Содержание
Как подключить электродвигатель с пусковой обмоткой?
Как подключить электродвигатель с пусковой обмоткой?
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС….С пусковой обмоткой
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
Как проверить обмотку однофазного электродвигателя?
Схема его проверки выглядит следующим образом:
- Включите прибор на единицы Ом и измерьте попарно сопротивление ламелей коллектора.
- Затем измерьте сопротивление между корпусом якоря и коллектором.
- Проверьте обмотки статора.
- Измерьте сопротивление между корпусом и выводами статора.
Как выбрать конденсатор для однофазного двигателя?
Есть и более простой подход к выбору емкости рабочего конденсатора — на каждые 100 ватт мощности двигателя в соединении «звезда» принимается 7 мкф емкости конденсатора. Если же соединение «треугольник», то емкость на 100 ватт будет 12 мкф.
Как определить рабочую и пусковую обмотку однофазного двигателя?
Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше. Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром.
Как найти начало и конец обмотки однофазного двигателя?
Чтобы отметить конец и начало для каждой обмотки, потребуется:
- Соединить выводы 2 обмоток.
- Замерить напряжение на третьей обмотке с помощью вольтметра (также можно применить контрольную лампу).
- Если показатели напряжения нулевые, значит 2 обмотки были соединены встречно.
Как проверить электродвигатель с конденсатором?
Конденсатор тоже проверяют с помощью омметра. Щупами следует коснуться выводов конденсатора, а уровень сопротивления должен сначала быть небольшим, а затем постепенно увеличиваться по мере зарядки конденсатором напряжением от батареек.
Как проверить пусковой конденсатор стиральной машины?
Как проверить пусковой конденсатор
- Снять пусковой конденсатор. …
- Проверьте конденсатор на выпуклости и следы жидкости. …
- Используйте аналоговый или цифровой вольтметр . …
- Возьмите два шупа с измерительными проводами вольтметра. …
- Проверьте емкость конденсатора.
Как проверить работает ли электродвигатель?
Чтобы правильно проверить работоспособность этих двигателей при помощи мультиметра, нужно действовать в следующем порядке:
- Включить тестер на Ом и попарно замерить сопротивление коллекторных ламелей. …
- Измерить показатель сопротивления, приложив один щуп прибора к корпусу якоря, а другой – к коллектору.
Как проверить работает ли мотор пылесоса?
Для того чтобы найти сопротивление обмотки двигателя пылесоса нужно измерить показатель между соседними ламелями и он должен быть одинаковым. В этом случае сопротивление полоски исчезающее мало, для измерения используется двумя приборами, амперметром и вольтметром. Оба они работают в мультиметре.
Как проверить тестером электродвигатель?
Прозвонка электродвигателя мультиметром Для измерения сопротивления обмотки мультиметр переводится в режим омметра, его щупы соединяются с парой выводов. Предел измерения — 200 Ом или меньше. Необходимо последовательно прозвонить сопротивления всех трех обмоток. Полярность омметра в данном случае роли не играет.
Как определить межвитковое замыкание в электродвигателе?
Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание.
Как определить неисправность статора?
Внутрь статора вбрасываем шарик и наблюдаем за его поведением. Если он «прилип» к одной из обмоток – это значит, на ней произошло межвитковое замыкание. Шарик крутится по кругу – статор исправен.
Как можно проверить межвитковое замыкание в генераторе автомобиля?
Мультиметром в режиме измерения сопротивлений прозвоните обмотку возбуждения (на роторе). Сопротивление исправной обмотки на генераторах лифан должно быть в пределах 2,7 -3,1 Ом. Если сопротивление не показывает совсем, то в обмотке обрыв. Если сопротивление ниже положенного, то скорее всего межвитковое замыкание.
Как определить межвитковое замыкание в трансформаторе?
Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.
Как определить межвитковое замыкание в катушке?
Межвитковое замыкание в катушке обмотки возбуждения определяют измерением сопротивления катушки возбуждения при помощи омметра, имеющегося на стендах Э211, 532-2М, 532-М и др., отдельного переносного омметра (см. рис. 14, в), или по показаниям амперметра и вольтметра при питании обмотки от аккумуляторной батареи (см.
Как проверить статор генератора?
Прижимаем щупы мультиметра в режиме омметра к выводам обмотки статора. Если «обрыва» нет, прибор покажет сопротивление в пределах 10 Ом. Если присутствует «обрыв» в обмотках статора, то есть ток по ним не проходит, то сопротивление стремится к бесконечности. Проверяем таким образом поочередно все три вывода.
Как проверить якорь генератора тестером?
Процесс проверки якоря генератора При проверке нужно пользоваться тестером либо контрольной лампочкой. Ее подключают в обычную промышленную сеть переменного тока напряжением 220 В. Один провод от контрольной лампочки присоединяют к валу якоря, а вторым по очереди притрагиваются к пластинам коллектора.
Как проверить сопротивление генератора?
Сопротивление обмотки статора проверяется без диодного моста и меж выводами должно быть около 0,2 Ом, а помеж нулевым проводом и обмоткой до 0,3. Сильное гудение генератора во время работы говорит о замыкании обмотки статора или моста. Кроме такой проверки нужно осмотреть наличие выработок в статоре и на роторе.
Как проверить работоспособность якоря электродвигателя?
Проверка проходит поэтапно:
- Прозвоните попарные выводы обмоток статора к ламелям. …
- Проверьте сопротивление между корпусом якоря и ламелями – в идеале оно стремится к бесконечности.
- Прозвоните выводы, чтобы проверить целостность обмотки.
- Проверьте состояние цепи между выводами якорной обмотки и корпусом статора.
Как проверить якорь от пылесоса?
Проверяем якорь мультиметром Мультиметр необходимо поставить в диапазон 200 ОМ, а щупами прибора касаетесь двух соседних ламелек. Проводим замеры на всех витках обмотки, если все показания одинаковы, то якорь исправен. Если на каком-то витке значения сопротивления отличаются, значит, тут присутствует неисправность.
Подключение однофазного двигателя: схемы, проверка, видео
Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.
Содержание статьи
- 1 Асинхронный или коллекторный: как отличить
- 1.1 Как устроены коллекторные движки
- 1.2 Асинхронные
- 2 Схемы подключения однофазных асинхронных двигателей
- 2.1 С пусковой обмоткой
- 2.2 Конденсаторный
- 2.2.1 Схема с двумя конденсаторами
- 2.2.2 Подбор конденсаторов
- 2.2.3 Изменение направления движения мотора
Асинхронный или коллекторный: как отличить
Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.
Так выглядит новый однофазный конденсаторный двигатель
Как устроены коллекторные движки
Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.
Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.
Строение коллекторного двигателя
Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.
Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.
Асинхронные
Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.
Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.
Строение асинхронного двигателя
Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Как все может выглядеть на практикеОднофазные промышленные двигатели
— как они работают?
Что бы мы были без электродвигателя?
Эти машины дали нам все, от освещения и охлаждения до сверхбыстрых электромобилей, и все это путем преобразования электроэнергии в механическое движение. Существует много типов электродвигателей, но двигатель переменного тока остается обычным явлением в промышленности благодаря своей элегантности и проверенной временем производительности. Эти двигатели используют переменный ток и физику электромагнетизма для создания мощности вращения и бывают разных типов в зависимости от области применения. В этой статье будут рассмотрены однофазные промышленные двигатели, которые являются опорой современного мира и обеспечивают питание многих полезных инструментов. Этот двигатель, его принципы работы и его характеристики будут обсуждаться, чтобы помочь разработчикам понять преимущества однофазных двигателей, а также когда их использовать.
Что такое однофазные двигатели?
Однофазные двигатели представляют собой двигатель переменного тока, в котором используются электромагнитные принципы для создания полезной энергии вращения. Они работают почти так же, как работают двигатели с короткозамкнутым ротором, фазным ротором и другими многофазными двигателями, за исключением того, что они несколько упрощены (дополнительную информацию об этих двигателях можно найти в наших статьях о двигателях с короткозамкнутым ротором, фазным ротором и асинхронных двигателях). «Однофазный» относится только к входной мощности, поэтому существует много типов двигателей, использующих однофазные входы. Они обычно встречаются в асинхронных двигателях, но также могут быть синхронными. Однофазные двигатели содержат как статор, так и роторы, как и большинство электродвигателей, но они используют только одну обмотку в своем статоре, которая пропускает только один переменный ток, а их роторы, как правило, более простые, чем роторы других конструкций. Им также требуется стартер, так как использование только одной фазы входной мощности обеспечивает нулевой пусковой момент в состоянии покоя.
Как работают однофазные двигатели?
В однофазных двигателях используются как статоры, так и роторы, как и в других двигателях переменного тока, хотя они работают по-разному. В трехфазных двигателях 120-градусное разделение фаз между тремя переменными токами, протекающими через обмотки статора, создает вращающееся магнитное поле; однако магнитное поле, созданное только одной фазой, «пульсирует» между двумя полюсами двигателя, поскольку существует только один переменный ток, создающий два возможных состояния магнитного поля (переменный ток имеет два синусоидальных пика, где магнитные поля будут равными, но противоположными). в ориентации или «вверх-вниз»). Это аппроксимирует вращающееся поле, но не полностью. Этим двигателям необходимо дать начальный «толчок» или почувствовать силу «в противофазе» с фазой статора, чтобы произошло начальное движение ротора. Неподвижный ротор не почувствует никаких эффектов от этого пульсирующего магнитного поля «вверх-вниз», если он еще не движется, поскольку магнитные силы вверх-вниз полностью компенсируют друг друга. Пускатели двигателей решают эту проблему, добавляя противофазное воздействие (вспомогательные обмотки, конденсаторы и т. д.), которое затем создает смоделированное вращающееся магнитное поле для запуска двигателя. Более подробную информацию об этих пускателях можно найти в нашей статье о пускателях двигателей.
Типы однофазных двигателей
Однофазный двигатель относится только к типу используемого источника питания, а не к конкретной схеме статор-ротор-стартер. Многие характеристики других двигателей переменного тока применимы при выборе однофазного двигателя, и их можно найти в наших статьях об асинхронных двигателях и двигателях переменного тока. В этой статье будут указаны различные типы однофазных двигателей, чтобы можно было применить общие принципы к этим конкретным конструкциям.
Двигатели с расщепленной фазой
Двигатели с расщепленной фазой имеют вспомогательную обмотку вне катушки статора, чтобы обеспечить начальную разность фаз, необходимую для вращения. В обмотке стартера используется провод меньшего диаметра и меньше витков, чем в обмотке статора, что придает ей большее сопротивление. Оно будет не в фазе с основным магнитным полем, потому что повышенное сопротивление изменяет фазу питания. Эта двухфазная обмотка даст начальный толчок для запуска вращения, а основная обмотка будет поддерживать работу двигателя. Затем пусковая обмотка должна быть отключена (обычно с помощью центробежного выключателя на выходном валу), как только двигатель достигнет определенного процента от полной скорости (около 75% от номинальной скорости). Повышение сопротивления пусковой обмотки также увеличивает риск перегорания катушки, поэтому эти выключатели необходимы для правильной и надежной работы двухфазных двигателей.
Конденсаторный пуск и конденсаторный пуск-двигатели с рабочим конденсатором
В этих типах однофазных двигателей конденсаторы рядом со вспомогательной обмоткой обеспечивают разность фаз, необходимую для начала вращения в этих двигателях. Они похожи на двигатели с расщепленной фазой, но используют емкость вместо сопротивления для смещения фазы стартера. В двигателях с конденсаторным пуском центробежный переключатель отключает пусковой конденсатор, когда двигатель достигает определенной скорости (около 75-80% от полной скорости). Конденсаторные двигатели с пусковым конденсатором используют два конденсатора (пусковой конденсатор и рабочий конденсатор), где ток, протекающий через пусковой конденсатор, опережает приложенное напряжение и вызывает фазовый сдвиг. Затем пусковой конденсатор ускоряет запуск двигателя, а рабочий конденсатор переключается, когда двигатель достигает номинальной скорости.
Двигатели с постоянно разделенными конденсаторами
В двигателях с разделенными постоянными конденсаторами используется постоянный конденсатор, включенный последовательно с пусковой обмоткой, без центробежного выключателя. Конденсатор постоянно используется при работающем двигателе, а это означает, что он не может обеспечить усиление, которое дает пусковой конденсатор, обычный в двух предыдущих конструкциях. Однако эти двигатели выигрывают от того, что им не нужен пусковой механизм (переключатель, кнопка и т. Д.), Поскольку рабочий конденсатор, включенный последовательно со вспомогательной обмоткой, пассивно изменяет фазу однофазного входа. Двигатели с постоянным конденсатором также являются реверсивными и, как правило, более надежны, чем другие однофазные двигатели.
Двигатели с экранированными полюсами
Этот тип однофазного двигателя не использует никаких обмоток или пускателей для запуска двигателя. Вместо этого в этом двигателе используется конфигурация, показанная на рис. 1 ниже:
.
Рис. 1: Расположение двигателя с экранированными полюсами. Обратите внимание, что заштрихованные катушки являются просто продолжением основной обмотки статора.
Этот двигатель более прост, чем другие однофазные двигатели, так как он не требует дополнительных пусковых цепей или переключателей. Корпус двигателя с С-образным сердечником изготовлен из магнитопроводящего материала (обычно из железа), который передает пульсирующее магнитное поле от основной обмотки статора к ротору. Полюса этого двигателя разделены на две неравные половины, где два «затеняющих» полюса создаются путем удлинения основной обмотки статора до меньших обмоток на одной из этих половин (показано выше). Когда однофазный переменный ток входит в С-сердечник, он «затеняет» намотанные половины, заставляя магнитное поле отставать от затененной части (затеняющая катушка создает противоположное магнитное поле, замедляя магнитный поток). Это вызывает неравномерное распределение индуктивных сил по ротору и заставляет его вращаться.
Применение и критерии выбора
В некоторых случаях требуются специальные однофазные двигатели. Таблица 1 качественно показывает рабочие характеристики каждого типа двигателя.
Таблица 1: Качественная сводка рабочих характеристик каждого типа однофазного двигателя.
| Пусковой момент | Эффективность | Надежность | Стоимость |
Двухфазный двигатель | Низкий | Низкий | Низкий | Низкий |
Конденсатор-пуск | Средний | Средний | Высокий | Средний |
Постоянно делящийся конденсатор | Низкий | Высокий | Высокий | Средний |
Конденсатор пуск-пуск конденсатора | Высокий | Высокий | Высокий | Высокий |
Затененный столб | Низкий | Низкий | Низкий | Низкий |
Двигатели с расщепленной фазой
имеют относительно простую конструкцию, что снижает их стоимость и производительность. Однако они имеют низкий пусковой момент и склонны к перегреву из-за резистивного характера их пускового механизма. Применения с низким крутящим моментом, такие как ручные шлифовальные машины, небольшие вентиляторы и другие устройства с дробной мощностью, лучше всего подходят для двигателей с расщепленной фазой. Не используйте этот двигатель, если требуется высокий крутящий момент или высокая частота циклов; двигатели с расщепленной фазой почти наверняка сгорят при таком использовании.
Двигатели с конденсаторным пуском
имеют улучшенный пусковой момент по сравнению с двигателями с расщепленной фазой и могут выдерживать высокие частоты циклов. В результате они более широко применимы и являются опорой в промышленных двигателях общего назначения. К ним относятся конвейеры с ременным приводом, большие воздуходувки и редукторы, а также многие другие. Их основным недостатком является их стоимость, поскольку они дороже, чем двигатели с расщепленной фазой.
Двигатели с постоянно разделенными конденсаторами, обладая низким пусковым крутящим моментом, могут хорошо работать при высокой частоте циклов и обладают превосходным КПД и надежностью. Они реверсивны благодаря отсутствию пускового механизма и могут регулировать скорость. Их единственный существенный недостаток заключается в том, что они не могут работать с высоким крутящим моментом, но в остальном являются надежными, высокоэффективными машинами, отлично подходящими для гаражных ворот, открывателей ворот или любых устройств с низким крутящим моментом, требующих мгновенного реверса.
Двигатели с конденсаторным пуском и конденсаторным пуском сочетают в себе преимущества двигателей с постоянным конденсатором и конденсаторного пуска при удвоенной стоимости. Они могут питать устройства, которые слишком сложны для других однофазных двигателей, таких как воздушные компрессоры, насосы высокого давления, вакуумные насосы, устройства мощностью 1-10 л.с. и т. д., используя их высокий пусковой момент. Они эффективны при полном токе нагрузки и надежны благодаря своей упрощенной конструкции. Если приоритетными являются мощность, надежность и эффективность, а стоимость менее важна, рассмотрите этот тип однофазного двигателя.
Двигатели с экранированными полюсами часто считаются «одноразовыми» электродвигателями, поскольку их просто производить и дешевле заменить, чем ремонтировать. Их крутящий момент, эффективность и надежность далеки от того, чего могут достичь другие однофазные двигатели, но они недороги и хорошо работают в приложениях с малой мощностью. К ним относятся бытовые применения, такие как вентиляторы для ванных комнат, фены, электрические часы, игрушки и т. д. Если для проекта требуется лишь незначительная мощность, а цена имеет первостепенное значение, двигатель с экранированными полюсами будет работать нормально.
Резюме
В этой статье представлено понимание того, что такое однофазные промышленные двигатели и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть сведения о конкретных продуктах.
Источники:
- https://geosci.uchicago.edu
- http://hyperphysics.phy-astr.gsu.edu/hbase/magnet/indmot.html
- http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
- https://people.ucalgary.ca
- https://faculty.up.edu/lulay/me401/fetchpdf.cgi.pdf
- https://www.electrical4u.com/types-of-однофазный-индукционный-мотор/
Другие товары для двигателей
- Все о бесщеточных двигателях постоянного тока: что это такое и как они работают
- Все о двигателях с постоянными магнитами — что это такое и как они работают
- Все о двигателях постоянного тока с обмоткой серии — что это такое и как они работают
- Все о шунтирующих двигателях постоянного тока: что это такое и как они работают
- Все о шаговых двигателях — что это такое и как они работают
- и серводвигатели — в чем разница?
- Все о контроллерах двигателей переменного тока — что это такое и как они работают
- и асинхронные двигатели — в чем разница?
- и щеточные двигатели — в чем разница?
- Кто изобрел паровой двигатель? Урок промышленной истории
- Все о двигателях с электронным управлением: что это такое и как они работают
- и серводвигатели — в чем разница?
- и двигатели постоянного тока — в чем разница?
- Все о контроллерах серводвигателей — что это такое и как они работают
- Что такое трехфазный двигатель и как он работает?
- ECM Motors и PSC Motors — в чем разница?
- Все о устройствах плавного пуска двигателей: что это такое и как они работают
- Все о контроллерах двигателей постоянного тока — что это такое и как они работают
- Основы тестирования двигателя (и ротора)
- Что такое штамповка двигателя и как это работает?
- Все о двигателях с дробной мощностью
Шаговые двигатели
Синхронные двигатели
Бесщеточные двигатели
Двигатели постоянного тока
Шаговые двигатели
Больше из Машины, инструменты и расходные материалы
Машины, инструменты и расходные материалы
Машины, инструменты и расходные материалы
Машины, инструменты и расходные материалы
Машины, инструменты и расходные материалы
Машины, инструменты и расходные материалы
Машины, инструменты и расходные материалы
Основы двигателя
| Weg-cm
Расщепленная фаза общего назначения
Характеристики
Двигатель с расщепленной фазой наиболее широко используется для однофазных двигателей мощностью 1 л. . Двигатель с расщепленной фазой имеет пусковую и рабочую обмотки. Обе обмотки находятся под напряжением при запуске двигателя. Когда двигатель достигает примерно 75% своей номинальной скорости при полной нагрузке, пусковая обмотка отключается от цепи автоматическим выключателем.
Области применения
Обычное применение двигателей с расщепленной фазой включает: вентиляторы, воздуходувки, насосы, офисные машины и инструменты, такие как небольшие пилы или сверлильные станки, где нагрузка прилагается после того, как двигатель набрал свою рабочую скорость.
Конденсаторный пуск общего назначения
Характеристики
Асинхронный двигатель с конденсаторным пуском наиболее широко используется для двигателей с двойным номинальным напряжением, мощностью 2 л. Асинхронный двигатель с конденсаторным пуском имеет рабочую обмотку и пусковую обмотку с последовательно включенным конденсатором. Обе обмотки находятся под напряжением при запуске двигателя. Когда двигатель достигает примерно 75% своей номинальной скорости при полной нагрузке, пусковая обмотка и пусковой конденсатор отключаются от цепи автоматическим выключателем.
Применение
Обладает хорошим КПД и требует пускового тока, примерно в пять раз превышающего ток полной нагрузки. Общие области применения включают: компрессоры, насосы, станки, кондиционеры, конвейеры и другие устройства, которые трудно запустить.
PSC общего назначения
Характеристики
Двигатель с постоянными конденсаторами с разделенными конденсаторами (PSC) компактен, прост в обслуживании, обладает высокой эффективностью и высоким коэффициентом мощности. Электродвигатель с постоянным раздельным конденсатором наиболее широко используется для двигателей мощностью 2 л.с. или менее и для приложений, где требования к пусковому моменту составляют 100 % или менее от полной нагрузки. Двигатель с постоянным раздельным конденсатором обеспечивает плавное ускорение и имеет рабочую обмотку и пусковую обмотку с последовательно соединенным конденсатором. Обе обмотки находятся под напряжением, когда двигатель запускается и работает. Для выключения какого-либо компонента из цепи не требуется никакого переключателя.
Области применения
Основным преимуществом двигателя PSC является возможность работы на различных скоростях за счет более высоких уровней скольжения. К специальным областям применения относятся: вентиляторы и воздуходувки, кондиционеры, охладители, печи, тепловентиляторы, крышные вентиляторы, осушители, устройства открывания гаражных ворот и другие устройства, требующие низкого пускового момента и силы тока.
Типовая многофазная конструкция
Характеристики
Трехфазный двигатель имеет превосходные характеристики пускового момента, однако требования к нормальной пусковой цепи ниже, чем у однофазных двигателей. Трехфазный двигатель может развивать крутящий момент с заблокированным ротором до 400% крутящего момента при полной нагрузке. Высокий пусковой крутящий момент и способность достигать высокого КПД позволяют двигателю приводить в действие практически любое оборудование, где необходимо плавно и быстро вывести нагрузку из состояния покоя на рабочую скорость.