Как запитать светодиод от 220: Страница не найдена – Светодиодное освещение

Содержание

Как подключить светодиод к 220В: резистор, конденсатор, способы подключения

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Содержание

  1. Технические особенности диода
  2. Полюса светодиода
  3. Способы подключения
  4. Шунтирование светодиода обычным диодом (встречно-параллельное подключение)
  5. Ограничение с помощью конденсатора
  6. Нюансы подключения к сети 220 Вольт
  7. Схема лед драйвера на 220 вольт
  8. Вариант драйвера без стабилизатора тока
  9. Безопасность при подключении

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Полярность светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Установка дополнительного резистора гасит излишки мощности электричества

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Встречно-параллельное подключение

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Использование накопительного конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

Схема подключения светодиода к сети 220В

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

Не следует устанавливать в цепь диодов полярные конденсаторы

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Как подключить светодиод к сети 220в : схема включения


На чтение 9 мин Просмотров 917 Опубликовано
Обновлено

Содержание

  1. Способы подключения
  2. Подключение с помощью резистора
  3. Последовательное подключение диода с высоким обратным напряжением (400 В и более)
  4. Шунтирование светодиода обычным диодом
  5. Встречно-параллельное подключение двух светодиодов
  6. С помощью конденсатора
  7. Пример включения светодиода в выключатель света
  8. Техника безопасности

Светодиоды в качестве источников света получили широкое распространение. Но они рассчитаны на низкое напряжение питания, а зачастую возникает необходимость включить светодиод в бытовую сеть 220 вольт. При небольших познаниях в электротехнике и умении выполнять несложные расчеты это возможно.

Способы подключения

Стандартные условия работы большинства светодиодов – напряжение 1,5-3,5 В и ток 10-30 мА. При пряом включении прибора в бытовую электросеть время его жизни составит десятые доли секунды. Все проблемы подключения светодиодов в сеть повышенного, по сравнению со штатным рабочим, напряжения, сводятся к тому, чтобы погасить излишек напряжения и ограничить ток, протекающий через светоизлучающий элемент. С этой задачей справляются драйверы – электронные схемы, но они достаточно сложны и состоят из большого числа компонентов. Их применение имеет смысл при питании светодиодной матрицы со множеством светодиодов. Для подключения одного элемента есть более простые пути.

Подключение с помощью резистора

Самый очевидный способ – подключить последовательно со светодиодом резистор. На нем упадет лишнее напряжение, и он ограничит ток.

Схема включения светодиода с балластным резистором.

Расчет этого резистора ведется в такой последовательности:

  1. Пусть имеется светодиод с номинальным током 20 мА и падением напряжения 3 В (фактические параметры надо посмотреть в справочнике). За рабочий ток лучше принять 80% от номинала – LED в облегченных условиях проживет дольше. Iраб=0,8 Iном=16 мА.
  2. На добавочном сопротивлении упадет напряжение питающей сети за вычетом падения напряжения на светодиоде. Uраб=310-3=307 В. Очевидно, что практически все напряжение будет на резисторе.
  1. Значение добавочного сопротивления находится по закону Ома: R=Uраб/ Iраб. Так как ток выбран в миллиамперах, то сопротивление будет в килоомах: R=307/16= 19,1875. Ближайшее значение из стандартного ряда – 20 кОм.
  2. Чтобы найти мощность резистора по формуле P=UI, надо рабочий ток умножить на падение напряжения на гасящем сопротивлении. При номинале в 20 кОм средний ток будет составлять 220 В/20 кОм=11 мА (здесь можно учитывать действующее напряжение!), и мощность составит 220В*11мА=2420 мВт или 2,42 Вт. Из стандартного ряда можно выбрать резистор мощностью 3 Вт.

Резистор мощностью 3 Вт.

Так можно подключать цепочку из последовательно соединенных светодиодов. При расчетах надо умножить падение напряжения на одном элементе на их общее количество.

Последовательное подключение диода с высоким обратным напряжением (400 В и более)

У описанного способа есть существенный недостаток. Светодиод, как любой прибор на основе p-n перехода, пропускает ток (и светится) при прямой полуволне переменного тока. При обратной полуволне он заперт. Его сопротивление велико, намного выше балластного сопротивления. И сетевое напряжение амплитудой 310 В, приложенное к цепочке, упадет большей частью на светодиоде. А он не рассчитан на работу в качестве высоковольтного выпрямителя, и может довольно скоро выйти из строя. Для борьбы с этим явлением часто рекомендуют последовательно включать дополнительный диод, выдерживающий обратное напряжение.

Схема включения с дополнительным диодом.

На самом деле при таком включении приложенное обратное напряжение разделится примерно пополам между диодами, и LED будет чуть легче при падении на нем около 150 В или немного меньше, но судьба его будет все равно печальной.

Шунтирование светодиода обычным диодом

Намного более эффективна такая схема включения:

Схема с дополнительным диодом.

Здесь светоизлучающий элемент включен встречно и параллельно дополнительному диоду. При отрицательной полуволне дополнительный диод откроется, и все напряжение окажется приложенным к резистору. Если расчет, проведенный ранее, был верным, то сопротивление не будет перегреваться.

Встречно-параллельное подключение двух светодиодов

При изучении предыдущей схемы не может не прийти мысль – зачем использовать бесполезный диод, когда его можно заменить таким же светоизлучателем? Это верное рассуждение. И логически схема перерождается в следующий вариант:

Схема с дополнительным светодиодом.

Здесь в качестве защитного элемента использован такой же светодиод. Он защищает первый элемент при обратной полуволне и при этом излучает. При прямой полуволне синусоиды светодиоды меняются ролями. Плюсом схемы является полное использование возможностей источника питания. Вместо одиночных элементов можно включать цепочки светодиодов в прямом и обратном направлениях. Для расчета можно использовать тот же принцип, но падение напряжения на светодиодах умножается на их количество, установленное в одном направлении.

С помощью конденсатора

Вместо резистора можно применить конденсатор. В цепи переменного тока он ведет себя в определенной мере как резистор. Его сопротивление зависит от частоты, но в бытовой сети этот параметр неизменен. Для расчета можно взять формулу Х=1/(2*3,14*f*C), где:

  • X – реактивное сопротивление конденсатора;
  • f – частота в герцах, в рассматриваемом случае равна 50;
  • С – емкость конденсатора в фарадах, для пересчета в мкФ использовать коэффициент 10-6.

На практике используют формулу:

С=4,45*Iраб/(U-Uд), где:

  • С – необходимая емкость в мкФ;
  • Iраб — рабочий ток светодиода;
  • U-Uд — разница между напряжением питания и падением напряжения на светоизлучающем элементе – имеет практическое значение при применении цепочки светодиодов. При использовании одного светодиода можно с достаточной точностью принять значение U равным 310 В.

Применять конденсаторы можно с рабочим напряжением не менее 400 В. Расчетные значения для токов, характерных для подобных схем, приведены в таблице:

Рабочий ток, мА10152025
Емкость балластного конденсатора, мкФ0,1440,2150,2870,359

Получившиеся значения достаточно далеки от стандартного ряда емкостей. Так, для тока 20 мА отклонение от номинала 0,25 мкФ составит 13%, а от 0,33 мкФ – 14%. Резистор можно подобрать гораздо точнее. Это является первым недостатком схемы. Второй уже упоминался – конденсаторы на 400 и выше В имеют довольно крупные размеры. И это еще не все. При использовании балластной емкости схема обрастает дополнительными элементами:

Схема включения с балластным конденсатором.

Сопротивление R1 устанавливается в целях безопасности. Если схему запитать от 220 В, а потом отключить от сети, то конденсатор не разрядится – без этого резистора цепь разрядного тока будет отсутствовать. При случайном касании выводов емкости легко получить поражение электрическим током. Сопротивление этого резистора можно выбрать в несколько сотен килоом, в рабочем состоянии он зашунтирован емкостью и на работу схемы не влияет.

Резистор R2 нужен для ограничения броска зарядного тока конденсатора. Пока емкость не заряжена, она не будет служить ограничителем тока, и за это время светодиод может успеть выйти из строя. Здесь надо выбрать номинал в несколько десятков Ом, на работу схемы он также не будет иметь влияния, хотя его можно учесть при расчете.

Пример включения светодиода в выключатель света

Один из распространенных примеров практического использования светодиода в цепи 220 В – индикация выключенного состояния бытового выключателя и облегчения поиска его местоположения в темноте. Светодиод здесь работает при токе около 1 мА – свечение будет неярким, но заметным в темноте.

Схема индикации состояния выключателя.

Здесь лампа служит дополнительным ограничителем тока при разомкнутом положении выключателя, и возьмет на себя небольшую долю обратного напряжения. Но основная часть обратного напряжения приложена к резистору, поэтому светодиод здесь относительно защищен.

Техника безопасности

Технику безопасности при работе в действующих установках регламентируют Правила охраны труда при эксплуатации электроустановок. На домашнюю мастерскую они не распространяются, но их основные принципы при подключении светодиода к сети 220 В надо учесть. Главное правило безопасности при работе с любой электроустановкой – все работы надо выполнять при снятом напряжении, исключив ошибочное или непроизвольное, несанкционированное включение. После отключения выключателя отсутствие напряжения надо проверить тестером. Все остальное – применение диэлектрических перчаток, ковриков, наложение временных заземлений и т.п. трудновыполнимо в домашних условиях, но надо помнить, что мер безопасности мало не бывает.

ac — светодиод привода на 220 В переменного тока

спросил

Изменено
6 лет, 1 месяц назад

Просмотрено
4к раз

\$\начало группы\$

Я хочу зажечь светодиод на 220 В переменного тока, используя минимум компонентов. На ум приходят эти две схемы:

R1, R2 будет около 200K — 300K в зависимости от необходимой яркости. Не требуется большой яркости, поэтому я могу увеличить яркость, если смогу получить некоторое количество света от светодиода.

Какой из них (если есть) подойдет?

(Меня не очень беспокоит эффективность, так как они будут использоваться в качестве индикаторов при включении мощного устройства. Например, гейзер. Для этого эта схема будет подключена параллельно с гейзером. Если я использую 200K резистор, я буду использовать около 0,25 Вт, что будет незначительно по сравнению с 1000 Вт, потребляемыми основным устройством.)

\$\конечная группа\$

3

\$\начало группы\$

Оба плохи с точки зрения эффективности, но второй играет с огнем. Если D12 имеет ток утечки, который сравним или выше, чем D11, D11 упадет наполовину или больше сетевого напряжения и, вероятно, выйдет из строя.

Если вы действительно настаиваете на использовании второй схемы (поскольку она имеет более высокий КПД и позволяет использовать меньший резистор), поставьте в нее оба диода:

смоделируйте эту схему – Схема создана с помощью CircuitLab

РЕДАКТИРОВАТЬ:

Теперь, когда я задумался, на ум приходит другая схема, если вам подходит небольшой конденсатор:

смоделируйте эту схему

Этот добавляет некоторую емкостную нагрузку к вашей сети, но сам не рассеивает значительную мощность, поэтому технически он более энергоэффективен. Обратите внимание, что у FakeMoustache есть лучшая версия этой схемы в его ответе 9.0050, у меня больше концепт. Тот резистор, который у него есть, в длительной работе не нужен, но он защищает цепь от пускового тока при запуске.

\$\конечная группа\$

5

\$\начало группы\$

Вместо того, чтобы использовать резистор для снижения большей части напряжения, вы можете использовать конденсатор с правильным номиналом .

Если вы используете это в устройстве с сетевой вилкой, добавьте резистор 1 МОм параллельно конденсатору, чтобы он разряжался после использования!

Вы можете использовать высокоэффективный светодиод, чтобы он потреблял меньше тока, тогда вы можете уменьшить емкость конденсатора, например, до 100 нФ.

\$\конечная группа\$

7

\$\начало группы\$

Одна из возможностей — просто купить светодиодный индикатор для монтажа на панели, рассчитанный на входное напряжение 230 В переменного тока, который будет поставляться с проводами из пластиковой линзы и множеством маркировок, подтверждающих безопасность, которые могут помочь с одобрением вашего оборудования (поскольку для отдельных светодиодов потребуется дополнительная изоляция). для безопасности). Ожидайте, что что-то вроде вашего № 2 будет внутри.

Другой вариант — купить специальный двухцветный светодиод, оба светодиода одного цвета, и просто использовать последовательный резистор. Их не так просто найти, поэтому я бы предпочел избегать этого варианта.

Все полуволновые варианты мерцают, даже при 60 Гц, но гораздо хуже при питании от 50 Гц, как дешевые рождественские светодиодные наборы. Минимальное количество компонентов, которое является очень безопасным и полноволновым, таково:

смоделируйте эту схему — схема создана с помощью CircuitLab

К мосту предъявляются очень нестрогие требования — самое низкое напряжение и самый низкий ток, которые вы можете купить, скорее всего, будут в порядке — например, серия < 10 центов DA4X — он видит только обратное напряжение в несколько вольт, а ток ограничен резистором R1 до нескольких вольт. мА обычно. R1 должен быть взрывозащищенного типа, но он менее вероятно воспламенится, чем цепь капельницы конденсатора, где крышка может закоротиться, а светодиод должен иметь линзу или другую дополнительную изоляцию.

\$\конечная группа\$

Светодиоды, работающие от сети переменного тока

Светодиоды обычно считаются устройствами постоянного тока, работающими от нескольких вольт постоянного тока. В маломощных приложениях с небольшим количеством светодиодов это вполне приемлемый подход, например, в мобильных телефонах, где питание подается от батареи постоянного тока.

Устройство C3LED на уровне чипа

Но другие варианты применения, например, система линейного освещения на 100 м снаружи здания, требуют других соображений. Привод постоянного тока страдает от потерь на расстоянии, что требует использования более высокого напряжения привода в начале, а также дополнительных регуляторов, которые тратят энергию впустую.

Напротив, переменный ток лучше работает на расстоянии, поэтому этот метод используется для подачи электроэнергии в дома и на предприятия по всему миру. Переменный ток позволяет очень просто использовать трансформаторы для понижения напряжения до 240 В или 120 В переменного тока с киловольт, используемых в линиях электропередач, но это гораздо более проблематично с постоянным током.

Для работы светильника на основе светодиодов от сети (например, 120 В переменного тока) требуется, чтобы электроника между источником питания и самими устройствами обеспечивала постоянное напряжение (например, 12 В постоянного тока), способное управлять несколькими светодиодами.

Новый подход заключается в разработке светодиодов переменного тока, которые могут работать напрямую от источника переменного тока. Это дает несколько преимуществ, как объясняет Боб Коттриш из Lynk Labs, одной из компаний, занимающих передовые позиции в этом подходе: «С переменным током мощность передается и используется намного эффективнее», — говорит он. «Если вы можете поместить светодиоды прямо на конце, не используя сложную электронику для преобразования переменного тока обратно в постоянный, то вы получите двойное преимущество: вы эффективно справитесь с питанием в среде распределения и доставите это более эффективно без вмешательства в электронику».

Конечно, если вы также можете получить больше света при меньшем энергопотреблении, как утверждает Lynk Labs с их подходом AC-LED, то у вас еще больше положительных позиций.

Работа светодиодов от сети переменного тока

Существует несколько вариантов работы светодиодов от сети переменного тока. Многие автономные светодиодные светильники просто имеют трансформатор между настенной розеткой и светильником для обеспечения необходимого постоянного напряжения. Ряд компаний разработали светодиодные лампочки, которые ввинчиваются непосредственно в стандартные розетки, но они неизменно также содержат миниатюрную схему, которая преобразует переменный ток в постоянный перед подачей его на светодиоды.

Другой подход состоит в том, чтобы сконфигурировать светодиоды или включить их в мостовую схему постоянного тока. Хотя переменный ток подается на вход этой конфигурации мостовой схемы светодиодов, светодиоды по-прежнему питаются постоянным током, и этот подход требует большей мощности привода, чем «настоящая» конструкция AC-LED.

Устройство C3LED на уровне платы

Одной из ранних форм «настоящей» системы AC-LED, в которой устройства работают при прямом подключении к сети переменного тока, является «рождественская елка». легкий «подход». Здесь несколько светодиодов соединены последовательно, так что падение напряжения на всей цепочке равно напряжению питания.

Тем не менее, были предприняты попытки разработать «настоящие» AC-LED на уровне сборки или упакованного устройства. В авангарде этих разработок находятся Lynk Labs, Seoul Semiconductor и III-N Technology.

Технология, разработанная Seoul Semiconductor и отдельно компанией III-N Technology, использует подход «рождественской елки» на уровне кристалла. Светодиодное устройство переменного тока фактически состоит из двух цепочек последовательно соединенных кристаллов, соединенных в разных направлениях; одна струна горит в течение положительной половины цикла переменного тока, другая — во время отрицательной половины. Струны попеременно запитываются и обесточиваются на частоте 50/60 Гц источника питания переменного тока, поэтому светодиод всегда находится под напряжением. Технология, разработанная Seoul и III-N, специально относится к светодиодным устройствам, предназначенным для высоковольтной сети переменного тока с частотой 50/60 Гц.

Технология Lynk Labs

Lynk Labs, однако, разработала и запатентовала альтернативную технологию AC-LED как для высоковольтного, так и для низковольтного переменного тока. Lynk использует существующие светодиоды или кристаллы с различными запатентованными конструкциями драйверов, основанными на продукте AC-LED. Компания утверждает, что владеет самым широким портфелем патентов, касающихся устройств, сборок, драйверов и систем AC-LED. Кроме того, Lynk и Philips отдельно владеют фундаментальной интеллектуальной собственностью при управлении светодиодами с помощью высокочастотных драйверов инверторного типа.

В отличие от Seoul или III-N, подход Lynk Labs заключался в разработке технологии AC-LED, которая объединяет всего 2 кристалла или светодиода в одной сборке или корпусе, а также соответствующую технологию драйвера для конкретного AC-LED.

«Производители осветительных приборов заинтересованы в том, чтобы предлагать продукты светодиодного освещения, а не в том, чтобы стать экспертами в области электроники или полупроводников», — говорит Майк Мискин, генеральный директор Lynk Labs. «Подход, который выбрал Lynk, заключается в предоставлении комплексных решений plug-and-play для наших клиентов».

Технология AC-LED от Lynk Labs используется на обоих концах системы. Драйверы компании предназначены для подачи на AC-LED либо (а) постоянного напряжения, либо (б) постоянного напряжения и постоянной частоты. Устройство или сборка AC-LED предназначены для подключения к драйверу без необходимости каких-либо дополнительных инженерных работ, за исключением приспособления, предоставленного производителем светильника или конечным пользователем.

Доступны различные конструкции устройства или сборки AC-LED, однако все они основаны на использовании драйверов AC-LED, обеспечивающих либо постоянное напряжение, либо постоянное напряжение и постоянную частоту.

Драйверы переменного тока постоянного напряжения Lynk Labs позволяют управлять светодиодами по встречно-параллельной схеме на различных частотах в зависимости от применения. Здесь высокочастотный / низковольтный драйвер используется для управления устройством или сборкой AC-LED, которые соответствуют драйверу постоянного напряжения. В качестве альтернативы другие устройства и узлы предназначены для прямого подключения к сети или низковольтным трансформаторам, например, используемым в ландшафтном освещении.

Емкостные светодиоды управления током

В драйверах постоянного напряжения/частоты светодиод C 3 (светодиод емкостного контроля тока) емкостно связан с драйвером и управляется им. Конденсатор заменяет любые резистивные компоненты в системе, тем самым снижая тепловыделение и повышая эффективность.

Рис. 1a. Схема привода постоянного тока

По сравнению с использованием того же кристалла в схеме на основе резисторов, управляемой постоянным током, светодиодный подход C 3 может обеспечить более высокую яркость при той же мощности (или, альтернативно, использует более низкую мощность при той же яркости), в зависимости от устройства или Системный дизайн.

Стандартное светодиодное устройство обычно питается от источника постоянного тока, и в его простейшей форме схема драйвера включает резистор для обеспечения правильного падения напряжения на эмиттере ( рис. 1a ). Напротив, Lynk Lab C 3 Светодиодный подход использует четное количество светодиодов или кристаллов в цепи, которая также содержит конденсатор и подключена к источнику переменного тока ( рис. 1b ). Система разработана таким образом, что оба полупериода волны переменного тока используются эффективно.

Рис. 1b. Схема C3LED

эффективно) с конденсатором.

Майк Мискин объясняет роль конденсатора в цепи. «Подобно резистору в цепи постоянного тока, конденсатор снижает напряжение и подает необходимый ток на светодиоды в зависимости от напряжения и частоты, поступающих на конденсатор от источника переменного тока. Когда источник переменного тока, такой как сеть переменного тока или наш запатентованный Драйверы высокочастотных инверторов (технология BriteDriver от Lynk Labs) обеспечивают постоянное напряжение и постоянную частоту, конденсатор подает на светодиоды постоянный ток, а также изолирует светодиоды от других светодиодов в системе и от драйвера в случае отказа. происходить.»

Хотя для обоих вышеперечисленных устройств требуются разные напряжения и токи, они оба могут быть подключены к одному и тому же драйверу AC-LED или источнику питания без необходимости в дополнительной электронике или компонентах.

Такой подход к использованию светодиодов C 3 также улучшает терморегуляцию и эффективность за счет устранения резистивного компонента, необходимого в цепи постоянного тока.

Надежность системы

Существует также проблема дополнительной надежности.

Рисунок 2A — DC Drive до отказа
Рисунок 2B — DC Drive. , драйвер постоянного тока 24 В постоянного тока посылает 1,4 А через 4 параллельных ряда светодиодов по 350 мА на ряд. Если одна цепочка выходит из строя ( рис. 2b ), драйвер по-прежнему выдает 1,4 А, что теперь означает 467 мА на каждой из оставшихся 3 цепочек.

Figure 3a — C3LED before failure
Figure 3b — C3LED after failure

This over-current situation, which is clearly not desirable, можно избежать, используя технологию Lynk Labs AC-LED. В Рисунок 3a источник питания 12 В переменного тока обеспечивает 350 мА для каждой из четырех цепочек светодиодов C 3 , каждая из которых содержит 6 излучателей.

Как запитать светодиод от 220: Страница не найдена – Светодиодное освещение