Коэффициент мощности как найти: Коэффициент мощности

Содержание

Коэффициент мощности

Коэффициент мощности (Power Factor) – комплексный показатель, характеризующий потери энергии в электросети,
обусловленные фазовыми и нелинейными искажениями тока и напряжения в нагрузке,
численно равный отношению активной мощности P нагрузки к её полной мощности S.


Реактивная составляющая

Наиболее значимую часть потерь в сети создают реактивные элементы
по причине своей физической способности накапливать и возвращать неиспользованную энергию обратно в источник.
Реактивная составляющая тока нагрузок не осуществляет полезной работы,
но остаётся в виде падения напряжения на активном сопротивлении всех участков сети энергосистемы,
попросту разогревая провода ЛЭП, кабели и трансформаторы подстанций.

В этом случае, если не рассматривать другие потери,
коэффициент мощности будет равен косинусу угла сдвига фаз между током и напряжением в нагрузке.

PF = P/S = cosφ

PF — Power Factor — Коэффициент Мощности (КМ).
P — Потребляемая (полезная, активная) мощность. P=UIcosφ.
S — Полная мощность. S = UI.
φ — Угол сдвига фаз между током и напряжением, созданный реактивными элементами нагрузок (обмотки электродвигателей,
трансформаторов, электромагнитов …)
Подробнее об этом на страничке реактивная мощность.

В целях устранения реактивных потерь на производственных предприятиях используют специальные конденсаторные установки,
компенсируя положительный сдвиг фаз, созданный индуктивными нагрузками.
На начальном этапе компенсация фазового сдвига, внесённого суммарно всеми потребителями сети, осуществляется на электростанциях путём контроля подмагничивания роторных обмоток генераторов.


Гармонические искажения

В настоящее время большая часть бытовой техники является для электросети нелинейной нагрузкой.
Телевизоры, компьютеры, мониторы, муз. центры, адаптеры, зарядные устройства, энергосберегающие лампочки и многие другие бытовые приборы
имеют выпрямитель или импульсный блок питания, искажающий форму тока.
В результате, дополнительно к основной частоте 50 гц, в сети появляются высшие кратные гармоники — 100 гц, 150 гц, 200 гц, 250 гц и.т.д…
Высшие гармоники тока на активной нагрузке выделяют активную мощность, но энергетически не связаны с источником (генератором)
и являются потерями для энергосистемы.
Мощность высших гармоник, как и реактивная, будет рассеиваться на активном сопротивлении проводов, кабелей,
трансформаторов и линий электропередач в виде тепла и других негативных явлений в силовых установках сети (паразитный резонанс, вихревые токи и.т.д…).
Коэффициент мощности для нелинейных нагрузок определится из коэффициента гармоник соотношением:

DPF (Distortion Power Factor) — это тот же PF, но только для гармонических искажений, без учёта сдвига фаз.

THD (Total Harmonic Distortion) — коэффициент гармоник,
равный отношению суммы квадратов тока или напряжения высших гармоник к квадрату тока (напряжения) основной гармоники.

В этом случае коэффициент мощности можно выразить, как отношение действующего значения тока основной гармоники
к действующему значению тока в нагрузке.

Многие бытовые потребители снабжены симисторным регулятором мощности,
который не только вносит гармонические искажения тока, но и сдвигает фазу основной гармоники тока, что приводит к дополнительным (фазовым) потерям.
То есть, в таких случаях, коэффициент мощности определится не только коэффициентом искажений, но и сдвигом фазы основной гармоники.

Здесь cosφ1 — косинус угла сдвига фазы тока основной (первой) гармоники относительно напряжения сети.

Современные пылесосы и стиральные машины с симисторными регуляторами оборотов вносят весь комплекс искажений тока по причине наличия электродвигателя,
как реактивной составляющей в нагрузке.
Тогда угол сдвига фаз для основной гармоники в расчётах увеличится с учётом общего сдвига тока индуктивностями обмоток двигателя.

Более существенные гармонические искажения в электросети возникают при использовании мощных сварочных преобразователей — инверторов,
которые могут искажать не только форму тока, но и напряжения в сети.
А это внесёт дополнительные потери мощности для всех других потребителей этой сети.

В общем случае для любых нагрузок, независимо от степени искажений и угла сдвига фаз, коэффициент мощности PF можно определить, как соотношение P/S,
вычислив активную P и полную S мощности интегрированием тока и напряжения во времени,
которое способны произвести современные цифровые измерительные приборы на основе микроконтроллеров.

Потребляемая (активная) мощность P — это среднее значение мощности в нагрузке за период,
т.е среднеарифметическое всех мгновенных значений UI.
Полная мощность — это произведение среднеквадратичных значений напряжения сети и тока нагрузки.
Тогда коэффициент мощности вычисляется следующим образом:

В целях компенсации гармонических искажений, в электрические потребители, содержащие нелинейные элементы в силовых цепях,
устанавливают специальные Корректоры Коэффициента Мощности (ККМ) — Power Factor Correction (PFC),
которые могут быть как пассивными (фильтры L или LC), так и активными.
Активные PFC — это преобразователи, способные приблизить форму тока в нагрузке к синусоидальной,
тем самым устранив (по возможности) высшие гармоники из общего спектра колебаний тока.

В качестве ознакомления можно посмотреть пример использования вышеописанных расчётных формул для варианта с симисторным управлением активной нагрузкой
по ссылке ограничение мощности симистором.

Другие полезные статьи:
Закон Ома.
Дизель-генератор.


Замечания и предложения принимаются и приветствуются!

Как найти коэффициент мощности асинхронного двигателя

Содержание

  1. Коэффициент мощности асинхронного двигателя — от чего зависит и как изменяется
  2. Cos φ и реактивная мощность: что и как?
  3. Косинус угла в электротехнике
  4. Размерности. Что в чём измеряется
  5. Минусы и плюсы наличия реактивной составляющей
  6. Коэффициент реактивной мощности Тангенс φ
  7. Отрицательный косинус
  8. Если интересны темы канала, заходите также на мой сайт — https://samelectric. ru/ и в группу ВК — https://vk.com/samelectric
  9. Статьи в тему производства:
  10. Некоторые мои статьи на Дзене про электродвигатели и пром.оборудование:
  11. Не забываем подписываться и ставить лайки, впереди много интересного!
  12. Косинус фи (cos φ) — Коэффициент мощности
  13. Условные обозначения
  14. Что такое Косинус фи (cos φ) — «Коэффициент мощности»
  15. Активная нагрузка
  16. Емкостная нагрузка
  17. Индуктивная нагрузка
  18. Треугольник мощностей
  19. Комментарии и отзывы
  20. Косинус фи (cos φ) — Коэффициент мощности : 23 комментария

На шильдике (информационной табличке) любого асинхронного двигателя, кроме других рабочих параметров, указан такой его параметр как косинус фи — Cosфи. Косинус фи иначе называется коэффициентом мощности асинхронного двигателя.

Почему этот параметр называется косинусом фи, и какое отношение он имеет к мощности? Все довольно просто: фи — это разность фаз между током и напряжением, и если изобразить графически активную, реактивную и полную мощности, имеющие место при работе асинхронного двигателя (трансформатора, индукционной печи и т. д.), то окажется, что отношение активной мощности к полной мощности — это и есть косинус фи — Cosфи, или другими словами — коэффициент мощности.

При номинальном напряжении питания и при номинальной нагрузке на валу асинхронного двигателя, косинус фи или коэффициент мощности как раз и будет равен тому значению, которое указано на его шильдике.

Например, для двигателя АИР71А2У2 коэффициент мощности будет равен 0,8 при нагрузке на валу 0,75 кВт. Но КПД этого двигателя равен 79%, следовательно потребляемая двигателем активная мощность при номинальной нагрузке на валу окажется больше 0,75 кВт, а именно 0,75/КПД = 0,75/0,79 = 0,95 кВт.

Тем не менее, при номинальной нагрузке на валу, параметр коэффициент мощности или Cosфи связан именно с потребляемой из сети энергией. Значит полная мощность данного двигателя окажется равна S = 0,95/Cosфи = 1,187 (КВА). Где P = 0,95 – потребляемая двигателем активная мощность.

При этом коэффициент мощности или Cosфи связан с нагрузкой на валу двигателя, поскольку при разной механической мощности на валу — разной будет и активная составляющая тока статора. Так, в режиме холостого хода, то есть когда к валу ничего не присоединено, коэффициент мощности двигателя не превысит, как правило, значения 0,2.

Если же нагрузку на валу начать увеличивать, то активная составляющая тока статора также будет расти, следовательно коэффициент мощности возрастет, и при близкой к номиналу нагрузке окажется равным примерно 0,8 — 0,9.

Если теперь нагрузку продолжить увеличивать, то есть нагружать вал сверх номинала, то ротор будет тормозиться, возрастет величина скольжения s, индуктивное сопротивление ротора станет вносить свой вклад, и коэффициент мощности начнет уменьшаться.

Если двигатель определенную часть рабочего времени работает вхолостую, то можно прибегнуть к снижению подводимого напряжения, например переключением с треугольника на звезду, тогда фазное напряжение на обмотках уменьшится в корень из 3 раз, снизится индуктивная составляющая от крутящегося вхолостую ротора, а активная составляющая в обмотках статора немного возрастет. Коэффициент мощности таким образом немного повысится.

Вообще, системы, питающиеся переменным током, такие как асинхронные двигатели, всегда обладают кроме активной еще и индуктивной и емкостной составляющими, поэтому каждые пол периода в сеть возвращается какая-то определенная часть энергии, называемая реактивной мощностью Q.

Этот факт вызывает у поставщиков электроэнергии проблемы: генератор вынужден поставлять в сеть полную мощность S, которая к генератору возвращается, но провода то все равно требуются соответствующего сечения под эту полную мощность, и, конечно, возникает паразитный нагрев проводов от циркулирующего туда-сюда реактивного тока. Получается, что генератор обязан поставлять полную мощность, часть которой в принципе является бесполезной.

В чисто активной форме генератор электростанции мог бы поставить потребителю гораздо больше электроэнергии, а для этого необходимо, чтобы коэффициент мощности был бы близок к единице, то есть как при чисто активной нагрузке, у которой Cosфи = 1.

Для обеспечения таких условий некоторые крупные предприятия устанавливают у себя на территории установки компенсации реактивной мощности, то есть системы из катушек и конденсаторов, которые автоматически подключаются параллельно асинхронным двигателям когда коэффициент их мощности снижается.

Получается, что реактивная энергия циркулирует между асинхронным двигателем и данной установкой, а не между асинхронным двигателем и генератором на электростанции. Так коэффициент мощности асинхронных двигателей доводят почти до 1.

Источник

Cos φ и реактивная мощность: что и как?

В этой статье хочу поделиться своими знаниями по таким понятиям, как коэффициент мощности (известный в народе как cos φ).

Статья не претендует на википедийность!

Если нужны академические знания, с ними можно ознакомиться в книгах и учебниках, которые выложены для свободного скачивания у меня на блоге, на странице Скачать .

Косинус угла в электротехнике

Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением. Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360.

На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:

  • P – активная мощность, которая тратится на совершение полезной работы,
  • S – полная мощность.

Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:

Повторяю: Кто хочет, почитайте про cos φ в Википедии, а я рассказываю своими словами.

В иностранной литературе cos φ называют PF (Power Factor). Фактически, это коэффициент, который говорит о сдвиге сигнала тока по отношению к сигналу напряжения.

На самом деле, всё не так просто, подробности ниже.

Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:

В видео подробно и доступно изложена вся теория по теме.

Размерности. Что в чём измеряется

Реактивная мощность Q ⇒ ВАР (Вольт · Ампер Реактивный),

Полная мощность S ⇒ ВА (Вольт · Ампер).

Кстати, в стабилизаторах и генераторах мощность указана в ВА . Так больше. Маркетологи знают лучше.
Также маркетологи знают, что на потребителях (например, на двигателях) мощность лучше указывать в кВт . Так меньше.

Минусы и плюсы наличия реактивной составляющей

При питании нагрузки, имеющей только активный характер, сдвиг фаз между током и напряжений равен нулю. Этот случай можно назвать идеальным, при нем можно питающие сети используются полностью, поскольку нет потерь на бесполезную реактивную составляющую.

Реактивная составляющая не так бесполезна. Она формирует электромагнитное поле, нужное для адекватной работы реактивной нагрузки.

В реальной жизни нагрузка, как правило, имеет индуктивный характер (ток отстает от напряжения), и является активно-реактивной. Поэтому всегда, когда говорят о сдвиге фаз и о косинусе, имеют ввиду индуктивную нагрузку.

Основными источниками реактивной составляющей электроэнергии являются трансформаторы и асинхронные электродвигатели.

Чисто реактивная (и чисто активная) нагрузка бывает только в учебнике. Реально за счет потерь всегда присутствует и активная составляющая тоже.

Реактивная составляющая мощности питания является негативным фактором, поскольку:

  • Возникают дополнительные потери в линиях передачи электроэнергии,
  • Снижается пропускная способность линий электропередачи,
  • Происходит падение напряжения на линиях передачи из-за увеличения реактивной составляющей тока питающей сети,
  • Происходит дополнительный нагрев и износ систем распределения и трансформации электроэнергии,
  • Возможно появление резонансных эффектов на частотах гармоник, что может вызвать перегрев питающих сетей.

По приведенным причинам необходимо понижать долю реактивной мощности в сети (повышать косинус) – это выгодно и энергоснабжающим организациям, и потребителям с распределенными сетями.

Пример: Для передачи определенной мощности нужен ток 100 А при cos φ = 1. Однако, при cos φ = 0,6 для обеспечения той же мощности нужно будет передать ток 166 А! Соответственно, нужно думать о повышении мощности питающей сети и увеличении сечения проводов…

Коэффициент реактивной мощности Тангенс φ

Часто более удобным является коэффициент реактивной мощности tg φ, который показывает отношение реактивной мощности к активной. Понятно, что при tg φ = 0 достигается идеал cos φ = 1.

Отрицательный косинус

Из школьного курса геометрии известно, что cos (φ) = cos (-φ) , то есть косинус любого угла будет положительной величиной.

Речь идёт, конечно, о диапазоне сдвига фаз, который физически возможен в энергетике.

Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!

В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ

В следующей статье я расскажу не только про косинус, но и про синус применительно к энергетике. А также, как с этим связаны гармоники питающего напряжения

Доходчиво ли я изложил? Делитесь в комментариях, будет интересно почитать!

Если интересны темы канала, заходите также на мой сайт — https://samelectric.ru/ и в группу ВК — https://vk.com/samelectric

  • Как узнать обороты асинхронника по обмотке
  • Как затормозить электродвигатель
  • Выбор ПЧ насоса
  • Как правильно охлаждать силовой шкаф
  • Как измерить пусковой ток электродвигателя
  • Как определить направление вращения ротора
  • Как по фото узнать скорость вращения двигателя?
  • Про температуру двигателя
  • Теплушка: как защитить электродвигатель
  • Контактор vs Пускатель : разница принципиальная!
  • Пример применения софтстартера
  • Как мы спалили софтстартер
  • Как мы спалили вводной автомат
  • Как мы спалили частотник: КЗ на входе
  • Оптический датчик: безопасность превыше всего!
  • Зачем нужен линейный контактор
  • Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?
  • «Звезда/Треугольник»: как работает схема
  • «Звезда/Треугольник»: примеры реализации схемы
  • Что будет, если вместо «Треугольника» двигатель включить в «Звезду»?(Не повторять! Приготовьте огнетушитель!)
  • Контрольные цепи в промышленном оборудовании: принципы построения
  • Пошлый турецкий станок

Не забываем подписываться и ставить лайки, впереди много интересного!

Обращение к хейтерам:
за оскорбление Автора и Читателей канала — отправляю в баню.

Источник

Косинус фи (cos φ) — Коэффициент мощности

На шильдиках двигателей и некоторых других устройств можно видеть непонятный параметр косинус фи (cos φ). Что этот параметр означает, в данной статье коротко объясняется, что это такое.
Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока.
Иногда для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Условные обозначения

P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.

Что такое Косинус фи (cos φ) — «Коэффициент мощности»

Косинус фи (cos φ) это косинус угла между фазой напряжения и фазой тока.
При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А как мы знаем cos0=1. То есть при активной нагрузке коэффициент мощности равен 1 или 100%.

Активная нагрузка

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз».
При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.
При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения
А почему тогда косинус фи (cos φ) это тоже самое что коэффициент мощности, да потому что S=U*I.
Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Емкостная нагрузка

Индуктивная нагрузка

Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю.
Получается что полезная, активная мощность равна 0(нулю).

Коэффициент мощности это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.

Треугольник мощностей

Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.

Q =U x I x sin φ

На практике. Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить тоже есть, при этом ни какой полезной работы не совершается. Соответственно активная мощность минимальна.
Если на двигателе увеличить нагрузку то сдвиг фаз начнет уменьшаться и соответственно косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.

К счастью счетчики активной мощности фиксируют соответственно только активную мощность. И нам не приходится переплачивать за полную мощность.

Однако у реактивной мощности есть большой минус она создает бесполезную нагрузку на электрическую сеть из-за этого образуются потери.

Комментарии и отзывы

Косинус фи (cos φ) — Коэффициент мощности : 23 комментария

Я у себя на даче подключил к сети ГИГАНТСКУЮ батарею конденсаторов из старых люминисцентных светильников и счётчик у меня практически не крутится. Реактивная нагрузка компенсирует активную (чайники, обогреватели, лампочки и т.п.). И никто не докапается, пломбы на счётчике не сорваны, незаконных подключений нет, а розетка – моя, что хочу, то туда и включаю. К сожалению, этот фокус не проходит с электронными счётчиками, которые повсеместно ставят в Москве.

mankubus – так какую- же ёмкость вы подключили к сети? (P.s у меня просто еще не эллектронный счетчик – вот и хочу поэксперементировать! )
Спасибо

расход электроэнергии зависит от емкости(микрофарат) конденсатора?

Графики перепутаны. На графике “Емкостная нагрузка” должно быть написано: “Индуктивная нагрузка”, и наоборот на графике “Индуктивная нагрузка” должно быть указано “Емкостная нагрузка”. Грамотеи, на весь рунет “прославились”.

Ну и горе электрик ты, чайники, обогреватели, лампочки это активная нагрузка, тогда откуда берется реактивная ? из воздуха индуцируется ? Тогда же весь мир не платил бы за электричество. Лапшу на уши не вешай людям )))

Здравстуйте. на одном из фидеров после замены счечика вырос расход энергии.. при проверке показало что, cos ф=1, нагрузка на линии в основном: тр-ры и эл.двигатели.. . вчём может быть причина…? сам счетчик в норме. учет ведется на стороне 6кВ. если кто может разЪясните пожалуйста!

Алик перешли на почту: [email protected] запрос ,отправлю описание.

у вас на графиках всё наоборот – если ток отстает от напряжения, то начало его периода по времени начинается на графике ПОЗЖЕ, это будет индуктивная нагрузка. У вас же на приведенных графиках при индуктивной нагрузке ток(красная синусоида) начинается раньше по времени, чем напряжение (синяя). Это неверно. Посмотрите хотя бы измерения по осциллографу и практические графики (не реклама, можете ссылку вырезать – http://myboot.ru/index.php?option=com_content&view=article&id=59&catid=34 – в самом низу страницы)

Тоже обратил на это внимание, читаешь, пытаешься вникнуть, а тут с графиками накосячили и сбивают с толку)

с графиками нет косяков.

Графики с косяком. Ёмкостной ток должен быть слева от напряжения, а индуктивный – справа, т. к. направление оси “Х” – слева направо.
————
Пример с асинхронным двигателем также неудачен. Если двигатель крутится в холостую – это вовсе не значит, что будет одна реактивная мощность. Как раз наоборот – реактивки почти не будет (впрочем, как и активной энергии). НЕГРУЗКИ НЕТ!

Померяйте напряжение и ток и помножьте их. Увидите, что мощность есть. В двигателе и в трансформаторе не может не быть активной на холостом ходу, т.к. есть сопротивление поводов.

Уважаемый prospero графики верны. это связанно не с направлением оси Х, а с тем что ток в отличии от напряжения в катушке не может мгновенно достичь своего максимального значения, а для конденсаторов наоборот напряжение возрастает с убыванием тока. И ЭТО ЗАКОН. А графики ещё нужно уметь читать…

Графики не верны. Изучайте ТОЭ.

Мы анализируем не ток в катушке или напряжение в емкости, при подаче переменного напряжения, а строим графики тока и напряжения нагрузки чисто индуктивной (сдвиг по фазе напряжения и тока на 90 эл. гр. – ток отстает от напряжения на 90 эл. гр.) и при чисто емкостной нагрузке – напряжение отстает от тока на 90 эл. гр.

На графиках рассмотрены только 2 примера, когда либо ток, либо напряжение равны нулю. Как следствие перемножения – мощность =0. Но есть и промежуточные варианты, когда ни один из множителей не равен нулю. Почему не рассмотрен такой вариант ? Спасибо.

подскажите откуда в формуле расчета мощности берется корень из 3?

Павел, Наверное потому что 3 фазы, если 220 умножить на корень из 3 получится 380

полная мощность S = 3Uф x Iф = 1,73 x Uл x Iл = 3Uф x Iф =3 x Uл/1,73 x Iл
В симметричной 3-х фазной системе Iл = Iф, Uф = Uл/1,73
Корень из 3 = 1,7320508, примерно 1,73 Линейное напряжение больше фазного в 1,73 раза.
Смотрите ТОЭ, раздел “Трехфазный переменный ток” в любом учебнике электротехники.

в примере сказано,что про токе 1 и напряжению 0 мощности нет. позвольте,но это к.з.

1*0=0, мощности нет, работы тоже, какое КЗ?

Но ведь при КЗ ток = 1, а напряжение = 0, что не так?

Ох-ох-хо.
Книга есть. Автор Бессонов. ТОЭ называется. Очень доходчиво написано про электричество. Читайте, приобретайте знания. Зачем здесь смешить.

Источник

Понимание коэффициента мощности — Кооператив Laurens Electric

Коэффициент мощности — это мера того, насколько эффективно вы используете электроэнергию. Различные виды энергии работают, чтобы обеспечить нас электрической энергией. Вот что делает каждый.

Рабочая мощность – «истинная» или «реальная» мощность, используемая во всех электроприборах для выполнения работы по нагреву, освещению, движению и т. д. Мы выражаем ее в кВт или киловаттах. Распространенными типами резистивных нагрузок являются электрическое отопление и освещение.

Индуктивной нагрузке, такой как двигатель, компрессор или балласт, также требуется реактивная мощность для создания и поддержания магнитного поля для работы. Мы называем эту нерабочую мощность кВАр или киловольт-ампер-реактивная.

В каждом доме и офисе есть резистивные и индуктивные нагрузки. Соотношение между этими двумя типами нагрузок становится важным по мере добавления индуктивного оборудования. Рабочая мощность и реактивная мощность составляют полную мощность, которая называется кВА, киловольт-ампер. Мы определяем полную мощность по формуле кВА2 = кВ*А.

Идя еще дальше, коэффициент мощности (PF) представляет собой отношение рабочей мощности к полной мощности, или формула PF = кВт / кВА. Высокий PF приносит пользу как потребителю, так и коммунальному предприятию, в то время как низкий PF указывает на плохое использование электроэнергии.

Вот пример.

Операция штамповки стали выполняется при 100 кВт (рабочая мощность), а измеритель полной мощности регистрирует 125 кВА. Чтобы найти коэффициент мощности, разделите 100 кВт на 125 кВА, чтобы получить коэффициент мощности 80 %. Это означает, что только 80 % поступающего тока совершает полезную работу, а 20 % тратится на нагрев проводников. Поскольку Laurens Electric должна обеспечивать потребности всех клиентов как в кВт, так и в кВА, чем выше PF, тем эффективнее становится наша распределительная система.

Улучшение коэффициента мощности может максимизировать пропускную способность по току, повысить напряжение на оборудовании, снизить потери мощности и снизить счета за электроэнергию.

Самый простой способ улучшить коэффициент мощности — добавить в электрическую систему корректирующие конденсаторы коэффициента мощности. Конденсаторы коррекции коэффициента мощности действуют как генераторы реактивного тока. Они помогают компенсировать нерабочую мощность, используемую индуктивными нагрузками, тем самым улучшая коэффициент мощности. Взаимодействие между конденсаторами PF и специализированным оборудованием, таким как приводы с регулируемой скоростью, требует хорошо спроектированной системы.

Конденсаторы коррекции коэффициента мощности могут включаться каждый день при запуске индуктивного оборудования. Включение конденсатора может вызвать кратковременное состояние «перенапряжения». Если у заказчика возникают проблемы с самопроизвольным отключением преобразователей частоты из-за «перенапряжения» каждый день примерно в одно и то же время, проверьте последовательность управления переключением. Если клиент жалуется на перегорание предохранителей на некоторых, но не на всех конденсаторах, проверьте гармонические токи.

Коррекция коэффициента мощности конденсаторами

Описание:

Коэффициент мощности – это соотношение (фаза) тока и напряжения в электрических распределительных сетях переменного тока. В идеальных условиях ток и напряжение находятся «в фазе», а коэффициент мощности равен «100 %». Если присутствуют индуктивные нагрузки (двигатели), коэффициент мощности менее 100 % (обычно от 80 до 90 %).

Низкий коэффициент мощности, с точки зрения электротехники, вызывает более сильный ток, протекающий по линиям электропередачи, чтобы доставить определенное количество киловатт сверх электрической нагрузки.

Эффекты?

Система распределения электроэнергии в здании или между зданиями может быть перегружена избыточным (бесполезным) током.

Мощность систем генерации и распределения электроэнергии, принадлежащих Laurens Electric, измеряется в кВА (килоамперах).

КВА = ВОЛЬТ X АМПЕР X 1,73 (трехфазная система) / 1000

При единичном коэффициенте мощности (100%), для обеспечения 2000 кВт потребуется 2000 кВА мощности генерирующей и распределительной сети. Однако, если бы коэффициент мощности упал до 85%, потребовалась бы мощность 2353 кВА. Таким образом, мы видим, что более низкий коэффициент мощности оказывает обратное влияние на генерирующие и распределительные мощности.

Низкий коэффициент мощности перегружает генерирующие, распределительные и сети с избыточным кВА.

Если вы владеете большим зданием, вам следует рассмотреть возможность коррекции низкого коэффициента мощности по одной или обеим из следующих причин:

  • Чтобы снизить вероятность дополнительных расходов на коэффициент мощности в случае, если Laurens Electric начнет выставлять счета за корректировку коэффициента мощности и
  • Для восстановления мощности (кВА) перегруженных фидеров в здании или комплексе зданий.

Существует несколько методов коррекции низкого коэффициента мощности. Обычно используются: емкость.

Блоки конденсаторов

Наиболее практичным и экономичным устройством коррекции коэффициента мощности является конденсатор. Это улучшает коэффициент мощности, потому что влияние емкости прямо противоположно влиянию индуктивности.

Номинальная мощность конденсатора в кВАр показывает, сколько реактивной мощности будет отдавать конденсатор. Поскольку этот вид реактивной мощности компенсирует реактивную мощность, вызванную индуктивностью, каждый киловар емкости уменьшает чистую потребность в реактивной мощности на ту же величину. Например, конденсатор на 15 кВАр компенсирует 15 кВА индуктивной реактивной мощности.

Конденсаторы могут быть установлены в любой точке электрической системы и улучшат коэффициент мощности между точкой приложения и источником питания. Однако коэффициент мощности между нагрузкой и конденсатором останется неизменным. Конденсаторы обычно добавляются к каждой единице неисправного оборудования, перед группами двигателей (перед центрами управления двигателями или распределительными панелями) или в основных службах.

Переключаемые конденсаторы

Установки, оборудованные очень большими прерывистыми индуктивными нагрузками, такие как большие двигатели, компрессоры и т. д., могут потребовать переключаемых конденсаторов; то есть конденсаторы подключены к отдельным двигателям или группам двигателей. Поэтому они действуют только при включении нагрузки двигателя. Либо мощность может включаться и выключаться на подстанции в зависимости от измеренного коэффициента мощности. Функция переключения требуется только в том случае, если требуемые конденсаторы настолько велики, что вызывают нежелательный опережающий коэффициент мощности в то время, когда большие двигатели выключены.

Для получения дополнительной информации см. информационный бюллетень «Снижение стоимости коэффициента мощности» (pdf), опубликованный Министерством энергетики США. Примечание. Для просмотра и печати PDF-файлов требуется Adobe Acrobat Reader.

Объяснение коэффициента мощности — Инженерное мышление

Объяснение коэффициента мощности

Объяснение коэффициента мощности. В этом уроке мы рассмотрим коэффициент мощности. Мы узнаем, что такое коэффициент мощности, что такое хороший и плохой коэффициент мощности, как сравнивать коэффициент мощности, причины коэффициента мощности, почему и как исправить коэффициент мощности, а также некоторые примеры расчетов, которые помогут вам изучить электротехнику.
Прокрутите вниз, чтобы посмотреть БЕСПЛАТНОЕ руководство на YouTube

Итак, что такое коэффициент мощности?

Что такое коэффициент мощности

Коэффициент мощности — безразмерное число, используемое в цепях переменного тока. Его можно использовать для обозначения отдельной единицы оборудования, например, асинхронного двигателя, или для обозначения потребления электроэнергии во всем здании. В любом случае он представляет собой соотношение между истинной мощностью и кажущейся мощностью. Формула PF = кВт / кВА. Итак, что это значит?

Моя любимая аналогия для объяснения этого — аналогия с пивом.

Мы платим за пиво по стаканам, а внутри стакана и пиво, и пена. Чем больше у нас пива, тем меньше пены, поэтому мы получаем хорошее соотношение цены и качества. Если много пены, то пива мало, и мы не получаем хорошего соотношения цены и качества.

Коэффициент мощности Аналогия с пивом

Пиво представляет нашу истинную мощность или наши кВт, киловатты. Это полезные вещи, которые мы хотим и в которых нуждаемся, это то, что делает работу.

Пена представляет собой нашу реактивную мощность или наши реактивные кВАр, киловольт-ампер. Это бесполезные вещи, они всегда будут, и мы должны платить за них, но мы не можем их использовать, поэтому мы не хотим их слишком много. (на самом деле у него есть применение и назначение, но позже мы поймем почему)

Комбинация этих кВт и кВАр является нашей полной мощностью или нашей кВА. киловольт-ампер

.

Формула коэффициента мощности

Коэффициент мощности, таким образом, представляет собой отношение полезной мощности или фактической мощности в кВт, деленное на то, за что мы платим, в кВА. Таким образом, это говорит нам о том, какое соотношение цены и качества мы получаем за потребляемую мощность.

Треугольник мощности – коррекция коэффициента мощности

Если мы очень кратко коснемся терминов электротехники, мы можем увидеть это в виде треугольника мощности. В этом случае я нарисую его как ведущий фактор мощности, так как его легче визуализировать. Пиво или истинная мощность — это соседняя линия, затем у нас есть пена, которая представляет собой реактивную мощность на противоположной стороне, затем для стороны гипотенузы, которая является самой длинной стороной, у нас есть кажущаяся мощность, это под углом от истинного мощность, угол известен как тета.

Формулы коэффициента мощности

По мере увеличения реактивной мощности или пенообразования увеличивается и полная мощность или кВА. Затем мы могли бы использовать тригонометрию для вычисления этого треугольника, я не буду в этой статье, поскольку я просто рассказываю об основах, поэтому мы просто увидим нужные вам формулы, но мы сделаем некоторые расчеты и рабочие примеры позже в этой статье.

Если мы посмотрим на типичный счет за электроэнергию для жилого дома, мы обычно увидим плату за количество использованных киловатт-часов, потому что коэффициент мощности и потребление электроэнергии будут очень низкими, поэтому электрические компании, как правило, не беспокоятся об этом.

Однако в коммерческих и промышленных счетах за электроэнергию, особенно в зданиях с интеллектуальными или интервальными счетчиками электроэнергии, мы, скорее всего, увидим платежи и информацию об использованном количестве кВт, кВтч, кВА и кВАрч. В частности, в больших зданиях часто также будет наблюдаться плата за реактивную мощность, но это зависит от поставщика электроэнергии.

Плата за реактивную мощность

Причина, по которой они взимают штраф за это, заключается в том, что, когда крупные потребители имеют плохие коэффициенты мощности, они увеличивают ток, протекающий через электрическую сеть, и вызывают перепады напряжения, что снижает мощность распределения поставщиков и имеет эффект детонации для другие клиенты. Кабели рассчитаны на то, чтобы выдерживать определенное количество тока, протекающего через них. Таким образом, если многие крупные потребители подключаются с плохими коэффициентами мощности, то кабели могут быть перегружены, им будет сложно удовлетворить спрос и соглашения о пропускной способности, и ни один новый потребитель не сможет подключиться, пока они либо не заменят кабели, либо не установят дополнительные кабели.

Плата за реактивную мощность возникает, когда коэффициент мощности здания падает ниже определенного уровня, этот уровень определяется поставщиком электроэнергии, но обычно он начинается от 0,95 и ниже.

Идеальный коэффициент мощности должен быть равен 1,0, однако на самом деле этого почти невозможно достичь. Мы вернемся к этому позже в видео.

В больших коммерческих зданиях общий коэффициент мощности, вероятно, относится к следующим категориям

Хороший коэффициент мощности обычно составляет от 1,0 до 0,95

Плохой коэффициент мощности — от 0,95 до 0,85

Плохой коэффициент мощности — любой ниже 0,85.

Коммерческие офисные здания обычно имеют значение между 0,98 и 0,92, промышленные здания могут иметь значение всего 0,7. Вскоре мы рассмотрим причины этого.

Сравнение коэффициента мощности асинхронного двигателя

Если сравнить два асинхронных двигателя, оба имеют выходную мощность 10 кВт и подключены к трехфазной сети 415 В 50 Гц. У одного коэффициент мощности 0,87, у другого коэффициент мощности 0,9.2

Оба двигателя обеспечивают мощность 10 кВт, но первый двигатель имеет более низкий коэффициент мощности по сравнению со вторым, а это означает, что мы не получаем такого соотношения цены и качества.

Первый двигатель должен потреблять 11,5 кВА из электросети, чтобы обеспечить мощность 10 кВт.

Второй двигатель должен потреблять всего 10,9 кВА из электросети, чтобы обеспечить мощность 10 кВт.

Это означает, что первый двигатель имеет мощность 5,7 кВАр, а второй двигатель имеет мощность всего 4,3 кВАр. 92

Мы могли бы также найти коэффициент мощности из кВт и кВА, используя 10 кВт, деленные на 11,5 кВА

PF = кВт / кВА

Мы могли бы найти кВт из коэффициента мощности и кВА, используя получить 10

кВт = PF x кВА

Так что же является причиной плохого коэффициента мощности?

В большинстве случаев на коэффициент мощности влияют индуктивные нагрузки.

Чисто резистивная нагрузка

Если бы у нас была чисто резистивная нагрузка, такая как электрический резистивный нагреватель, то формы волн напряжения и тока были бы синхронизированы или очень близки. Они оба прошли бы свои точки максимума и минимума и прошли бы нулевую ось одновременно. Коэффициент мощности в этом случае равен 1, что идеально.

Если бы мы нарисовали векторную диаграмму, то напряжение и ток были бы параллельны, поэтому вся энергия, получаемая от источника электричества, идет на выполнение работы, в данном случае на создание тепла.

Чисто индуктивная нагрузка

Если мы возьмем индуктивную нагрузку, такую ​​как асинхронный двигатель, магнитное поле катушек сдерживает ток и приводит к фазовому сдвигу, при котором формы волны напряжения и тока не синхронизируются с током, и поэтому он проходит через нулевая точка после напряжения, это называется отстающим коэффициентом мощности.

Ранее в статье я сказал, что пена или кВАр бесполезны, это не совсем так, нам действительно нужна реактивная мощность для создания и поддержания магнитного поля, которое вращает двигатель. Реактивная мощность тратится впустую в том смысле, что мы не получаем от нее работы, но все же должны за нее платить, хотя она нам нужна, прежде всего, для выполнения работы. Ранее мы рассмотрели, как работают асинхронные двигатели, щелкните здесь, чтобы просмотреть этот учебник.

Если мы нарисуем векторную диаграмму для чисто индуктивной нагрузки, то ток будет под углом ниже линии напряжения, а это означает, что не все потребляемое электричество совершает работу.

Чисто емкостная нагрузка

Если мы взяли чисто емкостную нагрузку, то с индуктивной нагрузкой происходит обратное. Напряжение и ток не совпадают по фазе, за исключением того, что на этот раз напряжение сдерживается. Это приводит к опережающему коэффициенту мощности. Опять же, это будет означать, что не вся электроэнергия используется для выполнения работы, но мы должны платить за нее в любом случае.

Если бы мы нарисовали векторную диаграмму для чисто емкостной нагрузки, то линия тока располагалась бы под углом над линией напряжения, поскольку она опережает.

Коррекция плохого коэффициента мощности

Волновая диаграмма коррекции коэффициента мощности

Что мы можем сделать, чтобы исправить низкий коэффициент мощности и плату за реактивную мощность? В большинстве случаев мы сталкиваемся с отстающим коэффициентом мощности, вызванным индуктивными нагрузками, но мы можем встретить и опережающий коэффициент мощности.

Чтобы скорректировать низкий коэффициент мощности, мы можем добавить в цепь конденсаторы или катушки индуктивности, которые вернут ток обратно в фазу и приблизит коэффициент мощности к 1. Если у нас есть запаздывающий коэффициент мощности, вызванный высокими индуктивными нагрузками в цепи, тогда мы добавляем конденсаторы, это наиболее распространено. Если у нас есть опережающий коэффициент мощности, вызванный высокими емкостными нагрузками, мы добавляем в цепь индуктивную нагрузку. Их необходимо рассчитать, и мы увидим несколько примеров расчетов в конце статьи.

Зачем исправлять низкий коэффициент мощности?

Зачем исправлять плохой коэффициент мощности

Низкий коэффициент мощности означает, что для выполнения той же работы вам нужно получать больше энергии от электрических сетей, а кабели должны быть больше, поэтому это будет стоить дороже.

Коэффициент мощности как найти: Коэффициент мощности