кВ - со скоростью не более 0,5 кВ/с.

В случае, если контроль над испытательным напряжением осуществляется по вольтметру, включенному на первичной стороне повышающего трансформатора, то в результаты измерения может вноситься некоторая погрешность за счет падения напря жения в элементах испытательной схемы, в частности, в кенотронах.

Измерение токов утечки кабеля 3-10 кВ при испытаниях повешенным выпрямленным напряжением производиться с помощью микроамперметров, включенных или на стороне высокого напряжения испытательной установки, или в нуль испытательного трансформатора. При применении последней схемы измерения токов утечки возможно искажение отсчета за счет паразитных токов утечки.

При испытаниях силовых кабельных линий повышенным выпрямленным напряжением оценка их состояния производится не только по абсолютному значению тока утечки, но и путем учета характера изменения тока утечки по времени, асимметрии токов утечки по фазам, характера сохранения и спада заряда и т.п. В эксплуатации принято, что кабельная линия может быть введена в работу, если токи утечки имеют стабильное значение, но не превосходят 300 мкА для линий с номинальным напряжением до 10 кВ. Для коротких кабельных линий (длиною до 100 м) без соединительных муфт допустимые токи утечки не должны превышать 2-3 мкА на 1кВ испытательного напряжения. Асимметрия токов утечки по фазам не должны превышать 8-10 при условии, что абсолютные значения токов не превышают допустимые.

Для исправной изоляции силового кабеля ток утечки спадает в зависимости от длительности приложения испытательного напряжения, и тем больше, чем лучше каче ство изоляции. У силового кабеля с дефектной изоляцией ток утечки увеличивается во времени. При заметном нарастании тока утечки при испытании силового кабеля про должительность испытания увеличивается до 10-20 мин. При дальнейшем нарастании утечки, если оно не вызвано дефектами концевых разделок, испытание должно вестись до пробоя изоляции кабеля.

При испытаниях напряжение от выпрямленной установки подводится к одной из жил испытуемого кабеля. Остальные жилы испытуемого кабеля, а также все жилы других параллельных кабелей данного присоединения должны быть надежно соединены между собой и заземлены. У трехжильных кабелей испытанию подвергается изоляция каждой жилы относительно оболочки и других заземленных жил. У однофазных кабелей и кабелей с отдельно освинцованными жилами испытывается изоляция жилы относительно металлической оболочки.

Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания, после того как он дос тиг установившейся величины.

После каждого испытания цепи кабельной линии ее необходимо разрядить по приведенной методике.

Испытание повышенным напряжением промышленной частоты.

Испытание повышенным напряжением промышленной частоты допускается

производить для линий 110-220 кВ взамен испытания повышенным напряжением выпрямленного тока.

Величины испытательного напряжения промышленной частоты приведены в табл. 6.

Таблица 6. Величины испытательного напряжения промышленной частоты

Рабочее напряжение кабеля, кВ

Испытательное напряжение кВ

Испытательное напряжение по отношению к земле, кВ

Продолжительность испытания, мин

110

220

130

5

220

500

288

5

Методика испытания и установки для испытания изоляции повышенным напряжением промышленной частоты приведены испытаниях изоляции электрооборудования повышенным напряжением.

Определение активного сопротивления жил.

Производиться для линий напряжением 35 кВ и выше.

Активное сопротивление жил кабельной линии постоянному току, приведенные к 1 мм сечения, 1 м длины и температуре + 20 С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы.

Активное сопротивление жил кабелей постоянному току представлены в табл. табл. 7, 13.8.

Методики измерения и необходимые приборы приведены.

Таблица 7. Активное сопротивление жил кабелей постоянному току при температуре +20°С

Сечение, мм

Сопротивление, Ом/км

Сечение, мм

Сопротивление, Ом/км

16

1,15/1,95

95

0,194/0,33

25

0,74/1,26

120

0,153/0,26

35

0,52/0,88

150

0,122/0,207

50

0,37/0,63

185

0,099/0,168

70

0,26/0,44

240

0,077/0,131

Примечание: в числителе указано для медной, а в знаменателе для алюминиевой жилы.

Таблица 8. Активное сопротивление жил маслонаполненных кабелей постоянному току при температуре +20°С

Сечение, мм

Сопротивление, Ом/км*

Сечение, мм

Сопротивление, Ом/км*

Низкого давления

Высокого давления

Низкого давления

Высокого давления

120

0,1495

0,1513

400

0,04483

0,04453

150

0,1196

0,1209

500

0,03587

0,03575

185

0,09693

0,09799

550

0,03260

0,03295

240

0,07471

0,07601

625

0,02869

0,02846

270

0,06641

0,06593

700

-

0,02562

300

0,05977

0,06040

800

0,02242

-

350

0,05123

-

-

-

-

ukrelektrik.com

Проведение периодических проверок, измерений и испытаний силовых кабельных линий

Проведение периодических проверок, измерений и испытаний силовых кабельных линий, находящихся в эксплуатации.

Нормы испытаний силовых кабельных линий, находящихся в эксплуатации.

Профилактические испытания силовых кабельных линий проводят при капитальном (К), текущем (Т) ремонтах и в межремонтный период (М).

К, Т, М - проводятся в сроки, устанавливаемые системой ППР, но не реже: К - 1 раза в 6 лет, Т или М - 1 раза в 3 года, за исключением случаев неудовлетворительных результатов испытаний и измерений, предусмотренные п.п. испытание повышенным выпрямленным напряжением, измерение сопротивления изоляции и измерение блуждающих токов (ниже). Объем профилактических испытаний, предусмотренный ПЭЭП, включает следующие работы.

  1. Определение целостности жил и фазировки.
  2. Испытание повышенным выпрямленным напряжением.
  3. Измерение сопротивления изоляции.
  4. Контроль осушения вертикальных участков.
  5. Определение сопротивлений заземлений.
  6. Измерение токораспределения по одножильным кабелям.
  7. Измерение блуждающих токов.
  8. Определение химической коррозии.
  9. Измерение нагрузки.
  10. Измерение температуры кабелей.
  11. Проверка срабатывания защиты линии до 1000 В с заземленной нейтралью.

Определение целостности жил и фазировки.

Производится при К и Т после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля.

Все жилы должны быть целыми и сфазированными.

О порядке определения целостности жил и фазировки следует руководствоваться указаниями выше.

Испытание повышенным выпрямленным напряжением:

а) кабелей напряжением выше 1000 В (кроме резиновых кабелей 3-10 кВ)

Производится при капитальном и текущем ремонте. Групповые кабели на подстанциях могут испытываться без отсоединения от шин. Испытание повышенным напряжением выпрямленного тока кабелей, расположенных в пределах одного распределительного устройства или здания, рекомендуется производить не более 1 раза в год.

Значения испытательных напряжений выпрямленного тока представлены в табл. 13.

О порядке проведения испытаний повышенным напряжением выпрямленного тока следует руководствоваться указаниями выше.

Таблица 13. Испытательное напряжение выпрямленного тока

Линии с рабочим напряжением, кВ Вид испытаний и испытательное напряжение, кВ Продолжительность испытания каждой фазы, мин
К Т,М
2-10 6·Uном (5÷6)·Uном 5
20-35 5·Uном (4÷5)·Uном 5
110 250 250 15
220 400 400 15

б) кабелей 3-10 кВ с резиновой изоляцией (например, марок КШВГ, ЭВТ) Производится при К испытательным напряжением 2·Uном в течение 5 мин.

Измерение сопротивления изоляции.

Проверяется мегомметром на напряжение 2500 В в течение 1 мин. Сопротивление изоляции должно быть не ниже 0,5 МОм.

О порядке проведения испытаний повышенным напряжением выпрямленного тока следует руководствоваться указаниями выше.

  1. кабелей 3-10 кВ с резиновой изоляцией. Производится при Т и М, а также после мелких ремонтов, не связанных с перемонтажом кабеля, перед наступлением сезона (в сезонных установках) и не реже 1 раза в год в стационарных установках
  2. кабелей напряжением до 1000 В Производится при капитальном ремонте.

Контроль осушения вертикальных участков.

Производится при М на кабелях напряжением 20-30 кВ путем измерения и сопоставления температур нагрева оболочки в разных точках вертикального участка. Разность нагрева отдельных точек должна быть в пределах 2-3 °С.

Контроль осушения можно производить также путем снятия кривых tgδ=f(U) на вертикальных участках. По значениям тангенса угла диэлектрических потерь можно судить о надежности изоляции по отношению к тепловому пробою, общем старении, увлажнен ности и обедненности изоляции пропиточной массой. Зависимость tgδ от напряжения представлена на рис. 3. При увеличении напряжения до некоторого значения Uп нaчинается ионизация имеющихся в изоляции газовых или жидкостных включений, при этом tgδ начинает резко возрастать за счет дополнительных потерь, вызванных ионизацией. Очевидно, что напряжение Uп при обеднении изоляции будет уменьшаться, tgδ и потери соответственно увеличиваться. Зависимость tgδ=f(U) также будет изменяться.

О порядке проведения измерения tgб следует руководствоваться рекомендованными указаниями.

 

Определение сопротивлений заземлений.

Производится при К у металлических концевых заделок на линиях всех напряжений, кроме линий до 1000 В с заземленной нейтралью, а на линиях напряжением 110220 кВ также у металлических конструкций кабельных колодцев и подпиточных пунктов.

О порядке проведения измерения сопротивлений заземлений, а также требованиями предъявляемыми к заземлителям, следует руководствоваться указаниями.

Измерение токораспределения по одножильным кабелям.

Производится при капитальном ремонте.

Неравномерность распределения токов на кабелях должна быть не более 10% (особенно если это приводит к перегрузке отдельных фаз).

 

energoboard.ru

Измерения и испытание силовых кабельных линий в СПб

Измерения и испытания кабельных линий проводятся регулярно, в зависимости от характера объекта. Одновременно проводятся измерения сопротивления изоляции и испытания электрической прочности изоляции повышенным напряжением. Все измерения проводятся нашими специалистами согласно требований нормативных документов:

  • ПУЭ 7-е издание раздел 1, гл. 1.8;
  • ПТЭЭП
  • РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования»,

а также согласно документации на оборудование заводов-изготовителей.

Измерение сопротивления изоляции

Изоляция кабельных линий проверяется на сопротивление постоянному току, это один из основных показателей ее исправности. Испытание изоляции кабельных линий дает возможность получить не только картину ее состояния на текущий момент, но и выяснить, насколько успешно она будет противостоять воздействию тока повышенного напряжения в случаях, когда произойдет нарушение работы электрообъекта. При испытаниях изоляции кабельной линии повышенным выпрямленным напряжением измеряют ток утечки.

Измерение сопротивления изоляции кабельных линий проводится мегаоомметром. Мегаомметр – прибор, состоящий из источника напряжения (постоянного или переменного генератора с выпрямителем тока) и измерительного механизма. На сегодняшний день самыми распространенными моделями мегаоомметров являются Е6-24, UT511, 512, 513 производства республики Казахстан, Greenlee 5880, 5882, 5990, Fluke, SEW, Megger, Sonel (MIC2500, MIC-3) и другие. Сопротивление изоляции кабельных линий должно находиться в пределах нормы по требованиям ПУЭ при рабочем напряжении в 380 и 220В. Для силовых линий на напряжение 0,4кВ при напряжении мегаомметра 2,5 кВ допустимое сопротивление изоляции должно превышать 0,5 МОм, и равняться 0,5 МОм при напряжении в 1кВ для электропроводок. Для силовых кабельных линий выше 1 кВ сопротивление изоляции не нормируется. Измерения сопротивления изоляции проводятся относительно фаз друг к другу и каждой фазы – к земле.

Допуск к работе с мегаомметром получает только лицо с группой по электробезопасности не ниже III.У лиц, проводящих испытания повышенным напряжением должен быть допуск к специальным видам работ, что отмечается в удостоверении по электробезопасности. При измерении сопротивления изоляции силовых линий и электропроводок, должны быть соблюдены требования безопасности: отключены приборы, коммутирующиеся с силовой линией. Часть установки, где проводятся измерения, должна быть освобождена от людей. С объекта испытаний должно быть снято напряжение, кабель при испытаниях должен быть разземлен.  В помещениях с двух сторон кабеля – объекта испытаний должны быть развешаны предупреждающие плакаты с надписями: «СТОЙ! НАПРЯЖЕНИЕ!» «ИСПЫТАНИЯ! ОПАСНО ДЛЯ ЖИЗНИ!».

Испытание сопротивления изоляции

К испытанию сопротивления изоляции кабельных силовых линий предъявляются более высокие требования. Так, персонал наладчиков должен пройти проверку здоровья и  иметь медицинскую справку, а также доказать наличие необходимых знаний, умений и навыков перед специальной комиссией. Группа по электробезопасности у специалистов должна быть не ниже IV. Подтверждение квалификации и прохождения проверок на профпригодность и медицинский допуск отражаются записью в строке «Свидетельство на право проведения специальных работ». В состав бригады по испытанию сопротивления изоляции кабельных линий должны входить минимум два человека, у которых уже есть стаж работы не менее 3 месяцев и опыт проведения высоковольтных испытаний.

Руководитель работ должен иметь группу по электробезопасности не ниже пятой, у производителя работ группа по электробезопасности- не ниже IV и квалификация инженера-электрика. Остальные члены бригады должны быть инженерами-электриками или электромонтерами со специализацией «испытания и измерения», с группой по безопасности не ниже III. Охранники места проведения испытаний могут быть со второй группойпо ЭБ, но они не допускаются непосредственно к проведению работ по испытанию сопротивления изоляции кабельных линий.

Помимо требований к персоналу, сотрудники электроизмерительной лаборатории и руководство организации обеспечивают соблюдение правил техники безопасности для помещения. Помимо надписей «СТОЙ! НАПРЯЖЕНИЕ!» в недоступных для отслеживания местах, само место испытаний и испытательная установка должны быть огорожены маркировочной лентой и снабжены плакатами с надписью, обращенной наружу: «ИСПЫТАНИЯ! ОПАСНО ДЛЯ ЖИЗНИ!» а на приводах отключенных разъединителей – «НЕ ВКЛЮЧАТЬ! РАБОТАЮТ ЛЮДИ». Если есть возможность, у места испытания сопротивления изоляции кабельных линий должен быть выставлен охранник или наблюдающий. До сотрудников организации должна быть доведена информация о проводящихся испытаниях, помещение – очищено от посторонних. Если проводятся дополнительные испытания или измерения того же оборудования, работающие бригады или отдельные работники должны быть удалены на общих основаниях со сдачей нарядов допускающему лицу.

Требования безопасности при испытаниях сопротивления изоляции кабельных линий изложены в «Правилах устройства электроустановок», «Межотраслевых правилах по охране труда (правила безопасности) при эксплуатации электроустановок», «Правилах эксплуатации электроустановок», а также инструкциях по охране труда и эксплуатации используемого при испытаниях высоковольтного оборудования. За наложение и снятие заземления отвечает одно лицо. Работы должны производиться под наблюдением ответственного, в диэлектрических перчатках, и – одним из сотрудников бригады по испытанию кабельной линии: «Независимо от заземления вывода испытательной установки лицо, производящее присоединение в испытательной схеме, должно наложить заземление на соединительный провод и на изолированные от земли части испытательного оборудования. Снимать эти заземления можно только после окончания переключений». Незаземленные при испытаниях кабельной линии провода и части установок по умолчанию рассматриваются как находящиеся под испытательным напряжением.

Испытываемое оборудование присоединяется к сети через штепсельный разъем и двухполюсный выключатель. Оператор пульта должен проводить подсоединение. С использованием средств защиты. При этом с момента начала испытаний до момента их окончания, у пульта должен находиться как минимум один человек. В случае возгорания, замыкания, задымления, отключении питания и других чрезвычайных ситуациях, напряжение немедленно снимается рубильником с видимым разрывом по стороне 0,4 кВ. В случае отключения питания запрещается выяснять причину отключения до снятия напряжения с испытательной установки и объекта испытаний и заземления оборудования. Если чрезвычайная ситуация возникла, дальнейшие испытания прекращаются. Эти и другие вопросы требований техники безопасности при испытаниях кабельных линии повышенным напряжением подробно рассмотрены в НД ПОТ, которым и рекомендуется руководствоваться.

Испытание кабельной линии

Для испытания кабельной линии, как и при измерениях, важны внешние условия. Так, необходимо проводить испытания в сухом помещении, либо в сухую погоду, при температуре не ниже пяти градусов Цельсия выше нуля. Атмосферное давление фиксируется и заносится в протокол, но как таковое, не оказывает влияние на результаты измерений. При  испытаниях кабельной линии особое значение имеет влажность: при влажности воздуха более 80% на кабелях, проводах и частях испытываемой установки, а также и на испытательном оборудовании образуется водяной конденсат, который может стать причиной пробоя изоляции. Пробой изоляции мгновенно приводит к выходу повреждению кабельной линии.

Аппаратура, с помощью которой производят испытания кабельных линий, состоит из нескольких установок:

  • испытательный трансформатор;
  • защитная аппаратура;
  • регулирующее устройство;
  • контрольно-измерительная аппаратура.

Специалистами нашей электроизмерительной лаборатории используется установка АИД-70, а также мощные передвижные высоковольтные испытательные установки, которые обладают достаточным уровнем защиты и надлежащим уровнем подготовлены для проведения испытаний. Для измерения емкости конденсаторов или обмоток силовых трансформаторов и измерения тангенса диэлектрических потерь используются мосты переменного тока типа Р2056М, СА-7100, Тангенс 2000. Перед началом измерений и испытаний кабельной линии специалисты ЭЛ тщательно проверяют подключение испытательной установки и объекта испытаний.  Все испытательное оборудование и срества измерений ЭЛ проходят поверку и аттестацию в соответствующих государственных органах, к которым относится Центр стандартизации и метрологии. Поверка происходит по методикам с выдачей Аттестатов испытаний или свидетельств о поверке сроком на 12 или 24 месяца. Все данные заносятся в рабочую тетрадь, в частности – дата измерений, температура воздуха, влажность, давление, данные измерительной аппаратуры, данные измеряемого объекта, результаты внешнего осмотра, используемая схема измерения/испытания. Все данные испытаний сравниваются с требованиями НД, и на основании сравнения выдаётся заключение о пригодности объекта к эксплуатации. По результатам испытаний заполняется протокол установленной формы, в соответствии с требованиями НД (ГОСТ Р 17025-2006) и согласованный с Ростехнадзором.

Нормативные документы, на соответствие требованиям которых проводятся измерения:

  • ПУЭ 7-е издание раздел 1, гл. 1.8;
  • РД 34.45-51.300-97 "Объем и нормы испытаний электрооборудования";
  • Документация заводов-изготовителей оборудования.

www.gorod812.com

Объем и нормы испытаний силовых кабелей — реферат

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ  ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО  ОБРАЗОВАНИЯ

"МУРМАНСКИЙ  ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

АПАТИТСКИЙ ФИЛИАЛ

 

 

 

Реферат

 

по дисциплине " ОРГАНИЗАЦИЯ ЭКСПЛУАТАЦИИ И РЕМОНТА ЭЛЕКТРООБОРУДОВАНИЯ"

 

специальность 140211 ЭЛЕКТРОСНАБЖЕНИЕ

 

Тема:

 

" Объем и нормы испытаний силовых кабелей".

 

 

 

 

Выполнил:

студент группы Эс-491

Серебряков Е.Л.

 

Проверил:

к.т.н., доцент кафедры электроэнергетики

Невретдинов Ю.М.

 

 

 

Апатиты,

2013

 

 

СОДЕРЖАНИЕ

1. Основные положения…………………………………………………………………………3

2. Объем и нормы приемо-сдаточных испытаний силовых кабельных линий…………………………..5

Список литературы……………………………………………………………………………………...13

 

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

 

Силовая кабельная линия - это линия для  передачи электрической энергии, состоящая  из одного или нескольких параллельных кабелей с соединительными,  стопорными и концевыми муфтами (заделками) и крепежными деталями.

В силовых  кабельных линиях наиболее широко используются кабели с бумажной и пластмассовой  изоляцией. Тип изоляции силовых  кабелей и их конструкция влияют не только на технологию монтажа, но и  на условия эксплуатации силовых  кабельных линий. В особенности  это касается кабелей с пластмассовой  изоляцией. Так в результате изменяющихся при эксплуатации нагрузок и дополнительного  нагрева, обусловленного перегрузками и токами короткого замыкания, в  изоляции кабелей возникает давление от увеличивающегося при нагреве  полиэтилена (поливинилхлорида), которое  может растягивать экраны и оболочки кабелей, вызывая их остаточные деформацию. При последующем охлаждении вследствие усадки в изоляции образуются газовые  или вакуумные включения, являющиеся очагами ионизации. В связи с  этим будут изменяться ионизационные  характеристики кабелей.

Бумажная  пропитанная изоляция жил кабелей  имеет высокие электрические  характеристики, продолжительный срок службы и сравнительно высокую температуру  нагрева. Кабели с бумажной изоляцией  лучше сохраняют свои электрические  характеристики в процессе эксплуатации при возникавших частых перегрузах и связанных с этим дополнительных нагревах.

Для обеспечения длительной и безаварийной работы кабельных линий необходимо, чтобы температура жил и изоляции кабеля в процессе эксплуатации не превышала допустимых пределов. Продолжительность  работы кабелей в аварийном режиме не должна превышать 8 ч в сутки  и 1000 час. за срок службы.

Любая силовая кабельная линия помимо своего основного элемента - кабеля, содержит соединительные и концевые муфты (заделки), которые оказывают  значительное влияние на надежность всей кабельной линии.

В настоящее  время при монтаже, как концевых муфт (заделок) так и соединительных муфт широкое применение находят  термоусаживаемые изделия из радиационно-модифицированного  полиэтилена.  Термоусаживаемые муфты  и заделки монтируют как на кабелях с пластмассовой, так  и кабелях с бумажной пропитанной  изоляцией.

Проложенный кабель подвергается воздействию агрессивных  компонентов среды, которые обычно являются разбавленными в той  или иной степени химическими  соединителями. Материалы, из которых изготовлены оболочка и броня кабелей, имеют разную коррозийную стойкость.

  • Свинец устойчив в растворах, содержащих серную, сернистую, фосфорную, хромовую и фтороводородную кислоты. В соляной кислоте свинец устойчив при ее концентрации до 10%.
  • Алюминий устойчив в органических кислотах и неустойчив в соляной, фосфорной, муравьиной кислотах. а также в щелочах. Сильно агрессивное действие на алюминий оказывают соли, при гидролизе которых образуются кислоты или щелочи.
  • Поливинилхлоридный пластикат негорюч, обладает высокой стойкостью против действия большинства кислот, щелочей и органических растворителей. Однако его разрушают концентрированные серная и азотная кислоты, ацетон и некоторые другие органические соединения. Под воздействием повышенной температуры и солнечной радиации поливинилхлоридный пластикат теряет свою пластичность и морозостойкость.
  • Полиэтилен обладает химической стойкостью к кислотам, щелочам, растворам солей и органическим растворителям. Однако полиэтилен под воздействием ультрафиолетовых лучей становится хрупким и теряет свою прочность.
  • Резина, применяемая для оболочек кабелей, хорошо противостоит действию масел, гидравлических и тормозных жидкостей, ультрафиолетовых лучей, а также микроорганизмов. Разрушающие действуют на резину растворы кислот и щелочей при повышенных температурах.
  • Броня, изготавливаемая из низко углеродной стали, обычно разрушается намного раньше, чем начинает коррозировать оболочка. Броня сильно коррозирует в кислотах и весьма устойчива в щелочах. Разрушающее действуют на нее сульфатвосстанавливающие бактерии, выделяющие сероводород и сульфиды.

Покровы из кабельной пряжи и битума практически  не защищают оболочку от контакта с  внешней средой и довольно быстро разрушаются в почвенных условиях.

Марка силового кабеля характеризует основные конструктивные элементы и область  применения кабельной продукции. После букв маркировки стоят числа, указывающие число основных изолированных жил и их сечение (через знак умножения), а также номинальное напряжение (через тире). Число и сечение жил у кабелей с нулевой жилой или заземляющей жилой обозначается суммой чисел.

Наиболее  широкое применение находят кабели следующих стандартных сечений  жил: 1,2; 1,5; 2,0;2,5; 3; 4; 5; 6; 8; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240 мм.

 

2. ОБЪЕМ И НОРМЫ ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ СИЛОВЫХ КАБЕЛЬНЫХ ЛИНИЙ

 

В соответствии с требованиями ПУЭ объем приемо-сдаточных  испытаний силовых кабельных  линий включает следующие работы.

1. Проверка целостности и фазировки жил кабеля.

Перед включением кабеля в работу производится его фазировка, т.е. обеспечивается соответствие фаз кабеля фазам присоединяемого участка электроустановки. Проверка производится прозвонкой с помощью телефонных трубок или мегаомметра. На основании проверки производится раскраска жил в соответствии с раскраской принятой на данной установке.

Технология "прозвонки" с помощью телефонных трубок заключается в следующем: один работник подсоединяет свою телефонную трубку к жиле кабеля и оболочке (заземленной части электропроводки), а другой поочередно к жилам кабеля со своей стороны, пока не дойдет до той жилы, к которой подключился первый работник. При этом устанавливается телефонная связь между работниками, и они могут договориться о порядке проверки другой жилы. На проверенные жилы навешивают временные бирки с соответствующей маркировкой. Проверка жил "прозвонкой" будет успешной, если исключить возможность образования обходных цепей. Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле; для этого подсоединяют трубку к каждой из оставшихся жил и убеждаются, что связи по ним нет. Для "прозвонки" используют низкоомные телефонные трубки, а в качестве источника питания - батарейку от карманного фонаря.

После предварительной прозвонки перед включением кабельной линии в работу производится фазировка ее под напряжением. Для этого с одного конца кабеля подается рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений между одноименными и разноименными фазами. Фазировка производится вольтметрами (в сетях до 1кВ) или вольтметрами с трансформаторами напряжения, а также с помощью указателей напряжения типа УВН-80, УВНФ и др. (в сетях напряжением выше 1 кВ),

Порядок проведения фазировки в линиях различного напряжения примерно одинаков. Так фазировка кабельной линии с помощью указателей напряжения выполняется в следующей последовательности (см. рис. 1).

Проверяется исправность указателя напряжения, для чего щупом трубки без неоновой лампы касаются заземления, а щуп  другой трубки подносят к жиле кабеля находящегося под напряжением, при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной жилы находящей под напряжением. Лампа индикатора при этом гореть не должна. После этого проверяется наличие напряжения на выводах электроустановки и кабеля (см. рис. 1в). Данную проверку производят для того, чтобы исключить ошибку при фазировке линии имеющей обрыв (например, из-за неисправности предохранителя). Процесс собственно фазировки состоит в том, что щупом одной трубки указателя касаются любого крайнего вывода установки, например фазы С, а щупом другой трубки - поочередно трех выводов со стороны фазируемой линии (см. рис. 1г). В двух случаях касания (С-А 1 и С-B1) неоновая лампа загорается, в третьем (С-С1) лапа гореть не будет, что укажет на одноименность фаз. Аналогично определяют другие одноименные фазы.

 

Рис. 1. - Последовательность операций при фазировке линии 10 кВ указателем напряжения типа УВНФ.

а, б - проверка исправности указателя  напряжения; в - проверка наличия напряжения на выводах; г - фазировка

2. Измерение сопротивления изоляции.

Производится  мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется, но должно быть порядка десятка МОм и выше. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Перед началом измерения сопротивления  изоляции на кабельной линии необходимо:

а)      Убедиться в отсутствии напряжения на линии.

б)      Заземлить испытуемую цепь на время подключения прибора.

После окончания измерения, прежде чем  отсоединять концы от прибора  необходимо снять накопленный заряд  путем наложения заземления.

Разрядку  кабеля необходимо производить при  помощи специальной разрядной штанги сначала через ограничительное  сопротивление, а затем накоротко. Короткие участки кабеля длиной до 100 м можно разряжать без ограничительного сопротивления.

При измерении сопротивления изоляции кабельных линий большой длины, необходимо помнить, что они обладают значительной емкостью, поэтому показания  мегаомметра следует отмечать только после окончания заряда кабеля.

Категорически запрещается измерять сопротивление  изоляции на кабельной линии, если она  хотя бы на небольшом участке проходит вблизи другой линии, находящейся под  напряжением.

3. Испытание повышенным напряжением  выпрямленного тока.

Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного  тока. Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены  в таблице 1.

 

Таблица 1 - Испытательные напряжения выпрямленного тока для силовых кабелей

Тип кабеля

Испытательные напряжения, кВ; для кабелей на рабочее  напряжение, кВ

Продолжительность испытания, мин

2

3

6

10

10

35

110

220

Бумажная

12

18

36

60

100

175

300

450

10

Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД

-

6

12

-

-

-

-

-

5

Пластмассовая

-

15

-

-

-

-

-

-

10

 

При испытании напряжение должно плавно подниматься до испытательной величины и поддерживаться неизменным в течение  всего периода испытания. Подъем испытательного напряжения для кабельных  линий напряжением до 10 кВ осуществляется в течение 1 мин, а для кабельных  линий 20-35 кВ - со скоростью не более 0,5 кВ/с.

В случае, если контроль над испытательным напряжением осуществляется по вольтметру, включенному на первичной стороне повышающего трансформатора, то в результаты измерения может вноситься некоторая погрешность за счет падения напряжения в элементах испытательной схемы, в частности, в кенотронах.

myunivercity.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта