Eng Ru
Отправить письмо

Материалы для заочников / Порядок расчета значений соотношения потребления активной и реактивной мощности (приказ № 49). Коэффициент реактивной мощности


Значения коэффициентов реактивной мощности, указываемые в договорах на оказание услуг по передаче электрической энергии

Технически необходимая степень КРМ в каждой точке сети определяется параметрами линий, соединяющих эту точку с источниками питания. Эти параметры индивидуальны для каждой точки и, следовательно, для каждого потребителя. Однако тарифы на электроэнергию не устанавливаются индивидуально для каждого потребителя, а дифференцируются только по четырем уровням напряжения питания: 110 кВ и выше, 35 кВ, 6-20 кВ и 0,4 кВ.

Дифференциация условий потребления (генерации) реактивной мощности для потребителей, присоединенных к сетям 110 кВ и ниже, в новом документе также осуществлена по четырем группам напряжений сетей, что представляется правильным. Так как затраты на производство и передачу реактивной энергии гораздо меньше аналогичных затрат, обусловленных активной энергией, способы выражения тарифов на реактивную энергию не могут быть «изощреннее» тарифов на активную энергию.

Значение коэффициента реактивной мощности в часы больших суточных нагрузок электрической сети (tg φ) установлены в зависимости от номинального напряжения сети, к которой подключен потребитель:

Напряжение сети, кВ……….   110(154)       35(60)        6-20         0,4

tg φ………………………………….        0,5             0,4               0,4          0,35

Данные значения указывают в договорах с потребителями электрической энергии, присоединенная мощность энергопринимающих устройств которых более 150 кВт (за исключением граждан-потребителей, использующих электрическую энергию для бытового потребления, и приравненных к ним в соответствии с нормативными правовыми актами в области государственного регулирования тарифов групп (категорий) потребителей (покупателей), в том числе многоквартирных домов, садоводческих, огороднических, дачных и прочих некоммерческих объединений граждан).

Значение коэффициента реактивной мощности, генерируемой в часы малых суточных нагрузок электрической сети, устанавливается равным нулю для всех случаев.

Сумма часов, составляющих периоды больших и малых суточных нагрузок, должна быть равна 24 часам и относиться ко всем суткам месяца, за исключением периодов привлечения потребителя к регулированию реактивной мощности. При определении в договоре временных интервалов больших и малых нагрузок необходимо руководствоваться фактическими параметрами режима электрической сети в конкретном энергоузле. Если иное не определено договором, часами больших нагрузок считается период с 7 ч 00 мин до 23 ч 00 мин, а часами малых нагрузок — с 23 ч 00 мин до 7 ч 00 мин местного времени. Временные интервалы, в течение которых потребитель привлекается к регулированию реактивной мощности в часы больших и малых нагрузок, могут быть меньше соответствующих периодов больших и малых суточных нагрузок и относиться только к установленным в договоре суткам месяца.

В случае участия потребителя по соглашению с сетевой организацией в регулировании реактивной мощности в часы больших и/или малых нагрузок электрической сети, в договоре энергоснабжения определяются также диапазоны значений коэффициентов реактивной мощности, устанавливаемые отдельно для часов больших (tg φб) и/или малых (tg φм) нагрузок электрической сети и применяемые в периоды участия потребителя в регулировании реактивной мощности.

При решении задачи установки КУ в сети потребителя суммарная мощность КУ является известной (равной разности между фактическим и заданным потреблением). Необходимо определить наилучший вариант размещения КУ в узлах внутренней сети предприятия с учетом специфики технологического процесса, возможностей установки КУ и желаемых режимов напряжения в узлах. При решении аналогичной задачи для сетевой организации кроме указанных факторов необходимо осуществить экспертную оценку возможных действий потребителя. Если предполагается, что потребитель (или группа потребителей, питающихся от узла) в течение длительного времени не произведет установку КУ в своих сетях, то установка КУ в узле сетевой организации экономически выгодна. В противном случае установленные КУ могут оказаться неиспользуемыми. В обеих задачах необходимо учитывать прогноз изменения реактивных нагрузок.

Для потребителей, присоединенных к сетям напряжением 220 кВ и выше, а также к сетям 110 кВ (154 кВ) в случаях, когда они оказывают существенное влияние на электроэнергетические режимы работы энергосистем, предельное значение коэффициента реактивной мощности определяют на основе расчетов режима работы электрической сети, выполняемых как для нормальной, так и для ремонтной схем сети.

Индивидуальный характер влияния на режим сети крупных потребителей и малая вероятность компенсации изменений их нагрузки другими потребителями приводят к необходимости установления предельно допустимых значений в виде почасового суточного графика, а не в виде средних значений для часов больших и малых нагрузок как для потребителей, присоединенных к сетям 0,4-110 кВ. Это могут быть не обязательно 24 разных значения; в конкретном случае могут быть выделены несколько интервалов в течение суток.

Предельное значение реактивной нагрузки конкретного потребителя может быть определено при последовательном ее увеличении до значения, при котором параметры режима в каком-либо узле сети или в какой-либо линии электропередачи выходят на предельно допустимый уровень. Очевидно, что получение этого значения связано с теми или иными допущениями в отношении нагрузок других потребителей.

Можно рассматривать два предельных порядка утяжеления режимов:

увеличение реактивной мощности только в рассматриваемом узле сети;

одновременное увеличение реактивной мощности, потребляемой во всех узлах сети.

Первый порядок предполагает определение максимальной реактивной мощности, потребляемой в рассматриваемом узле сети, при условии, что потребители во всех остальных узлах не увеличивают своего потребления. Такой расчет приведет к достаточно высоким значениям допускаемого коэффициента реактивной мощности, так как не предполагает одновременного нарушения условий несколькими потребителями. Второй порядок предполагает ситуацию, при которой потребители во всех узлах могут одновременно увеличить потребление. Очевидно, что при первом подходе требования к потребителям окажутся наиболее мягкими, а при втором -наиболее жесткими. Вместе с тем обе описанные ситуации можно считать маловероятными. Необходимо рассчитывать на ситуацию, при которой в ряде узлов нагрузки могут увеличиться одновременно, однако число таких узлов при расчете максимально допустимого потребления реактивной мощности конкретным потребителем должно быть ограничено разумным пределом.

Каждый из узлов сети имеет разную степень влияния на уровень напряжения в других узлах и разный размер «зоны влияния». Поэтому представляется логичным выделение сравнительно небольшой группы «критериальных» узлов, нагрузки которых следует рассматривать как увеличивающиеся с большой вероятностью одновременно с нагрузкой рассматриваемого узла. В остальных узлах реактивные нагрузки следует принимать на уровне их фактических значений, но не более соответствующих tg φ = 0,5.

Каждая сеть имеет свои специфические особенности режимов, поэтому получить строгие математические выражения для установления необходимого числа «критериальных» узлов и тем более их конкретного перечня невозможно. Можно использовать обычно принимаемый в инженерных расчетах критерий практической достоверности, который предполагает возможный выход за обычные условия пяти процентов случайных ситуаций. В этом случае число «критериальных» узлов необходимо ограничить пятью процентами общего числа узлов в сети. Например, для схемы в 300 узлов это составит 15 узлов. Выбор конкретных узлов является прерогативой энергоснабжающей организации.

Превышение установленных в договоре предельных значений коэффициента реактивной мощности оплачивается потребителем в соответствии с повышающим коэффициентом к тарифу. Выход технических параметров режима сети за предельно допустимые значения по определению является недопустимой ситуацией и не может компенсироваться оплатой. Поэтому допустимые значения коэффициента реактивной мощности, включаемые в договор с потребителем, должны рассчитываться из условия сохранения определенного запаса по напряжению и нагрузкам линий электропередачи. При превышении этих значений потребитель выводит режим сети в зону риска, хотя расчетные значения параметров режима еще не достигают предельно допустимых значений. В этой зоне допустимо стимулировать потребителя к нормализации нагрузки экономическими способами.

Предельное значение коэффициента реактивной мощности, потребляемой конкретным потребителем в рассматриваемый час суток, определяют из условия недопущения снижения напряжения ни в одном из узлов электрической сети ниже номинального значения и повышения нагрузки ни одной из линий электропередачи сверх значения, допустимого по условиям устойчивости работы электрической сети.

Предельное значение коэффициента реактивной мощности, генерируемой конкретным потребителем в рассматриваемый час суток, определяют из условия недопущения повышения напряжения ни в одном из узлов электрической сети выше значения, предельно допустимого для электрооборудования, и повышения нагрузки ни одной из линий электропередачи сверх значения, допустимого по условиям устойчивости работы электрической сети.

Для обеспечения указанных условий расчетные значения напряжений в узлах и нагрузок линий электропередачи должны приниматься с учетом коэффициентов запаса. Исходя из экспертных оценок они могут быть установлены на уровнях:

0,3 — для повышения напряжения в узлах от номинального напряжения сети до допустимого для электрооборудования;

0,1 — для нагрузок линий электропередачи по отношению к предельно допустимому значению по условиям устойчивости работы электрической сети.

Предельно допустимые (максимальные) напряжения электрооборудования установлены ГОСТ 721 «Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В» (прил. 8). Значения допустимых напряжений с учетом коэффициента запаса приведены в табл. 7.2.

Таблица 7.2

1

Предельно допустимое минимальное напряжение в узле сети может быть получено из условия обеспечения допустимых отклонений напряжения в сетях, присоединенных к шинам низкого напряжения трансформаторов. Расчеты показывают, что допустимые отклонения напряжения на этих шинах с учетом стандартных диапазонов РН устройствами РПН обеспечиваются при любом значении напряжения на шинах высокого напряжения в диапазоне от 0 до +10 % от номинального напряжения сети (см. п. 8.4.2). Поэтому предельно допустимое минимальное напряжение в узле сети может быть принято равным номинальному напряжению.

Как следует из изложенного, к потребителям, присоединенным к сетям напряжением 110 кВ (154 кВ), могут предъявляться разные требования в зависимости от того, оказывают они существенное влияние на режимы работы энергосистем или нет. Несмотря на то что однозначно определить понятие существенности влияния трудно, очевидно, что в нормативном документе должен быть указан его количественный критерий. На основе экспертной оценки принято, что потребителя относят к существенно влияющим на режимы сети, если при изменении его реактивной мощности от нуля до значения, соответствующего tg φ = 0,5, изменение напряжения в точке его присоединения превышает   5 %.

 

kvar.su

Материалы для заочников / Порядок расчета значений соотношения потребления активной и реактивной мощности (приказ № 49)

МИНИСТЕРСТВО ПРОМЫШЛЕННОСТИ И ЭНЕРГЕТИКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ПРИКАЗ

от 22 февраля 2007 г. N 49

О ПОРЯДКЕ РАСЧЕТА

ЗНАЧЕНИЙ СООТНОШЕНИЯ ПОТРЕБЛЕНИЯ АКТИВНОЙ

И РЕАКТИВНОЙ МОЩНОСТИ ДЛЯ ОТДЕЛЬНЫХ ЭНЕРГОПРИНИМАЮЩИХ

УСТРОЙСТВ (ГРУПП ЭНЕРГОПРИНИМАЮЩИХ УСТРОЙСТВ) ПОТРЕБИТЕЛЕЙ

ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, ПРИМЕНЯЕМЫХ ДЛЯ ОПРЕДЕЛЕНИЯ

ОБЯЗАТЕЛЬСТВ СТОРОН В ДОГОВОРАХ ОБ ОКАЗАНИИ УСЛУГ

ПО ПЕРЕДАЧЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

(ДОГОВОРАХ ЭНЕРГОСНАБЖЕНИЯ)

В соответствии с Постановлением Правительства Российской Федерации от 31 августа 2006 г. N 530 "Об утверждении Правил функционирования розничных рынков электрической энергии в переходный период реформирования электроэнергетики" (Собрание законодательства Российской Федерации, 2006, N 37, ст. 3876) приказываю:

Утвердить прилагаемый Порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договорах энергоснабжения).

Министр

В.Б.ХРИСТЕНКО

Утвержден

Приказом

Минпромэнерго России

от 22 февраля 2007 г. N 49

ПОРЯДОК

РАСЧЕТА ЗНАЧЕНИЙ СООТНОШЕНИЯ ПОТРЕБЛЕНИЯ АКТИВНОЙ

И РЕАКТИВНОЙ МОЩНОСТИ ДЛЯ ОТДЕЛЬНЫХ ЭНЕРГОПРИНИМАЮЩИХ

УСТРОЙСТВ (ГРУПП ЭНЕРГОПРИНИМАЮЩИХ УСТРОЙСТВ) ПОТРЕБИТЕЛЕЙ

ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, ПРИМЕНЯЕМЫХ ДЛЯ ОПРЕДЕЛЕНИЯ

ОБЯЗАТЕЛЬСТВ СТОРОН В ДОГОВОРАХ ОБ ОКАЗАНИИ УСЛУГ

ПО ПЕРЕДАЧЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

(ДОГОВОРЫ ЭНЕРГОСНАБЖЕНИЯ)

I. Общие положения

1. Настоящий Порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договоры энергоснабжения) в соответствии с Постановлениями Правительства Российской Федерации от 31 августа 2006 г. N 530 "Об утверждении правил функционирования розничных рынков электрической энергии в переходный период реформирования электроэнергетики" и от 27 декабря 2004 г. N 861 "Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг, Правил недискриминационного доступа к услугам по оперативно-диспетчерскому управлению в электроэнергетике и оказания этих услуг, Правил недискриминационного доступа к услугам администратора торговой системы оптового рынка и оказания этих услуг и Правил технологического присоединения энергопринимающих устройств (энергетических установок) юридических и физических лиц к электрическим сетям" (Собрание законодательства Российской Федерации, 2006, N 37, ст. 3876; 2004, N 52, ст. 5525), устанавливает требования к расчету значений соотношения потребления активной и реактивной мощности, определяемых при заключении договоров об оказании услуг по передаче электрической энергии (договоры энергоснабжения) в отношении потребителей электрической энергии, присоединенная мощность энергопринимающих устройств которых более 150 кВт (за исключением граждан-потребителей, использующих электрическую энергию для бытового потребления, и приравненных к ним в соответствии с нормативными правовыми актами в области государственного регулирования тарифов групп (категорий) потребителей (покупателей), в том числе многоквартирных домов, садоводческих, огороднических, дачных и прочих некоммерческих объединений граждан).

2. Значения соотношения потребления активной и реактивной мощностей (tg) определяются в виде предельных значений коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети, соблюдение которых обеспечивается покупателями электрической энергии (мощности) - потребителями услуг по передаче электрической энергии (далее - потребители) посредством соблюдения режимов потребления электрической энергии (мощности) либо использования устройств компенсации реактивной мощности. При этом значение коэффициента реактивной мощности, генерируемой в часы малых суточных нагрузок электрической сети, устанавливается равным нулю.

3. В случае участия потребителя по соглашению с сетевой организацией в регулировании реактивной мощности в часы больших и/или малых нагрузок электрической сети, в договоре энергоснабжения определяются также диапазоны значений коэффициентов реактивной мощности, устанавливаемые отдельно для часов больших и/или малых нагрузок электрической сети и применяемые в периоды участия потребителя в регулировании реактивной мощности.

II. Общие требования к расчету

4. Сумма часов, составляющих определяемые соответствующими договорами периоды больших и малых нагрузок, должна быть равна 24 часам. Если иное не определено договором, часами больших нагрузок считается период с 7 ч 00 мин. до 23 ч 00 мин., а часами малых нагрузок - с 23 ч 00 мин. до 7 ч 00 мин.

5. Значения коэффициентов реактивной мощности определяются отдельно для каждой точки присоединения к электрической сети в отношении всех потребителей, за исключением потребителей, получающих электрическую энергию по нескольким линиям напряжением 6 - 20 кВ от одной подстанции или электростанции, для которых эти значения рассчитываются в виде суммарных величин.

III. Расчет коэффициентов реактивной мощности

6. Для потребителей, присоединенных к сетям напряжением 220 кВ и выше, а также к сетям 110 кВ (154 кВ), в случаях, когда они оказывают существенное влияние на электроэнергетические режимы работы энергосистем (энергорайонов, энергоузлов), предельное значение коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети, а также диапазоны коэффициента реактивной мощности, применяемые в периоды участия потребителя в регулировании реактивной мощности, определяют на основе расчетов режимов работы электрической сети в указанные периоды, выполняемых как для нормальной, так и для ремонтной схем сети.

7. Предельные значения коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети, для потребителей, присоединенных к сетям напряжением ниже 220 кВ, определяются в соответствии с приложением к настоящему Порядку.

Приложение

к Порядку расчета

значений соотношения потребления

активной и реактивной мощности

для отдельных энергопринимающих

устройств (групп энергопринимающих

устройств) потребителей электрической

энергии, применяемых для определения

обязательств сторон в договорах

об оказании услуг по передаче

электрической энергии

(договоры энергоснабжения)

Предельные значения коэффициента реактивной мощности

Положение точки присоединения

потребителя к электрической сети: tg

------------------------------------------------------------------

напряжением 110 кВ (154 кВ) 0,5

------------------------------------------------------------------

напряжением 35 кВ (60 кВ) 0,4

------------------------------------------------------------------

напряжением 6 - 20 кВ 0,4

------------------------------------------------------------------

напряжением 0,4 кВ 0,35

------------------------------------------------------------------

studfiles.net

Для чего необходима компенсация реактивной мощности?

Основной нагрузкой в промышленных электросетях являются асинхронные электродвигатели и распределительные трансформаторы. Эта индуктивная нагрузка в процессе работы является источником реактивной электроэнергии (реактивной мощности), которая совершает колебательные движения между нагрузкой и источником (генератором), не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей и создает дополнительную нагрузку на силовые линии питания.

Реактивная мощность характеризуется задержкой (в индуктивных элементах ток по фазе отстает от напряжения) между синусоидами фаз напряжения и тока сети. Показателем потребления реактивной мощности является коэффициент мощности (КМ), численно равный косинусу угла (ф) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: cos(ф) = P/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение cos(ф) к единице, тем меньше доля взятой из сети реактивной мощности.

Пример: при cos(ф) = 1 для передачи 500 KW в сети переменного тока 400 V необходим ток значением 722 А. Для передачи той же активной мощности при коэффициенте cos(ф) = 0,6 значение тока повышается до 1203 А.

Соответственно все оборудование питания сети, передачи и распределения энергии должны быть рассчитаны на большие нагрузки. Кроме того, в результате больших нагрузок срок эксплуатации этого оборудования может соответственно снизиться. Дальнейшим фактором повышения затрат является возникающая из-за повышенного значения общего тока теплоотдача в кабелях и других распределительных устройствах, в трансформаторах и генераторах. Возьмем, к примеру, в нашем выше приведенном случае при cos(ф) = 1 мощность потерь равную 10 KW. При cos(ф) = 0,6 она повышается на 180% и составляет уже 28 KW. Таким образом, наличие реактивной мощности является паразитным фактором, неблагоприятным для сети в целом.

В результате этого:

  • возникают дополнительные потери в проводниках вследствие увеличения тока;
  • снижается пропускная способность распределительной сети;
  • отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

 

Все сказанное выше является основной причиной того, что предприятия электроснабжения требуют от потребителей снижения доли реактивной мощности в сети. Решением данной проблемы является компенсация реактивной мощности – важное и необходимое условие экономичного и надежного функционирования системы электроснабжения предприятия. Эту функцию выполняют устройства компенсации реактивной мощности КРМ-0,4 (УКМ-58) - конденсаторные установки, основными элементами которых являются конденсаторы.

Правильная компенсация позволяет:

  • снизить общие расходы на электроэнергию;
  • уменьшить нагрузку элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевая их срок службы;
  • снизить тепловые потери тока и расходы на электроэнергию;
  • снизить влияние высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • добиться большей надежности и экономичности распределительных сетей.

Кроме того, в существующих сетях

  • исключить генерацию реактивной энергии в сеть в часы минимальной нагрузки;
  • снизить расходы на ремонт и обновление парка электрооборудования;
  • увеличить пропускную способность системы электроснабжения потребителя, что позволит подключить дополнительные нагрузки без увеличения стоимости сетей;
  • обеспечить получение информации о параметрах и состоянии сети.

А во вновь создаваемых сетях - уменьшить мощность подстанций и сечения кабельных линий, что снизит их стоимость.

 

Зачем компенсировать реактивную мощность?

Реактивная мощность и энергия ухудшают показатели работы энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи, что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности. Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Основные потребители реактивной мощности:

  • асинхронные электродвигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами;
  • электрические печи 8%;
  • преобразователи 10%;
  • трансформаторы всех ступеней трансформации 35%;
  • линии электропередач 7%.

 

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а косинус фи уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40.

Мало нагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии, а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок).

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

www.pea.ru

Компенсация реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ 

Опубликовано: 26 июня 2013 г. в 12:37, 5402

Причины необходимости компенсации реактивной мощности у потребителя электроэнергии. Некоторые аспекты применения коэффициентов мощности cos φ и реактивной мощности tg φ. Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ.

Выработка, передача и потребление электроэнергии переменного тока сопряжено с решением ряда проблем и ключевой из них можно смело считать проблему компенсации реактивной мощности. В сетях переменного тока de facto потребителями реактивной мощности являются, как звенья самой сети (линии электропередачи, трансформаторы подстанций, шунтирующие реакторы и т.д.), так и все без исключения приемники электроэнергии, причем львиную долю реактивной мощности (порядка 60%) потребляют асинхронные двигатели сетей среднего и низкого напряжения, около четверти всей реактивной мощности приходится на трансформаторы разного назначения, в том числе трансформаторы понижающих подстанций и одну десятую часть делят между собой приемники, использующие для запуска и работы переменное магнитное поле (индукционные печи, выпрямители и т.д.).

Генераторы электростанций в нормальном режиме работы вырабатывают активную мощность, в режиме перевозбуждения — реактивную мощность в объемах от 20% до 70% от средней потребности в реактивной мощности распределительных сетей, понижающих подстанций и приемников электроэнергии у потребителей. Также незначительная доля потребности в реактивной мощности компенсируется емкостью воздушных и кабельных линий, но все это в совокупности не решает и даже отчасти усугубляет проблему дефицита реактивной мощности и вызываемых этим негативных последствий, поскольку транспорт реактивной мощности от генераторов электростанций:

  • снижает объемы передаваемой активной мощности, около 10% которой и так теряется в различных звеньях сетей разного напряжения;
  • значительно повышает риски перегрева линий электропередач; перегружает трансформаторы подстанций более высокого уровня;
  • уменьшает число оптимальных для подключения к сети потребителей;
  • приводит к падению сетевого напряжения и ухудшению качества передаваемой электроэнергии.

По этим причинам в РД 34.20.185-94 «Инструкция по проектированию городских электрических сетей» (п. 5.2.9), «Методических указаниях по проектированию развития энергосистем» Минпромэнерго (п. 5.36.3), «Правилах технической эксплуатации электрических станций и сетей Российской Федерации» Минэнерго РФ (п. 6.3.16) и ряде других нормативно-правовых актов определена необходимость использования устройств компенсации реактивной мощности у потребителей, что снижает объемы перетоков мощности и в целом увеличивает пропускную способность сетей различного напряжения.

Некоторые аспекты применения коэффициентов мощности cos φ и реактивной мощности tg φ.

В «Приложении к Порядку расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договоры энергоснабжения)» (Приказ №49 Минпромэнерго России от 22 февраля 2007 года) определены предельные значения коэффициентов мощности cos φ и реактивной мощности tg φ в зависимости от точки присоединения потребителя к распределительной сети.

Положение точки присоединения потребителя к электрической сети tgφ cosɸ
Напряжением 110 кВ (154 кВ) 0.5 0.9
Напряжением 35 кВ (60 кВ) 0.4 0.93
Напряжением 6-20 кВ 0.4 0.93
Напряжением 0,4 кВ 0.35 0.94

При аудите электрической распределительной сети или сегмента электрической сети, находящегося в балансовой принадлежности потребителя может использоваться, как коэффициент мощности cos φ, определяемый отношением активной мощности к полной мощности, так и коэффициент реактивной мощности tg φ, численно равный отношению реактивной к активной мощности. Вместе с тем таблица ниже демонстрирует недостаточность коэффициента мощности cos φ для точной оценки потребности в потреблении реактивной мощности.

Таблица. Значение реактивной мощности (РМ) в процентах от активной мощности при разных значениях коэффициентов мощности cos φ
cos φ 1.0 0.99 0.97 0.95 0.94 0.92 0.9 0.87 0.85 0.8 0.7 0.5 0.316
tg φ 0.0 0.14 0.25 0.33 0.36 0.43 0.484 0.55 0.60 0.75 1.02 1.73 3.016
РМ,% 0.0 14 25 33 36 43 48.4 55 60 75 102 173 301.6

Из данных таблицы видно, что даже при высоких значениях коэффициента мощности cos φ = 0.95 электроприемниками/звеньями электрической сети потребляется реактивная мощность величиной в 33% от активной мощности, а уже при значении коэффициента мощности cos φ = 0.7 объемы потребляемой активной и реактивной мощности сравниваются. Поэтому более целесообразно выполнять оценку распределительной сети/сегмента сети в балансовой принадлежности потребителя по коэффициенту реактивной мощности tg φ, показывающему реальный баланс активной и реактивной мощности.

Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ

Целесообразность компенсации реактивной мощности для потребителя можно рассматривать, как в техническом, так и экономическом аспектах. В случае подключения потребителя к распределительной сети 6,3 (10,5) кВ конденсаторные установки могут интегрироваться на подстанции в балансовой принадлежности электросетевой компании и тогда потребитель будет иметь чисто техническую выгоду от качества получаемой электроэнергии. При установке КРМ 6,3 (10,5) кВ (или УКРМ 6,3 (10,5) кВ) на шинах РУ 6,3 (10,5) кВ предприятия, или на шинах РУ цеховых ТП 6-10/0,4 кВ, шинах первичных цеховых РП 0,4 кВ, а также непосредственно у электроприемников, потребитель будет иметь, как техническую, так и экономическую выгоду за счет возможности использования активной мощности в более полном объеме и соответственно снижения затрат на «балластную» реактивную мощность.

www.elec.ru

Расчет реактивной мощности предназначенной к компенсации коэффициента мощности

Производится по формуле:

Qc=P * K       или      Qc=P * (tan(φ) - tan(φ)1)

P–действительная мощность системы cos(φ) –cos(φ) системы без компенсации коэффициента мощности cos(φ)1– требуемый cos(φ) tan(φ) - tan (φ) системы без компенсации коэффициента мощности tan(φ)1 - требуемый tan(φ) Qс–реактивная мощность системы компенсации коэффициента мощности, которую необходимо установить K – коэффициент соотношения cosϕ0 и cos ϕ1; эти данные выводятся из приведенной ниже таблицы 2,1

На коэффициент K,  умножается эффективная энергия, расходуемая в кВт для определения реактивной мощности системы  (в  кВАр).  Эта величина отображает необходимую для компенсации реактивную мощность.  необходимого для компенсации коэффициента мощности (cos(φ)  - исходный PF, cos(φ) 1, - доступный PF с компенсацией).

Например:

Активная мощность двигателя : P=155 кВт

Действующий cos(φ)=0,63

Требуемый cos(φ)=0,97

Коэффициент K из таблицы 2.1

Необходимая реактивная мощность конденсаторной батареи:

 Qc (кВАр) = 155·0.982=152 кВАр.

Текущий (действующий) Требуемый (достижимый) cos ϕ
tan (ϕ) cos(φ) 0,85 0,86 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99 1,00
Коэффицент K
3,18 0,30 2,560 2,586 2,613 2,640 2,667 2,695 2,724 2,754 2,785 2,817 2,851 2,888 2,929 2,977 3,037 3,180
3,07 0,31 2,447 2,474 2,500 2,527 2,555 2,583 2,611 2,641 2,672 2,704 2,738 2,775 2,816 2,864 2,924 3,067
2,96 0,32 2,341 2,367 2,394 2,421 2,448 2,476 2,505 2,535 2,565 2,598 2,632 2,669 2,710 2,758 2,818 2,961
2,86 0,33 2,241 2,267 2,294 2,321 2,348 2,376 2,405 2,435 2,465 2,498 2,532 2,569 2,610 2,657 2,718 2,861
2,77 0,34 2,146 2,173 2,199 2,226 2,254 2,282 2,310 2,340 2,371 2,403 2,437 2,474 2,515 2,563 2,623 2,766
2,68 0,35 2,057 2,083 2,110 2,137 2,164 2,192 2,221 2,250 2,281 2,313 2,348 2,385 2,426 2,473 2,534 2,676
2,59 0,36 1,972 1,998 2,025 2,052 2,079 2,107 2,136 2,166 2,196 2,229 2,263 2,300 2,341 2,388 2,449 2,592
2,51 0,37 1,891 1,918 1,944 1,971 1,999 2,027 2,055 2,085 2,116 2,148 2,182 2,219 2,260 2,308 2,368 2,511
2,43 0,38 1,814 1,841 1,867 1,894 1,922 1,950 1,979 2,008 2,039 2,071 2,105 2,143 2,184 2,231 2,292 2,434
2,36 0,39 1,741 1,768 1,794 1,821 1,849 1,877 1,905 1,935 1,966 1,998 2,032 2,069 2,110 2,158 2,219 2,361
2,29 0,40 1,672 1,698 1,725 1,752 1,779 1,807 1,836 1,865 1,896 1,928 1,963 2,000 2,041 2,088 2,149 2,291
2,22 0,41 1,605 1,631 1,658 1,685 1,712 1,740 1,769 1,799 1,829 1,862 1,896 1,933 1,974 2,022 2,082 2,225
2,16 0,42 1,541 1,567 1,594 1,621 1,648 1,676 1,705 1,735 1,766 1,798 1,832 1,869 1,910 1,958 2,018 2,161
2,10 0,43 1,480 1,506 1,533 1,560 1,587 1,615 1,644 1,674 1,704 1,737 1,771 1,808 1,849 1,897 1,957 2,100
2,04 0,44 1,421 1,448 1,474 1,501 1,529 1,557 1,585 1,615 1,646 1,678 1,712 1,749 1,790 1,838 1,898 2,041
1,98 0,45 1,365 1,391 1,418 1,445 1,472 1,500 1,529 1,559 1,589 1,622 1,656 1,693 1,734 1,781 1,842 1,985
1,93 0,46 1,311 1,337 1,364 1,391 1,418 1,446 1,475 1,504 1,535 1,567 1,602 1,639 1,680 1,727 1,788 1,930
1,88 0,47 1,258 1,285 1,311 1,338 1,366 1,394 1,422 1,452 1,483 1,515 1,549 1,586 1,627 1,675 1,736 1,878
1,83 0,48 1,208 1,234 1,261 1,288 1,315 1,343 1,372 1,402 1,432 1,465 1,499 1,536 1,577 1,625 1,685 1,828
1,78 0,49 1,159 1,186 1,212 1,239 1,267 1,295 1,323 1,353 1,384 1,416 1,450 1,487 1,528 1,576 1,637 1,779
1,73 0,50 1,112 1,139 1,165 1,192 1,220 1,248 1,276 1,306 1,337 1,369 1,403 1,440 1,481 1,529 1,590 1,732
1,69 0,51 1,067 1,093 1,120 1,147 1,174 1,202 1,231 1,261 1,291 1,324 1,358 1,395 1,436 1,484 1,544 1,687
1,64 0,52 1,023 1,049 1,076 1,103 1,130 1,158 1,187 1,217 1,247 1,280 1,314 1,351 1,392 1,440 1,500 1,643
1,60 0,53 0,980 1,007 1,033 1,060 1,088 1,116 1,144 1,174 1,205 1,237 1,271 1,308 1,349 1,397 1,458 1,600
1,56 0,54 0,939 0,965 0,992 1,019 1,046 1,074 1,103 1,133 1,163 1,196 1,230 1,267 1,308 1,356 1,416 1,559
1,52 0,55 0,899 0,925 0,952 0,979 1,006 1,034 1,063 1,092 1,123 1,156 1,190 1,227 1,268 1,315 1,376 1,518
1,48 0,56 0,860 0,886 0,913 0,940 0,967 0,995 1,024 1,053 1,084 1,116 1,151 1,188 1,229 1,276 1,337 1,479
1,44 0,57 0,822 0,848 0,875 0,902 0,929 0,957 0,986 1,015 1,046 1,079 1,113 1,150 1,191 1,238 1,299 1,441
1,40 0,58 0,785 0,811 0,838 0,865 0,892 0,920 0,949 0,979 1,009 1,042 1,076 1,113 1,154 1,201 1,262 1,405
1,37 0,59 0,749 0,775 0,802 0,829 0,856 0,884 0,913 0,942 0,973 1,006 1,040 1,077 1,118 1,165 1,226 1,368
1,33 0,60 0,714 0,740 0,767 0,794 0,821 0,849 0,878 0,907 0,938 0,970 1,005 1,042 1,083 1,130 1,191 1,333
1,30 0,61 0,679 0,706 0,732 0,759 0,787 0,815 0,843 0,873 0,904 0,936 0,970 1,007 1,048 1,096 1,157 1,299
1,27 0,62 0,646 0,672 0,699 0,726 0,753 0,781 0,810 0,839 0,870 0,903 0,937 0,974 1,015 1,062 1,123 1,265
1,23 0,63 0,613 0,639 0,666 0,693 0,720 0,748 0,777 0,807 0,837 0,870 0,904 0,941 0,982 1,030 1,090 1,233
1,20 0,64 0,581 0,607 0,634 0,661 0,688 0,716 0,745 0,775 0,805 0,838 0,872 0,909 0,950 0,998 1,058 1,201
1,17 0,65 0,549 0,576 0,602 0,629 0,657 0,685 0,714 0,743 0,774 0,806 0,840 0,877 0,919 0,966 1,027 1,169
1,14 0,66 0,519 0,545 0,572 0,599 0,626 0,654 0,683 0,712 0,743 0,775 0,810 0,847 0,888 0,935 0,996 1,138
1,11 0,67 0,488 0,515 0,541 0,568 0,596 0,624 0,652 0,682 0,713 0,745 0,779 0,816 0,857 0,905 0,966 1,108
1,08 0,68 0,459 0,485 0,512 0,539 0,566 0,594 0,623 0,652 0,683 0,715 0,750 0,787 0,828 0,875 0,936 1,078
1,05 0,69 0,429 0,456 0,482 0,509 0,537 0,565 0,593 0,623 0,654 0,686 0,720 0,757 0,798 0,846 0,907 1,049
1,02 0,70 0,400 0,427 0,453 0,480 0,508 0,536 0,565 0,594 0,625 0,657 0,692 0,729 0,770 0,817 0,878 1,020
0,99 0,71 0,372 0,398 0,425 0,452 0,480 0,508 0,536 0,566 0,597 0,629 0,663 0,700 0,741 0,789 0,849 0,992
0,96 0,72 0,344 0,370 0,397 0,424 0,452 0,480 0,508 0,538 0,569 0,601 0,635 0,672 0,713 0,761 0,821 0,964
0,94 0,73 0,316 0,343 0,370 0,396 0,424 0,452 0,481 0,510 0,541 0,573 0,608 0,645 0,686 0,733 0,794 0,936
0,91 0,74 0,289 0,316 0,342 0,369 0,397 0,425 0,453 0,483 0,514 0,546 0,580 0,617 0,658 0,706 0,766 0,909
0,88 0,75 0,262 0,289 0,315 0,342 0,370 0,398 0,426 0,456 0,487 0,519 0,553 0,590 0,631 0,679 0,739 0,882
0,86 0,76 0,235 0,262 0,288 0,315 0,343 0,371 0,400 0,429 0,460 0,492 0,526 0,563 0,605 0,652 0,713 0,855
0,83 0,77 0,209 0,235 0,262 0,289 0,316 0,344 0,373 0,403 0,433 0,466 0,500 0,537 0,578 0,626 0,686 0,829
0,80 0,78 0,183 0,209 0,236 0,263 0,290 0,318 0,347 0,376 0,407 0,439 0,474 0,511 0,552 0,599 0,660 0,802
0,78 0,79 0,156 0,183 0,209 0,236 0,264 0,292 0,320 0,350 0,381 0,413 0,447 0,484 0,525 0,573 0,634 0,776
0,75 0,80 0,130 0,157 0,183 0,210 0,238 0,266 0,294 0,324 0,355 0,387 0,421 0,458 0,499 0,547 0,608 0,750
0,72 0,81 0,104 0,131 0,157 0,184 0,212 0,240 0,268 0,298 0,329 0,361 0,395 0,432 0,473 0,521 0,581 0,724
0,70 0,82 0,078 0,105 0,131 0,158 0,186 0,214 0,242 0,272 0,303 0,335 0,369 0,406 0,447 0,495 0,556 0,698
0,67 0,83 0,052 0,079 0,105 0,132 0,160 0,188 0,216 0,246 0,277 0,309 0,343 0,380 0,421 0,469 0,530 0,672
0,65 0,84 0,026 0,053 0,079 0,106 0,134 0,162 0,190 0,220 0,251 0,283 0,317 0,354 0,395 0,443 0,503 0,646
0,62 0,85 0,026 0,053 0,080 0,107 0,135 0,164 0,194 0,225 0,257 0,291 0,328 0,369 0,417 0,477 0,620  
0,59 0,86 0,027 0,054 0,081 0,109 0,138 0,167 0,198 0,230 0,265 0,302 0,343 0,390 0,451 0,593    
0,57 0,87 0,027 0,054 0,082 0,111 0,141 0,172 0,204 0,238 0,275 0,316 0,364 0,424 0,567      
0,54 0,88 0,027 0,055 0,084 0,114 0,145 0,177 0,211 0,248 0,289 0,337 0,397 0,540        
0,51 0,89 0,028 0,057 0,086 0,117 0,149 0,184 0,221 0,262 0,309 0,370 0,512          
0,48 0,90 0,029 0,058 0,089 0,121 0,156 0,193 0,234 0,281 0,342 0,484            
0,46 0,91 0,030 0,060 0,093 0,127 0,164 0,205 0,253 0,313 0,456              
0,43 0,92 0,031 0,063 0,097 0,134 0,175 0,223 0,284 0,426                
0,40 0,93 0,032 0,067 0,104 0,145 0,192 0,253 0,395                  
0,36 0,94 0,034 0,071 0,112 0,160 0,220 0,363                    
0,33 0,95 0,037 0,078 0,126 0,186 0,329                      
0,29 0,96 0,041 0,089 0,149 0,292                        
0,25 0,97 0,048 0,108 0,251                          
0,20 0,98 0,061 0,203                            
0,14 0,99 0,142                              

Компенсация коэффициента мощности трансформаторов

Рекомендуется обеспечить силовым трансформаторам компенсацию коэффициента мощности и в ночное время, когда они работают практически без нагрузки, на холостом ходу. Но они все равно поглощают реактивную мощность, которую нужно компенсировать.

По данным опыта холостого хода подсчитываются сопротивления, коэффициент мощности, активная и реактивная составляющие тока холостого хода трансформатора. Мощность, подводимая к трансформатору при холостом ходе, идет на покрытие потерь холостого хода.

Точную мощность конденсатора можно рассчитать с использованием приведенной ниже формулы:

Q = Io% • Pn/100

Io-ток без нагрузки (указывается производителем трансформатора) Pn-номинальная мощность трансформатора Или можно также использовать каталожные данные на трансформатор.

Компенсация коэффициента мощности трехфазных асинхронных двигателей

Приведенная ниже таблица показывает компенсацию коэффициента мощности для асинхронных двигателей с короткозамкнутым ротором.

Номинальная мощность двигателя Максимальная скорость вращения, об/мин
л.с. кВт 3000 1500 1000 750
Устанавливаемая реактивная мощность - Трехфазный двигатель: 230/400В (кВАр)
30 22 6 8 9 10
40 30 7.5 10 11 12.5
50 37 9 11 12.5 16
60 45 11 13 14 17
75 55 13 17 18 21
100 75 17 22 25 28
125 90 20 25 27 30
150 110 24 29 33 37
180 132 31 36 38 43
218 160 35 41 44 52
274 200 43 47 53 61
340 250 52 57 63 71
385 280 57 63 70 79
482 355 67 76 86 98
544 400 78 82 97 106
610 450 87 93 107 117

electrocontrol.com.ua

Коэффициент мощности — Руководство по устройству электроустановок

Определение коэффициента мощности

Коэффициент мощности (cos φ) есть отношение кВт к кВА. Чем ближе коэффициент мощности приближается к своему максимальному значению 1, тем больше польза для потребителя и поставщика.

PF = P (кВт)/S (кВА), где:P = активная мощность;S = полная мощность.

Коэффициент мощности нагрузки, которая может являться электроприемником (ЭП) или совокупностью таких ЭП (например, вся система), задается отношением P/S, т.е. число кВт, деленное на число кВА в заданный момент времени.

Значение коэффициента мощности изменяется в диапазоне 0-1.

Если токи и напряжения являются идеальными синусоидальными сигналами, коэффициент мощности равен cos φ.

Коэффициент мощности около единицы означает, что реактивная мощность мала в сравнении с активной, а низкое значение коэффициента указывает на противоположное.

Векторная диаграмма мощности

  • Активная мощность P (кВт):

  -  однофазная (1 фаза и нейтраль): P = V х I х cos φ;  -  однофазная (фаза-фаза): P = U х I х cos φ;  -  трехфазная (3 провода или 3 провода + нейтраль): P = \sqrt 3х U х I cos φ.

  • Реактивная мощность Q (квар):

  -  однофазная (1 фаза и нейтраль): Q = V х I х sin φ;  -  однофазная (фаза-фаза): Q = U х I х sin φ;  -  трехфазная (3 провода или 3 провода + нейтраль): Q = \sqrt 3 х U х I sin φ.

  • Полная мощность S (кВА):

  -  однофазная (1 фаза и нейтраль): S = V х I;  -  однофазная (фаза-фаза): S = U х I;  -  трехфазная (3 провода или 3 провода + нейтраль): S = \sqrt 3 х U х I,где:V - линейное напряжение;U - фазное напряжение; I -  ток;φ - угол между векторами напряжения и тока; -  для симметричных или почти симметричных нагрузок четырехпроводных систем.

Векторы тока и напряжения и вывод векторной диаграммы мощности

Векторная диаграмма мощности – полезный инструмент, выводимый непосредственно из истинной диаграммы вращающихся векторов токов и напряжений следующим образом:

Напряжения энергосистемы принимаются в качестве исходных величин, и рассматривается только одна фаза, исходя из предположения о симметричной трехфазной нагрузке.

Исходное напряжение фазы (V) совпадает с горизонтальной осью, а ток (I) этой фазы сдвинут (отстает) (практически для всех нагрузок энергосистемы) относительно напряжения на угол φ.

Составляющая тока I, совпадающая по фазе с напряжением V, является реактивной составляющей тока I и равна I·cos φ, значение V·I cos φ равно активной мощности (кВт) в цепи, если V выражается в кВ.

Составляющая тока I с отставанием 90 градусов от напряжения V является безваттной составляющей тока I и равна I·sin φ, а значение V·I·sin φ равно реактивной мощности (квар), если напряжение V выражается в кВ.

Результат умножения I на V в кВ (V·I) равен полной мощности (кВА) для цепи.

Получается простая формула S2 = P2 + Q2

Следовательно, умноженные на 3, указанные выше значения кВт, квар и кВА на фазу могут удобно представлять взаимосвязь кВА, кВт, квар и коэффициента мощности для общей трехфазной нагрузки, как показано на рис. L3.

Рис. L3 : Диаграмма мощности

Пример расчета мощности

(см. рис. L4)

Тип цепи Полная мощность S (кВА) Актив. мощность P (кВт) Реакт. мощность Q (квар)
Однофазная (фаза и нейтраль)   S = VI P = VI cos φ Q = VI sin φ
Однофазная (фаза-фаза)   S = UI P = UI cos φ Q = UI sin φ
Пример: 5 кВт нагрузки 10 кВA 5 кВт 8,7 квар
cos φ = 0.5
Трехфазная (3 провода или 3 провода + нейтраль) S = \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\sqrt 3 UI P = \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\sqrt 3 UI cos φ Q = \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\sqrt 3 UI sin φ
Пример: Двигатель Pn = 51 кВт 65 кВА 56 кВт 33 квар
cos φ = 0,86
ρ= 0,91 (КПД двигателя)

Рис. L4 : Пример расчета активной и реактивной мощности

ru.electrical-installation.org

Компенсация реактивных мощностей

конденсаторы для компенсации реактивных мощностей

Параметры режимов электрических систем

Режим работы электрической системы характеризуется значениями показателей ее состояния, называемых параметрами режимов. Все процессы в электрических системах можно охарактеризовать тремя параметрами: напряжением, током и активной мощностью. Но для удобства расчетов режимов применяются и другие параметры, в частности, реактивная и полная мощность. Произведение показаний вольтметра и амперметра в цепи переменного тока называется полной мощностью. Для трехфазной цепи она выражается формулой:(1)гдеI — ток в одной фазе;U — линейное напряжение.Активная мощность трехфазного переменного тока определяется по формуле:(2)Множитель cosφ называется коэффициентом мощности. Угол ф указывает сдвиг по фазе тока и напряжения.На основании этих выражений полная мощность S представляется гипотенузой прямоугольного треугольника, один катет которого представляет активную мощность Р = S cosφ, а другой — реактивную Q = S sinφ.Реактивная мощность находится также из выражения:(3)гдеtgφ — коэффициент реактивной мощности.Следует помнить об условности толкования Q как мощности. Только активная мощность и энергия могут совершать работу и преобразовываться в механическую, тепловую, световую и химическую энергию. Активная мощность обусловлена преобразованием энергии первичного двигателя, полученной от природного источника, в электроэнергию. Реактивная мощность не преобразуется в другие виды мощности, не совершает работу, и поэтому называется мощностью условно. Реактивная мощность идет на создание магнитного и электрических полей. Для анализа режимов в цепях синусоидального тока реактивная мощность является очень удобной характеристикой, широко используемой на практике.Особенностью производства и потребления электроэнергии является равенство выработанной и израсходованной в единицу времени электроэнергии (мощности). Следовательно, в электрической системе должно выполняться равенство (баланс) для активных мощностей: (4)гдеРг — суммарная активная мощность, отдаваемая в сеть генераторами электростанций, входящих в систему;РПОтр — суммарная совмещенная активная нагрузка потребителей системы;АРпер — суммарные потери активной мощности во всех элементах передачи электроэнергии (линиях, трансформаторах) по электрическим сетям;Рсн — суммарная активная нагрузка собственных нужд всех электростанций системы при наибольшей нагрузке потребителя.Основная доля выработанной мощности идет на покрытие нагрузки потребителей. Суммарные потери на передачу зависят от протяженности линий электрических сетей, их сечений и числа трансформаций и находятся в пределах 5...15% от суммарной нагрузки. Нагрузка собственных нужд электростанций зависит от их типа, рода топлива и типа оборудования; она составляет для тепловых электростанций

  1. .12%, для гидростанций — 0,5... 1 % от мощности электростанции.

Равенство (4) позволяет определить рабочую активную мощность системы. Располагаемая мощность генераторов Рг.расп системы несколько больше, чем рабочая мощность в режиме максимальных нагрузок Pr.max; требуется учитывать необходимость резервирования при аварийных и плановых (ремонтных) отключениях части основного оборудования электроэнергетической системы: (5)гдеРг рез — мощность резерва системы, который должен быть не меньше 10% ее рабочей мощности.При нарушении баланса активных мощностей, например, если (6)происходит снижение частоты в системе.

Баланс реактивных мощностей

В электрической системе суммарная генерируемая реактивная мощность должна быть равна потреб- мощности, источниками которой являются только генераторы электростанций, реактивная мощность генерируется как ими, так и другими источниками, к которым относятся воздушные и кабельные линии разных напряжений (Эл, а также установленные в сетях источники реактивной мощности (ИРМ) (компенсирующие устройства — КУ) мощностью QПоэтому баланс реактивной мощности в электрической системе представляется уравнением: (7)Следует отметить, что уравнение баланса реактивных мощностей связано с уравнением баланса активных мощностей, так как: (8)Генерация реактивной мощности на электростанциях зависит от числа и активной мощности работающих агрегатов, а потребление реактивной мощности — от состава электроприемников. При номинальном коэффициенте мощности генераторов cosφr= 0,85 коэффициент реактивной мощности tgφr = 0,6. Для потребителей коэффициент реактивной мощности tgφn0Tp = 0,3.Потери реактивной мощности на передачу в основном определяются потерями реактивной мощности в трансформаторах, при трех-четырех трансформациях суммарные потери мощности в трансформаторах могут достигать 40% от передаваемой полной мощности.В линиях напряжением 110 кВ и выше генерация реактивной мощности (зарядная мощность) компенсирует реактивные потери в линиях и может превысить их.Таким образом, при выборе активной мощности генераторов энергосистемы по условию баланса активных мощностей и при работе генераторов с номинальным коэффициентом мощности генерируемая суммарная реактивная мощность без дополнительно используемых ИРМ может оказаться меньше требуемой по условию баланса реактивных мощностей:(9)В этом случае образуется дефицит реактивной мощности, который приводит к следующему:• большая загрузка реактивной мощностью генераторов электростанций приводит к перегрузке по току генераторов;ности от генераторов по элементам сети приводит к повышенным токовым нагрузкам и, как следствие, к увеличению затрат на сооружение сети, повышенным потерям активной мощности;

  1. недостаток реактивной мощности в системе влечет за собой снижение напряжения в узлах электрических сетей и у потребителей.

Для получения баланса реактивных мощностей вблизи основных потребителей реактивной мощности устанавливают дополнительные источники с выдаваемой реактивной мощностью QKy.При избытке реактивной мощности в системе, т.е.при(10)в элементах электрической сети возникают перетоки реактивной мощности, встречные направлению потоков активной мощности, что приводит к повышению напряжений в узлах и увеличению потерь мощности. Данный режим характерен для периода минимальных нагрузок в системе.Отсюда возникает задача оптимизации режима реактивной мощности в системе электроснабжения промышленного предприятия, выбора типа и мощности, а также места установки компенсирующих устройств.В системах электроснабжения городов с коммунально-бытовой нагрузкой компенсирующие устройства обычно не устанавливаются.В качестве средств компенсации реактивной мощности используются статические конденсаторы напряжением до и выше 1 кВ и синхронные двигатели.

Исходные положения по компенсации реактивной мощности в системах электроснабжения промышленных предприятий

При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать две группы промышленных сетей в зависимости от состава их нагрузок:

  1. сети общего назначения с режимом прямой последовательности основной частоты 50 Гц;
  2. сети со специфическими нелинейными, несимметричными и резкопеременными нагрузками.

В данном разделе рассматриваются вопросы компенсации реактивной мощности в промышленных сетях общего назначения.На начальной стадии проектирования определяются наибольшие суммарные расчетные нагрузкиКУ) коэффициенте реактивной мощности Ррасчпп, QPрасчппНаибольшая суммарная нагрузка предприятия, принимаемая для определения мощности компенсирующих устройств,(11)где1_0 тах — коэффициент, учитывающий несовпадение по времени наибольшей активной нагрузки системы и реактивной мощности промышленного предприятия. Значения для разных отраслей промышленности Lomax= 0,75...0,95.Значения наибольших реактивной и активной нагрузок предприятия сообщаются в энергосистему для определения значения экономически оптимальной реактивной мощности, которая может быть передана предприятию в режимах наибольшей и наименьшей активных нагрузок энергосистемы, соответственно Оэ1 и Оэ2.По реактивной мощности Оэ1 определяется суммарная мощность компенсирующих устройств предприятия, а в соответствии с заданным значением Оэ2 — регулируемая часть компенсирующих устройств.Суммарная мощность компенсирующих устройств:(12)В период минимальных активных нагрузок системы входная реактивная мощность предприятия должна быть равна Оэ2, для чего требуется отключение части установленной на предприятии мощности КУ.

Основные потребители реактивной мощности на промышленных предприятиях

Рассмотрим основные виды электроприемников различного технологического назначения, электропотребителей разных отраслей промышленности, характер их нагрузок и особенности режимов работы.Электродвигатели применяются в приводах различных производственных механизмов на всех промышленных предприятиях. Электропривод представляет собой комплекс электрических машин, аппаратов и систем управления, в котором электродвигатели конструктивно связаны с исполнительным механизмом и преобразуют электрическую энергию в механическую работу. В установках, не требующих регулирования скорости в процессе работы, применяются исключительно электроприводы переменного тока (асинхронные и синхронные двигатели).го тока — основной вид электроприемников в промышленности, на долю которого приходится около 2/3 суммарной мощности. Доля электропотребления асинхронными двигателями напряжением 0,38 кВ составляет 52% в машиностроении.Электротермия, электросварка, электролиз и прочие потребители составляют около 1/3 суммарной промышленной нагрузки.Электротермические приемники в соответствии с методами нагрева делятся на следующие группы: дуговые электропечи для плавки черных и цветных металлов, установки индукционного нагрева, для плавки и термообработки металлов и сплавов, электрические печи сопротивления, электросварочные установки, термические коммунально-бытовые приборы.Наибольшее распространение в цеховых электрических сетях напряжением 0,38 кВ имеют печи сопротивления и установки индукционного нагрева. Печи сопротивления прямого и косвенного действия имеют мощность до 2000 кВт и подключаются к сети напряжением: 0,38 кВ, коэффициент мощности близок к 1,0.Индукционные плавильные печи промышленной и повышенной частоты представляют собой трехфазную электрическую нагрузку «спокойного» режима работы. Печи повышенной частоты питаются от вентильных преобразователей частоты, к которым подводится переменный ток напряжением 0,4 кВ. Индукционные печи имеют низкий коэффициент мощности: от 0,1 до 0,5.Электросварочные установки переменного тока дуговой и контактной сварки представляют собой однофазную неравномерную и несинусоидальную нагрузку с низким коэффициентом мощности: 0,3 — для дуговой сварки и 0,7 — для контактной.  Электрохимические и электролизные установки работают на постоянном токе, который получают от преобразовательных подстанций, выпрямляющих трехфазный переменный ток. Коэффициент мощности установок — 0,8.. .0,9.Установки электрического освещения с лампами накаливания, люминесцентными, дуговыми, ртутными, натриевыми, ксеноновыми лампами применяются на всех предприятиях для внутреннего и наружного освещения. В производственных цехах в настоящее время применяются преимущественно дуговые ртутные лампы высокого давления типов ДРЛ и ДРИ 220 В.Аварийное освещение, составляющее 10% общего, выполняется лампами накаливания. Лишь лампы накаливания имеют коэффициент мощности 1,0.

Потребление реактивной мощности асинхронными двигателями

В настоящее время наиболее распространенное выражение реактивной нагрузки асинхронного двигателя (АД) имеет вид:(13)гдеqH0M — номинальная реактивная мощность АД, которая может быть определена по паспортным данным двигателя. (14)После некоторых преобразований получим выражение полной реактивной нагрузки:(15)гдеРи„„. — номинальная полезная активная мощность на валу, указываемая на заводском щитке;1Н0М — номинальное фазное значение тока статора;lx х — ток холостого хода электродвигателя; т|ном — коэффициент полезного действия;К3 = р/рном — коэффициент загрузки АД по активной мощности;tgφnoM — коэффициент реактивной мощности, соответствующий номинальному коэффициенту мощности cosφHOM, указанному на щитке.Для удобства расчетов преобразуем формулу

  1. в следующую:

(16)где(17)Здесь UH0M — номинальное напряжение двигателя, 1х х — относительный ток холостого хода АД.На рис. 1 и 2 приведены зависимости коэффициентов а1 и Р1 от активной номинальной мощности Рно„ при числе пар полюсов п = 1, 2, 3, 4 для короткозамкнутых АД серии 4А.

сит от К3 АД и определяется следующим выражением: Рис. 1. Г рафик зависимостей коэффициента а1 от активной номинальной мощности АДtgφ = аКз + р/К3,                           (18)На рис. 3 представлены графики зависимостей tgφAfl = /(К3) для АД различных групп мощностей.

7. Источники реактивной мощности (компенсирующие устройства)

На промышленных предприятиях применяют следующие компенсирующие устройства: Рис. 2. График зависимостей коэффициента от активной номинальной мощности и числа пар полюсов п АД

  1. для компенсации реактивной мощности — синхронные двигатели и параллельно включаемые батареи силовых конденсаторов;
  2. для компенсации реактивных параметров передачи — батареи силовых конденсаторов последовательного включения.

 Рис. 3. График зависимостей коэффициента реактивной мощности от коэффициента загрузки для АД различных групп мощностейСинхронные двигатели как источник реактивной мощности. Основное назначение синхронных двигателей — выполнение механической работы, следовательно, он является потребителем активной мощности. При перевозбуждении СД его Э. Д. С. больше напряжения сети, в результате вектор тока статора опережает вектор напряжения, т.е. имеет емкостной характер, а СД выдают реактивную мощность. При не до возбужден ии СД является потребителем реактивной мощности. При некотором режиме возбуждения СД его коэффициент мощности равен единице. Изменение тока возбуждения позволяет плавно регулировать генерируемую СД реактивную мощность. Затраты на генерацию двигателями реактивной мощности определяются в основном стоимостью связанных с этим потерь активной мощности в самом двигателе. Потери активной мощности в СД зависят от генерируемой ими реактивной мощности, причем, чем меньше номинальная мощность СД и его частота вращения, тем больше эти потери. Для быстроходных СД удельный расход активной мощности составляет около 10 Вт/квар; для СД с частотой вращения 300... 500 об/мин — около 20... 30 Вт/квар; для СД с частотой вращения 50... 100 об/мин — около 60.. .85 Вт/квар. Следовательно, маломощные двигатели с малой частотой вращения неэкономичны в качестве ИРМ. В качестве ИРМ обычно используют СД на номинальное напряжение 6 или 10 кВ, недогруженные по активной мощности.Значения реактивной мощности, которую можно получить от СД, зависят от его загрузки активной мощностью и относительного напряжения на зажимах двигателя;Силовые конденсаторы. Силовые конденсаторы — специальные однофазные или трехфазные емкости, предназначенные для выработки реактивной мощности.

Схемы присоединения конденсаторных батарей Рис. 4. Схемы присоединения конденсаторных батарей:а) через выключатель на напряжении 6...10 кВ;б) через рубильник и предохранитель на напряжении до 1 кВМощность конденсаторов в одном элементе составляет 5... 100 квар, номинальное напряжение — от 220 В до 10 кВ. Реактивная мощность, вырабатываемая конденсатором:(19)гдеU — напряжение на зажимах конденсатора;ш — угловая частота переменного тока;Ск — емкость конденсатора, которая определяется, в основном, площадью обкладок.В установках с большей мощностью и на большее напряжение применяют батареи конденсаторов с параллельным и последовательно-параллельным включением элементов. Увеличение номинального напряжения конденсаторной батареи достигается последовательным включением элементов, а для увеличения мощности применяют параллельное соединение элементов.Обычно конденсаторы включаются в сеть по схеме треугольника (рис. 4). При отключении конденсаторов необходимо, чтобы запасенная в них энергия разряжалась автоматически на постоянный трансформатор напряжения).Конденсаторы по сравнению с СД обладают следующими преимуществами: простотой эксплуатации вследствие отсутствия вращающихся частей; простотой монтажных работ вследствие малой массы; малыми потерями активной мощности на выработку реактивной (2,5...5 Вт/квар).К недостаткам конденсаторов относят зависимость генерируемой реактивной мощности от напряжения, недостаточную стойкость к токам КЗ и перенапряжениям, чувствительность к искажениям формы кривой подводимого напряжения, невозможность плавного изменения мощности конденсаторной установки.

Размещение компенсирующих устройств в системах электроснабжения промышленных предприятий

После определения суммарной мощности компенсирующих устройств Оку, требуемых к установке в системе электроснабжения промышленного предприятия по условиям питающей энергосистемы, необходимо решить задачу размещения и выбора типа КУ в сетях промышленного предприятия.Суммарная мощность КУ обеспечивается возможным использованием располагаемой реактивной мощности синхронных двигателей Осд и установкой в сетях батарей конденсаторов напряжением до и выше 1 кВ, т.е. соответственно QBH и Обв:(20)Реактивная мощность £NtQt, передаваемая со стороны высокого напряжения через цеховые трансформаторы (6...10/0,4...0,6 кВ) по условию баланса мощностей на шинах напряжением до 1 кВ трансформаторов, выражается формулой:(21)Величина £NtQt определяется номинальной мощностью цеховых трансформаторов SH0M т при их числе NT, коэффициенте загрузки трансформатора Кзт и расчетной активной нагрузки до 1 кВ Ppac4vH:(22)при условииНеобходимо определить оптимальное соотношение мощности источников реактивной мощности, устанавливаемых на стороне ниже 1 кВ Обн, и передачипотери на генерацию реактивной мощности источниками напряжением до и выше 1 кВ, потери на £NtQt от сети напряжением выше 1 кВ в сеть напряжением ниже 1 кВ и, главное, увеличение мощности цеховых трансформаторов при увеличении £NtQt.Реактивная мощность QT, протекающая через один трансформатор цеховой ТП, определяется по условию минимума потерь активной мощности без учета активных сопротивлений кабельных линий сети напряжением 10 кВ для группы из NT трансформаторов с одинаковой номинальной мощностью:(23)Мощность батареи конденсаторов, устанавливаемых в сети напряжением до 1 кВ, питающейся от конкретного j-ro трансформатора, определяется исходя из величины QT и реактивной нагрузки Qpac4j приемников электроэнергии этой сети: По полученному значению QgHj следует определить стандартное значение мощности конденсаторной установки QKyj.Расчеты показали, что передача реактивной мощности в сеть напряжением до 1 кВ оказывается невыгодной, если это вызывает увеличение числа трансформаторов сверх необходимого числа вследствие большой стоимости комплектных трансформаторных подстанций.Мощность компенсирующих устройств в сети напряжением выше 1 кВ определяется по условию баланса реактивной мощности на шинах вторичного напряжения главной понижающей подстанции. Если в системе электроснабжения имеются высоковольтные СД, которые могут быть использованы как ИРМ, то определяется их располагаемая реактивная мощность, и если их мощность С) недостаточна для соблюдения условий баланса, то определяется мощность батарей конденсаторов высокого напряжения:(25)Если цеховые трансформаторы имеют низкий коэффициент загрузки и коэффициент реактивной мощности нагрузки сетей напряжением до 1 кВ не превышает единицы, то предпочтительнее установка батарей конденсаторов в сети напряжением выше 1 кВ вследствие их более низкой удельной стоимости 1 квар, чем у низковольтных конденсаторов.1 кВ целесообразно устанавливать на вторичном напряжении главной понижающей подстанции или распределительной подстанции, а также на РП в системе электроснабжения предприятия. Не рекомендуется устанавливать конденсаторы напряжением выше 1 кВ на бесшинных цеховых подстанциях, на которых трансформаторы присоединены наглухо или через разъединитель, выключатель нагрузки и предохранитель, так как присоединение конденсаторных установок к этим подстанциям вызовет их усложнение и удорожание.Нерегулируемые конденсаторные установки на напряжение до 1 кВ обычно присоединяются к цеховым распределительным пунктам, магистральным шинопроводам, если этому не препятствует окружающая среда. Место установки регулируемых конденсаторных установок напряжением до 1 кВ выбирается с учетом требований регулирования напряжения или реактивной мощности.Точка присоединения БН одной батареи конденсаторов к магистральному шинопроводу ШМА определяется ориентировочно:(26)гдеL0-6; L0и — длины магистрального шинопровода ШМА от начальной точки «О» до точек присоединения «Б» и «1» — первого распределительного ШРА, м;Ц к — длина распределительной части ШМА от точки «1» до конечной точки магистрального шинопровода «К», м;Отах — максимальная реактивная нагрузка ветви «0-1» шинопровода ШМА.Окончательно конденсаторы устанавливаются в точке присоединения ШРА, ближайшего к расчетной точке «К» в сторону цеховой трансформаторной подстанции.Не рекомендуется чрезмерное дробление мощности конденсаторных установок в сетях напряжением до и выше 1 кВ, так как это приводит к значительному увеличению удельных затрат на отключающую аппаратуру, измерительные приборы, конструкции и прочее на 1 квар установленной мощности батареи. Единичная мощность БК на напряжении выше 1 кВ принимается не менее 400 квар, если присоединение выполняется с помощью отдельного выключателя. В сетях низшего напряжения не рекомендуется применять БК мощностью менее 30 квар.Если расчетная мощность БК на отдельных участках получается менее указанных значений, то БК на них не устанавливается.

Регулирование мощности компенсирующих устройств

Задание питающей энергосистемой двух значений входной реактивной мощности, которые могут быть переданы предприятию в режимах наибольшей и наименьшей активных нагрузок системы, соответственно Qs1 и Оэ2 (причем Оэ2 = 0 практически во всех случаях), предопределяет необходимость регулирования потребления реактивной мощности предприятием в течение суток.Для регулирования потребления реактивной мощности используется автоматическое регулирование возбуждения синхронных машин и регулирование батарей конденсаторов.Регулирование конденсаторами реактивной мощности может вестись только ступенями путем деления батарей на части. Чем больше число таких ступеней, тем совершеннее регулирование, но тем больше затраты на установку переключателей и защитной аппаратуры. Обычно мощность батарей конденсаторов разделяется на две ступени:

  1. базовую QK 6аз, равную реактивной нагрузке предприятия в часы минимума активных нагрузок энергосистемы, включенную постоянно;
  2. регулируемую QK per = QKy — QK 6аз, включаемую в часы максимальных активных нагрузок энергосистемы.

Ступенчатое регулирование батарей конденсаторов может производиться как вручную, так и автоматически. Автоматическое регулирование конденсаторных батарей может производиться в функции:

  1. напряжения;
  2. тока нагрузки;
  3. направления реактивной мощности относительно направления активной мощности;
  4. по времени суток.

 Рис. 5. Схема влияния установки компенсирующих устройств на параметры режимов электрической сети

Поэтому на напряжении до 1 кВ для коммутации БК обычно применяют контакторы, на напряжении выше 1 кВ — воздушные, элегазовые или вакуумные выключатели. Для устранения переходных процессов при коммутации БК вместо выключателей можно использовать тиристорные ключи, которые позволяют включать конденсаторы в тот момент, когда мгновенное напряжение на конденсаторах равно напряжению сети, и отключать их, когда мгновенное значение тока в конденсаторах равно нулю.

Установка компенсирующих устройств влияет на параметры режимов электрической сети, изменяя токи в ветвях и напряжения в узлах.Рассмотрим влияние компенсации реактивной мощности на примере одной ветви схемы (рис. 5).Уменьшение полных мощностей и токов. При наличии в конце ветви КУ мощностью QK полная мощность, протекающая в ветви при номинальном напряжении UH0M:(27)гдеtgφ — коэффициент реактивной мощности нагрузки;Cq — степень компенсации реактивной мощности, равная отношению реактивной мощности КУ при номинальном напряжении к реактивной нагрузке электропотребителя ЭП Qn ном при номинальном напряжении:(28)Поскольку площади сечений линий и мощности трансформаторов выбирают по полной мощности (или току), ее уменьшение при Cq < 1 позволяет в ряде случаев применять оборудование меньших номиналов, т.е. снизить капитальные затраты, если же сеть уже эксплуатируется, то компенсация реактивной мощности позволяет повысить ее пропускную способность по активной мощности и, следовательно, при увеличении нагрузки потребителя не менять электрооборудование.При полной компенсации реактивной нагрузки, т.е. при Cq= 1, мощность ветви имеет минимальное значение: когда Cq > Qn ном, полная мощность становится больше минимальной Sc=1.Снижение нагрузочных потерь мощности. Для каждой ветви с активным R и реактивным X сопротивлением потери полной мощности определяются как:(30)Потери полной мощности в сети при протекании только активной мощности потребителя при номинальном напряжении UH0M, т.е. минимально возможные потери активной мощности при прочих равных условиях:(31)Отношение(32)позволяет проанализировать влияние степени компенсации реактивной мощности Cq при разных значениях коэффициента реактивной мощности нагрузки tgφ на нагрузочные потери мощности. Отметим, что d0 = I2, если напряжение равно номинальному значению UH0M.На рис. 6 показаны зависимости I2 = AS/ASp при разных значениях коэффициента реактивной мощности tgφ = 0,4; 1; 1,5 и номинальном напряжении U ном, из которых можно сделать вывод об эффективности степени компенсации реактивной мощности.Как видно из этих зависимостей, уровень соотношения I2 в первую очередь определяется степенью компенсации реактивной мощности и коэффициентом реактивной мощности.Например, без компенсации при Cq = 0 и tgφ = 1: I2 = 2, т.е. реальные потери мощности больше минимальных в два раза; а при полной компенсации Cq = 1 и любом значении коэффициента реактивной мощности I2 = 1.Отметим, что при перекомпенсации Cq > 1 и нагрузочные потери мощности становятся больше минимальных ASp.Снижение потерь напряжения. Потери напряжения при номинальном напряжении на потребителе:где£ — отношение реактивных и активных сопротивлений элемента сети: е = X/R. Очевидно, что компенсация реактивной мощности оказывает наибольшее влияние на потери напряжения в элементах с большим значением е, т.е. в элементах с преобладанием реактивного сопротивления, каковыми являются трансформаторы и воздушные линии.

 Рис. 6. Зависимости I2 = AS/ASp = fCq; tg<p при номинальном напряженииНапряжение на приемном конце линии UK равно разности напряжения начала Un и потерь напряжения AUnK, т.е.:(34)Следовательно, при установке КУ напряжение в конце линии повышается. При перекомпенсации (Cq > 1) потери напряжения могут принять отрицательное значение AUnK < О, напряжение в конце линии может стать больше напряжения в начале, т.е. U > U .

Батареи конденсаторов в сетях с резкопеременной и вентильной нагрузкой

Характерными резкопеременными нагрузками являются сварочные нагрузки на машиностроительных предприятиях, дуговые печи, прокатные станы и др. Главные приводы прокатных станов оснащаются регулируемыми вентильными преобразователями.Нагрузки с регулируемыми вентильными преобразователями характеризуются большим потреблением реактивной мощности. Резкопеременный характер потребления реактивной мощности вызывает колебания напряжения в сети.

Однолинейная схема питающей сети с конденсаторными батареями  а)Рис. 7. Однолинейная схема питающей сети с конденсаторными батареями и фильтрами высших гармоник (а) и схема замещения (б)

Управляемые вентильные преобразователи, кроме того, значительно искажают форму кривой питающего напряжения. Нагрузки дуговых печей ввиду неравномерности потребления тока по фазам могут вызывать значительную несимметрию напряжения.Все изложенное обусловливает принципы компенсации реактивной мощности, существенно отличающиеся от общепринятых в сетях с так называемой спокойной нагрузкой.Особенности компенсации реактивной мощности в сетях с резкопеременной и вентильной нагрузкой заключаются в следующем:

  1. ввиду низкого коэффициента мощности потребителей и резкопеременного характера нагрузки необходимо осуществить компенсацию как постоянной и переменной составляющей реактивной мощности. Компенсация постоянной составляющей реактивной мощности необходима для уменьшения потребления реактивной мощности от энергосистемы. Компенсация переменной составляющей реактивной мощности преследует цель уменьшения колебаний напряжения в питающей сети;
  2. ввиду быстрых изменений потребляемой реактивной мощности необходимо применение быстродействующих компенсирующих устройств, способных изменять регулируемую реактивную мощность со скоростью, соответствующей скорости наброса и сброса потребляемой реактивной мощности;
  3. ограничивается применение батарей конденсаторов для компенсации постоянной составляющей реактивной мощности в сети с резкопеременной вентильной нагрузкой. Это обусловлено наличием в сети высших гармоник тока и напряжения при работе вентильных преобразователей, которые приводят к значительным перегрузкам батарей конденсаторов;
  4. при наличии в сети высших гармоник тока и напряжения включение конденсаторов приводит к резонансным явлениям на частотах высших гармоник, что ведет к нарушению нормальной работы БК.

Сущность явлений резонанса удобно рассмотреть на примере простой схемы электроснабжения промышленного предприятия, показанной на рис. 7. На схеме показаны три основных элемента, участвующих в резонансном процессе:

  1. питающая сеть, упрощенно представленная в схеме замещения индуктивным Хс и активным Rc сопротивлениями;

 Рис. 8. Однолинейная схема защиты конденсаторной батареи от высших гармоник

  1. вентильный преобразователь как источник высших гармоник с сопротивлениями Хпр и Rnp — индуктивно-активная цепь в схеме замещения;
  2. батарея конденсаторов С и RK — емкостно-активная цепь в схеме замещения.

При отсутствии емкостных элементов (при отключении БК) частотные характеристики Хс линейны. Включение БК резко изменяет линейный характер частотной характеристики питающей сети, причем нелинейность частотной характеристики в значительной степени зависит от добротности контура, т.е. от соотношения X/R. Нелинейность частотной характеристики питающей сети объясняется тем, что при включении БК образуется параллельный LC-контур, состоящий из индуктивного сопротивления питающей сети и емкостного сопротивления конденсатора. Таким образом, изменяются частотные характеристики систем и возникают условия для возникновения резонанса на частотах, превышающих промышленную частоту 50 Гц. Вентильные преобразователи генерируют в сеть спектр гармоник, начиная с пятой, поэтому в каждом конкретном случае необходим расчет токовой нагрузки БК резонансной группой гармоник (вплоть до 59, 61, 71 гармоник).Батареи конденсаторов, предназначенные для компенсации реактивной мощности в сетях, питающих нелинейную нагрузку, для их нормальной работы необходимо защищать реакторами, устанавливаемыми последовательно с конденсаторами (рис. 8).

www.pomoshelektrikam.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта