Eng Ru
Отправить письмо

Билет 20 Вопрос 2 Защита шинопроводов станций и подстанций. Логическая защита шин 10 кв принцип действия


Защита шин 6 - 10 кВ (Страница 6) — ДЗШ, ДЗО, УРОВ — Советы бывалого релейщика

Прочитав 6 страниц, у меня, к сожалению, не сложилось полное понимание о том, как защищать сборные шины 6-10кВ.

1. Правильно ли я пониманию, что неполная диф защита может применяться только на сборных шинах с наличием реакторов на отходящих линиях, за которыми падает ток КЗ и, соответственно, можно отстроить защиту. Для сборных шин, на отходящих линиях которых НЕТ реакторов речи о неполной дифф защите быть не может, т.к. что шины, что отходящие линии на выключателем - это электрически одна точка? В учебниках и разных статьях говорится о неполной диф. защите применительно к шинам с реактированными линиями. Однако, в "справочнике по проектированию электроснабжения" под редакцией Барыбина 1990г. п.2.104 описана неполная защита на обычных линиях (нереактированных), но по представленной там принципиальной схеме у меня не складывается понимание её работы (мне кажется там что-то напутано). Может кто ещё что посоветовать, где подробно описан принцип её действия?

2. Логическую защиту можно применять в случае, если на сборных шинах отсутствует мощные электродвигатели, которые при КЗ на шинах дадут подпитку и приведут к блокировке лог. защиты шин. В случае отсутствия двигательной нагрузки - логическую защиту можно применять и при этом спать спокойно. При наличии мелких движков нужно посчитать подпитку от них. В случае его малого значения, производить блокировку ЛЗШ от отсечки линии к электродвигателю ( например движок на 400кВА, даст подпитки ну максимум 200А на 10кВ, а ток КЗ на шинах 10кА. Соответственно взять отсечку 250А и при КЗ на шинах блокировка не произойдет)

3. Полная дифференциальная защита максимально эффективна, но дорого реализуема. И нужно учитывать насыщение трансформаторов тока.

4. Дуговая защита не может использоваться как основная, и должна применяться дополнительно к основной (ЛЗШ или полной диф. защите), побольшей части ввиду того, что работает по "неэлектрическому" принципу5. Ну и токовые защиты вводных и секционного выключателя - резервная защита, отстроенная по времени от нижестоящих

Прошу Вас прокомментировать мои заключения по защите сборных шин. Спасибо!

www.rzia.ru

Защита сборных шин. Виды повреждений шин. Дифференциальная защита шин. Неполная дифференциальная защита шин. Автоматическое повторное включение шин. Особенности АПВ шин. Логическая защита шин (ЛЗШ).

Ответ:К числу наиболее характерных причин, вызывающих к. з. на шинах, следует отнести: перекрытие шинных изоляторов и вводов выключателей; повреждение трансформаторов напряжения и установленных между шинами и выключателями трансформаторов тока; поломка изоляторов разъединителей и воз­душных выключателей во время операций с ними; ошибка об­служивающего персонала при переключениях в распределитель­ных устройствах.

В качестве защит на генераторах и трансформато­рах служат защиты от внешних к. з., а на линиях — максималь­ные или дистанционные защиты, однако эти защиты работают при к. з. на шинах с выдержкой времени, имеющей иногда зна­чительную величину.

В таких случаях появляется необходимость в применении специальных защит шин, способных отклю­чать повреждения на них без выдержки времени. Специальные защиты шин применяются в тех случаях, когда защита присоеди­нений не в состоянии обеспечить необходимого быстродействия или селективности. В настоящее время в качестве быстродействующей и селек­тивной защиты шин получила повсеместное распространение защита, основанная на дифференциальном принципе. На транс­форматорах и секционных выключателях, питающих шины, у ко­торых отходящие линии имеют реакторы, в качестве специаль­ной защиты шин применяются токовые отсечки и дистанционные защиты.

Логическая защита шин (ЛЗШ) может использоваться как в открытых, так и в комплектных распредустройствах. На первом рисунке приведена простейшая схема логической защиты шин в комплексе с МТЗ на вводе 10 кВ. При КЗ на шинах или на отходящей линии пускается защита на вводе от питающего трансформатора (срабатывает реле KA). МТЗ на вводе отстроена по времени от защит отходящих линий и действует на отключение выключателя в двух случаях: отказе защит или выключателя отходящей линии; коротком замыкании на сборных шинах.

Но отстройка по времени от защит отходящих линий затягивает отключение повреждения и приводит к излишнему повреждению оборудования. Для обеспечения достаточно быстрого и селективного отключения можно выполнить дополнительную цепочку из последовательно включенных контактов токовых реле отходящих линий.

При коротком замыкании на любой отходящей линии (КЛ1 – КЛn) срабатывает токовое реле KA1 в ее схеме и токовое реле KA в схеме ввода. Контактами KA1 блокируется действие защиты на реле KL. При КЗ на шинах срабатывает реле KA в схеме ввода и нет срабатывания ни одного из реле KA1 в схемах отходящих линий. Реле KL срабатывает и действует на отключение выключателя ввода с запретом АПВ. Схема достаточно простая, но имеет ряд недостатков: 1)При выводе в проверку защиты любого присоединения разрывается вся цепь, защита выводится из работы. 2)Большое количество последовательно соединенных элементов снижает надежность схемы в целом. Нарушение контакта в любом токовом реле или в соединительных проводах приводит к отказу защиты.

Более удобна и надежна схема, приведенная на следующем рисунке. Токовые реле всех отходящих линий соединены параллельно. Для исключения случайного срабатывания защиты при проверках РЗА присоединений включается последовательно с контактами собственных выключателей. В данном случае реле KL выступает в роли блокирующего.

28)Автоматическое повторное включение. Назначение АПВ. Классификация АПВ. Осовные требования к устройствам АПВ. Выбор выдержек времени АПВ. Двухкратное АПВ.

Ответ:Многолетний опыт эксплуатации линий электропередачи показал, что значительная часть КЗ, вызванных перекрытием изоляции, схлестыванием проводов и другими причинами, при достаточно быстром отключении линий релейной защитой, самоустраняется. При этом электрическая дуга, возникшая в месте КЗ, гаснет, не успев вызвать существенных разрушений, препятствующих повторному включению линий под напряжение. Такие самоустраняющиеся повреждения называются неустойчивыми. Согласно ПУЭ обязательно применение АПВ – на всех воздушных и смешанных (кабельно-воздушных) линиях напряжением выше 1000 В. АПВ восстанавливает нормальную схему также и в тех случаях, когда отключение выключателя происходит вследствие ошибки персонала или ложного действия РЗ. Наиболее эффективно применение АПВ на линиях с односторонним питанием, так как в этих случаях каждое успешное действие АПВ восстанавливает питание потребителей.

Классификация АПВ: Основные требования к устройствам АПВ. В эксплуатации получили применение следующие виды АПВ: трехфазные, осуществляющие включение трех фаз выключателя после его отключения релейной защитой; однофазные, осуществляющие включение одной фазы выключателя, отключенной релейной защитой при однофазном КЗ; комбинированные, осуществляющие включение трех фаз при междуфазных повреждениях или одной фазы при однофазных КЗ.

Трехфазные АПВ в свою очередь подразделяются на несколько видов: простые (ТАПВ), быстродействующие (БАПВ), с проверкой наличия напряжения (АПВНН) или отсутствия напряжения (АПВОН), с ожиданием синхронизма (АПВОС), с улавливанием синхронизма (АПВУС) и др.

По виду оборудования, на которое действием АПВ повторно подается напряжение, различают: АПВ линий, АПВ шин, АПВ трансформаторов, АПВ двигателей.

По числу циклов (кратности действия) АПВ различают: АПВ однократного действия, АПВ многократного действия. , (20.1)

где t гп– время готовности привода, которое составляет 0,2-1,0 с для различных типов приводов; tзап = 0,3-0,5 с – время запаса, учитывающее погрешность реле времени АПВ.

29)Автоматический ввод резерва (АВР). Назначение АВР. Основные требования к устройствам АВР. Принцип действия АВР. Пусковые органы минимального напряжения. Расчет уставок АВР.

Ответ:Назначение АВР: Схемы электрических соединений энергосистем и отдельных электроустановок должны обеспечивать надежность электроснабжения потребителей. Высокую степень надежности обеспечивают схемы питания одновременно от двух и более источников (линий, трансформаторов), поскольку аварийное отключение одного из них не приводит к нарушению питания потребителей. Несмотря на эти преимущества многостороннего питания потребителей, большое количество подстанций, имеющих два источника питания и более, работает по схеме одностороннего питания. Применение такой менее надежной, но более простой схемы электроснабжения во многих случаях оказывается целесообразным для снижения токов КЗ, уменьшения потерь электроэнергии в питающих трансформаторах, упрощения релейной защиты, создания необходимого режима по напряжению, уменьшения перетоков мощности и т.п. Используются две основные схемы одностороннего питания потребителей при наличии двух или более источников. В первой схеме один источник включен и питает потребителей, а второй отключен и находится в резерве. Соответственно этому первый источник называется рабочим, а второй – резервным (рис.21.1,а, б). Во второй схеме все источники включены, но работают раздельно на выделенных потребителей. Деление осуществляется на одном из выключателей (рис.21.1,в,г).

Недостатком одностороннего питания является то, что аварийное отключение рабочего источника приводит к прекращению питания потребителей. Этот недостаток может быть устранен быстрым автоматическим включением резервного источника или включением выключателя, на котором осуществлено деление сети. Для выполнения этой операции широко используется АВР. При наличии АВР время перерыва питания потребителей в большинстве случаев определяется лишь временем включения выключателей резервного источника и составляет 0,3…0,8 с.

Рассмотрим принципы использования АВР на примере схем, приведенных на рис.21.1.

1. Питание подстанции А (рис.21.1,а) осуществляется по рабочей линии W1 от подстанции Б. Вторая линия W2, приходящая с подстанции В, является резервной и находится под напряжением (выключатель QЗ нормально отключен). При отключении линии W1 автоматически от АВР включается выключатель QЗ линии W2, и таким образом вновь подается питание потребителям подстанции А.

Схемы АВР могут иметь одностороннее или двустороннее действие. При одностороннем АВР линия W1 всегда должна быть рабочей, а линия W2 – всегда резервной. При двухстороннем АВР любая из этих линий может быть рабочей и резервной.

2.Питание электродвигателей и других потребителей собственных нужд каждого агрегата электростанции осуществляется обычно от отдельных рабочих трансформаторов (Т1 и Т2 на рис.21.1,б). При отключении рабочего трансформатора автоматически от АВР включаются выключатель Q5 и один из выключателей Q6 (при отключении Т1) или Q7 (при отключении Т2) резервного трансформатора ТЗ.

3. Трансформаторы Т1 и Т2 являются рабочими, но параллельно работать не могут и поэтому со стороны низшего напряжения включены на разные системы шин (рис.21.1,в). Шиносоединительный выключатель Q5 нормально отключен. При аварийном отключении любого из рабочих трансформаторов автоматически от АВР включается выключатель В5, подключая нагрузку шин, потерявших питание, к оставшемуся в работе трансформатору. Каждый трансформатор в рассматриваемом случае должен иметь мощность, достаточную для питания всей нагрузки подстанции. В случае, если мощность одного трансформатора недостаточна для питания всей нагрузки подстанции, при действии АВР должны приниматься меры для отключения части наименее ответственной нагрузки.

4. Подстанции В и Г (рис.21.1,г) нормально питаются радиально от подстанций А и Б соответственно. Линия WЗ находится под напряжением со стороны подстанции В, а выключатель Q5 нормально отключен. При аварийном отключении линии W2 устройство АВР, установленное на подстанции Г, включает выключатель Q5, таким образом питание подстанции Г переводится на подстанцию В по линии WЗ. При отключении линии W1 подстанция В и вместе с ней линия WЗ остаются без напряжения. Исчезновение напряжения на трансформаторе напряжения ТV также приводит в действие устройство АВР на подстанции Г, которое включением выключателя Q5 подает напряжение на подстанцию В от подстанции Г.

Расчет уставок АВР a. Реле однократного включения.

tов = tвкл + tзап, (21.1) где tвкл – время включения выключателя резервного источника питания; если выключателей два, то выключателя, имеющего большее время включения; tзап – время запаса, принимаемое равным 0,3…0,5с. б. Пусковой орган минимального напряжения.

Uср = Uост.н / Кн КU, (21.2)

Uср = Uзап /Кн КU, (21.3) где Uост.н – наименьшее расчетное значение остаточного напряжения при КЗ; Uзап – наименьшее напряжение при самозапуске электродвигателей; Кн – коэффициент надежности, принимаемый 1,25; КU – коэффициент трансформации трансформатора напряжения.

Ток срабатывания реле минимального тока должен быть меньше минимального тока нагрузки и определяется по формуле: Iср = Iнагр.мин / КнКI , (21.7) где: Iнагр.мин– минимальный ток нагрузки трансформатора; Кн– коэффициент надежности, принимаемый равным 1,5; КI– коэффициент трансформации ТТ. Выдержка времени определяется только по формуле (21.5) из условия согласования с защитой, действующей при КЗ в точке 6 (рис. 21.7). Согласования с защитами присоединений шин низшего напряжения не требуется.

г. Реле контроля наличия напряжения на резервном источнике питания. Напряжение срабатывания этого реле определяется из условия отстройки от минимального рабочего напряжении по формуле: Uср = Uраб.мин / Кн Кв КU, (21.8) где Uраб.мин – минимальное рабочее напряжение; Кн – коэффициент надежности, принимаемый равным 1,2; Кв – коэффициент возврата реле.

cyberpedia.su

Логическая защита шин (ЛЗШ)

Логическая защита шин (ЛЗШ) широко используется на подстанциях распределительных сетей без синхронной нагрузки и синхронных генераторов. Принцип действия логической защиты шин заключается в следующем. На вводном выключателе секции МТЗ (максимальную токовую защиту) выполняют либо с двумя выдержками времени (при применении электромеханических защит), либо используют два комплекта МТЗ (при применении цифрового терминала). Первая ступень («быстрый» комплект) имеет выдержку времени 0,15-0,2 с и выполняет функции ЛЗШ. Она вводится в работу, если через защиту протекает ток повреждения и нет блокирующего сигнала от пусковых органов защиты отходящих от шин линий. Этот блокирующий сигнал передается от защит отходящих линий к комплекту ЛЗШ с помощью общей шинки блокировки EBZ, расположенной вдоль всех ячеек секции. Если повреждена отходящая линия, то срабатывают пусковые органы защиты этой линии и ЛЗШ на вводе блокируется (не работает), а МТЗ ввода работает с обычной селективной выдержкой времени, резервируя защиту линии. Блокировка выполняется с помощью общего выходного реле. Если повреждены шины, то блокирующий сигнал со стороны отходящих линий отсутствует и срабатывает ЛЗШ («быстрый» комплект МТЗ), отключая через 0,15-0,2 с выключатель ввода.Недостатки ЛЗШ. На подстанциях с мощными синхронными электродвигателями (СД) или генераторами логическая защита шин не применяется из-за возможности ложных срабатываний при внешних КЗ в питающей сети и в послеаварийных качаниях, когда через ввод проходит ток подпитки от СД или генераторов или ток качаний, достаточный для пуска защиты, а блокирующий сигнал отсутствует, так как защиты СД и генераторов по принципу действия не работают в этом режиме (например, дифференциальная) или отстроены от него (например, токовая отсечка). Кроме того, ЛЗШ не работает при КЗ в ячейке после трансформаторов тока защиты отходящей линии.

(по материалам "Библиотечка электротехника" приложение к журналу "Энергетик" выпуск "Вторичная коммутация в распределительных устройствах, оснащенных цифровыми РЗА" 2006 г. Автор: Беляев А.В.)

P.S. Дополнительный материал по этой теме: Основные принципы организации ЛЗШ (логической защиты шин) при построении системы РЗА подстанции на терминалах производства ЗАО «РАДИУС Автоматика»

energoproekt.blogspot.com

СОВЕРШЕНСТВОВАНИЕ ЛОГИЧЕСКОЙ ЗАЩИТЫ ШИН — КиберПедия

 

ХАСАНОВ И.А., КГЭУ, г. Казань

Науч. рук. канд. техн. наук, доцент ПИСКОВАЦКИЙ Ю.В.

 

Применение микропроцессорных терминалов привело к появлению логической защиты шин (ЛЗШ). Защита шин 6–10 кВ осуществляется вводными и секционным выключателями (СВ). Именно в терминалах ввода и СВ реализована отключающая токовая ступень, работающая с минимальной выдержкой времени. Пусковые органы защит нижестоящих присоединений дают информацию о том, есть ли замыкание на присоединении, и в случае его наличия замыкают выходные контакты своего терминала для передачи сигнала на терминалы ввода и СВ. ЛЗШ имеет две схемы организации «общения» с вводным терминалом – параллельную и последовательную.

При параллельной организации схемы контакты пуска защит отходящих присоединений и СВ соединены параллельно друг другу и подключены к шинке «Блокировка ЛЗШ». Это дает следующее достоинство: она остается в работе при выводе для проверки защиты любого присоединения. В то же время неисправность цепей приведет к неправильному действию ЛЗШ и погасит всю секцию.

В последовательной схеме контакты пуска защит присоединений и СВ (для ЛЗШ ввода) идут последовательно, друг за другом, причем это уже нормально замкнутые контакты. В этой схеме блокировка ЛЗШ ввода формируется не по наличию, а по отсутствию напряжения. Если происходит пуск защит присоединения или СВ, то его контакт меняет свое положение на открытое и разрывает общую цепь. В этом случае блокируется ЛЗШ ввода.

Последовательная схема ЛЗШ позволяет контролировать цепь на обрыв. Это ее главное преимущество перед параллельной схемой. Если происходит обрыв цепи ЛЗШ, то блок защиты ввода фиксирует отсутствие напряжения на своем входе. Если при этом не происходит пуска токовых защит ввода, то, значит, это обрыв, а не сигнал блокировки, и через некоторое время блок защиты ввода выдает сигнал «Неисправность ЛЗШ».

До терминалов ввода и СВ от каждого присоединения приходит два медных провода с сигналом о срабатывании/несрабатывании МТЗ присоединений. Замена аналогового сигнала на цифровой в два раза сократит количество проводов, приходящих к терминалам ввода и СВ. А также отпадет необходимость нормально замкнутого/разомкнутого реле присоединений. Блокировка ЛЗШ будет построена логически в терминалах ввода и СВ, будет возможность самодиагностики обрыва с указанием поврежденного присоединения.

Проблему электромагнитной совместимости (ЭМС), возникающую при использовании цифрового канала, решит использование волоконно-оптической линии связи (ВОЛС). Также ВОЛС даст возможность использования «шины процессов», что многократно сократит количество проводов, тянущихся к терминалам ввода и СВ.

 

Литература

1. Логическая защита шин (ЛЗШ): [Электрон. ресурс] // Проект «РЗА». Все о защите и автоматике электрических сетей. – URL: http://pro-rza.ru/relejnaya-zashhita/logicheskaya-zashhita-shin-lzsh/ (дата обращения 20.03.2017).

2. Логическая защита шин (ЛЗШ) – Схемы: [Электрон. ресурс] // Проект «РЗА». Все о защите и автоматике электрических сетей. – URL: http://pro-rza.ru/relejnaya-zashhita/logicheskaya-zashhita-shin-lzsh-shemy/ (дата обращения 20.03.2017).

 

УДК 621.317

РАЗРАБОТКА МЕТОДИЧЕСКИХ УКАЗАНИЙ ПО ВЫБОРУ

ПАРАМЕТРОВ СРАБАТЫВАНИЯ ИЗМЕРИТЕЛЬНОГО ОРГАНА

СОПРОТИВЛЕНИЯ, РЕАГИРУЮЩЕГО НА ОДНОФАЗНЫЕ

КОРОТКИЕ ЗАМЫКАНИЯ

ШАЯХМЕТОВА Я.Ф., КГЭУ, г. Казань

Науч. рук. канд. техн. наук, доцент ХАКИМЗЯНОВ Э.Ф., инженер службы распределительных сетей ОАО «Сетевая компания» КОНОВА Е.А.

 

Высокие темпы развития электрических сетей при одновременном сокращении удельной численности эксплуатационного персонала требуют ускоренного внедрения современных и инновационных средств релейной защиты и автоматики, в том числе устройств определения места повреждения (ОМП) на воздушных линиях электропередач. Общая протяженность воздушных линий 110–220 кВ, находящихся в эксплуатации в России, составляет более 400 тыс. км. Наиболее частыми повреждениями в ЛЭП являются однофазные короткие замыкания (КЗ), они составляют около 80–90 % от общего числа всех повреждений.

По определению ANSI/IEEE 100, глухим заземление нейтрали считается при совместном выполнении условий X0/X1 ≤ 3 % и R0/R1 ≤ 3 %, где X0 и R0 – активные и реактивные сопротивления нулевой последова-тельности, X1 и R1 – активные и реактивные сопротивления прямой последовательности. На практике это означает, что сопротивление между нейтральной точкой сети и заземляющим контуром пренебрежимо мало. В результате токи однофазного КЗ могут быть различной величины – от очень малых до превышающих ток трехфазного короткого замыкания. Амплитуда тока зависит от конфигурации сети, места замыкания и сопротивления в месте замыкания. Основными защитами воздушной линии 110–220 кВ от однофазных КЗ служат дифференциальные защиты, которые реагируют на все виды повреждения, токовые, направленные и ненаправленные защиты нулевой последовательности, реагирующие на ток нулевой последовательности. Для повышения надежности, чувствительности, селективности и быстродействия релейной защиты при однофазных КЗ предлагается использовать дистанционную защиту. Данный тип защиты не применяется в электрических сетях России и является инновационным средством РЗ. Представляют научную новизну проблема организации и реализации, расчеты параметров срабатывания и проектирование логики срабатывания дистанционной защиты от однофазных КЗ.

 

Литература

1. Циглер Г. Цифровая дистанционная защита: принципы и применение / Г. Циглер; пер. с англ. под ред. А.Ф. Дьякова. – М.: Энергоиздат, 2005. – 322 с.

2. Шнеерсон Э.М. Цифровая релейная защита / Э.М. Шнеерсон. – М.: Энергоатомиздат, 2007. – 549 с.

 

УДК 62-5

 

cyberpedia.su

Билет 20 Вопрос 2 Защита шинопроводов станций и подстанций.

Логическая защита шин (ЛЗШ) широко используется на подстанциях распределительных сетей без синхронной нагрузки и синхронных генераторов. Принцип действия логической защиты шин заключается в следующем. На вводном выключателе секции, МТЗ выполняют либо с двумя выдержками времени (при применении электромеханических защит), либо используют два комплекта МТЗ (при применении цифрового терминала). Первая ступень («быстрый» комплект) имеет выдержку времени 0,15-0,2 с и выполняет функции ЛЗШ. Она вводится в работу, если через защиту протекает ток повреждения и нет блокирующего сигнала от пусковых органов защиты отходящих от шин линий. Этот блокирующий сигнал передается от защит отходящих линий к комплекту ЛЗШ с помощью общей шинки блокировки EBZ, расположенной вдоль всех ячеек секции. Если повреждена отходящая линия, то срабатывают пусковые органы защиты этой линии и ЛЗШ на вводе блокируется (не работает), а МТЗ ввода работает с обычной селективной выдержкой времени, резервируя защиту линии. Блокировка выполняется с помощью общего выходного реле. Если повреждены шины, то блокирующий сигнал со стороны отходящих линий отсутствует и срабатывает ЛЗШ («быстрый» комплект МТЗ), отключая через 0,15-0,2 с выключатель ввода.

Недостатки ЛЗШ. На подстанциях с мощными синхронными электродвигателями (СД) или генераторами логическая защита шин не применяется из-за возможности ложных срабатываний при внешних КЗ в питающей сети и в послеаварийных качаниях, когда через ввод проходит ток подпитки от СД или генераторов или ток качаний, достаточный для пуска защиты, а блокирующий сигнал отсутствует, так как защиты СД и генераторов по принципу действия не работают в этом режиме (например, дифференциальная) или отстроены от него (например, токовая отсечка). Кроме того, ЛЗШ не работает при КЗ в ячейке после трансформаторов тока защиты отходящей линии.

Отказ выключателя при отключении КЗ может иметь тяжелые последствия, связанные с длительным протеканием по оборудованию больших токов. Для отключения повреждений, сопровождающихся отказом выключателя, применяют специальные устройства резервирования УРОВ, отключающие выключатели других электрических цепей, продолжающих питать КЗ. Устройство резервирования подаст команду на отключение этих выключателей по истечении времени, достаточного для нормальной работы релейной защиты и отключения выключателя поврежденной цепи. Пуск устройства резервирования осуществляется защитой (основной и резервной) поврежденного элемента (линии, трансформатора, шин) одновременно с подачей команды на отключение выключателя. Если выключатель отключится нормально, схема устройства резервирования возвратится в исходное положение. Если выключатель откажет при отключении или операция его отключения затянется, устройство резервирования по истечении заданной ему выдержки времени (0,3-0,6 с) отключит выключатели присоединений той системы шин, от которой питается электрическая цепь с неотключившимся выключателем. Команда на отключение выключателей подается УРОВ через выходные промежуточные реле своих избирательных органов (или защиты шин соответствующей системы). При других схемах соединения, например многоугольником, УРОВ действует избирательно: отключает выключатели, ближайшие к отказавшему. В результате отключается не вся электроустановка, а только ее часть. Эксплуатируемые на подстанциях устройства резервирования представляют собой сложные устройства, связанные с оперативными цепями многих защит, что повышает вероятность неправильных срабатываний УРОВ при появлении неисправностей в цепях защит или ошибочном замыкании контактов выходных реле защит. Для предотвращения неправильных срабатываний УРОВ в их схемах помимо основного пускового органа предусмотрен дополнительный пусковой орган, контролирующий наличие КЗ в зоне действия УРОВ. Дополнительный пусковой орган запрещает (блокирует) работу УРОВ при отсутствии КЗ. Он выполняется с помощью реле тока, реагирующих на прохождение тока КЗ по цепи, выключатель которой не отключился. Если контакты этих реле остаются разомкнутыми, УРОВ не действует при ложном и излишнем срабатывании реле защит. Исправность цепей УРОВ автоматически контролируется специальным промежуточным реле. При появлении неполадок в схеме промежуточное реле снимает оперативный ток с выходных цепей УРОВ и действует на сигнальное устройство, оповещающее персонал о неисправности. Устройство резервирования может отключаться оперативным персоналом полностью, полукомплектами (на подстанциях с двойной системой шин) или отдельными цепями с помощью оперативных накладок. Кроме того, на панели каждой защиты, пускающей УРОВ, имеются накладки, переводом которых "на сигнал" прекращается пуск УРОВ от той или другой защиты. Операции с накладками персонал обязан выполнять при отключении защит для технического обслуживания, а также при опробовании действия защиты на отключение выключателя, при этом операция отключения цепи пуска УРОВ должна, как правило, предшествовать отключению защиты. Включение цепи пуска УРОВ производится после включения защиты в работу.

studfiles.net

Дальнее и ближнее резервирование защит

Принципы резервирования релейных защитРезервирование релейных защит производится для увеличения надежности всего комплекса РЗА на подстанции, а надежность, как известно, — одно из четырех основных требований к релейной защите.

Резервирование защит повышает живучесть всей энергосистемы и является одним из самых эффективных средств для уменьшения повреждений при коротких замыканиях и сохранения надежности потребителей.

Прежде чем разбираться с тем, что такое ближнее и дальнее резервирование давайте сначала обсудим в каких случаях защита может отказать? Таких ситуаций достаточно много, но основные из них приведены ниже

Основные причины отказа релейной защиты

  • Отказ аппаратной или программной (для цифровых терминалов) части релейной защиты
  • Отказ привода выключателя присоединения или обрыв его цепей управления
  • Повреждение токовых цепей от трансформатора тока к релейной защите
  • Повреждение цепей напряжения от трансформатора напряжения к релейной защите
  • Потеря напряжения оперативного тока на подстанции

Каким образом мы может устранить короткое замыкание на нашем присоединении если произошло одно из этих событий? Ответ – мы должны выполнить резервирование защит и выключателя нашего присоединения. Давайте разбираться как это делается.

Дальнее резервирование

Вы знали, что любая защита в сети имеет резервирование, даже если она единственная на присоединении? Поверьте, это так. И делается это при помощи дальнего резервирования.

Любую нижестоящую защиту резервирует вышестоящая, обычно установленная на смежной подстанции

Дальнее резервирование - полное

Защита фидера 1 на ПС-1 осуществляет дальнее резервирование защит ввода и СВ и, частично, защит отходящих линий РТП-1. Для этого защита фидера 1 должна иметь достаточную чувствительность к коротким замыканиям на смежном участке, что регламентируется ПУЭ (п.п. 3.2.15 и 3.2.25)

При замыкании на шинах 10 кВ РТП-1, и отказе защит ввода защита фидера 1, на ПС-1, с выдержкой времени отключит фидер и устранит короткое замыкание.

Дальнее резервирование - принцип дейтсвия

При этом ни одна из пяти основных причин отказа защит на РТП-1 не может повлиять на защиту фидера 1 ПС-1 потому, что защиты установлены на разных подстанциях. Таким образом мы имеем полноценное резервирование!

Главное преимущество дальнего резервирования в том, что не нужно тратить средства на дополнительные релейные защиты – резервирование осуществляется вышестоящими защитами, которые помимо своего участка защищают еще и смежный.

Справедливости ради стоит отметить, что защиты на одном объекте так же осуществляют дальнее резервирование нижестоящих присоединений, например, защиты ввода и СВ РТП-1 резервируют защиты отходящих линий. Однако, при этом они могут одновременно отказать, например, из-за потери напряжения оперативного тока.

Дальнее резервирование - частичное

То же самое можно сказать и о дистанционных и токовых направленных защит, установленных на одной подстанции или станции. Неисправность трансформатора напряжения или его цепей может привести к нарушению принципа дальнего резервирования смежных защит (ввода и линии, СВ и линии), установленных на одной секции.

Таким образом, защиты, установленные на одном объекте, не всегда могут осуществлять полноценное дальнее резервирование, как это выполняется для смежных защит на разных объектах. Это, однако, не отменяет необходимость иметь достаточную чувствительность защит при КЗ на смежном участке, что проверяется соответствующим расчетом

При всех преимуществах дальнее резервирование имеет и недостатки. Вот основные их них:

  • Отключение слишком большого числа потребителей при сложных первичных схемах подстанции и наличии на одной линии нескольких отпаечных подстанций (обычно характерно для классов напряжения 110-220 кВ и выше)
  • Сравнительно большое время отключения короткого замыкания по сравнению с непосредственными защитами присоединения. Например, токовая отсечка линии 10 кВ отключает близкое КЗ практически без выдержки времени, а защита ввода, осуществляющая дальнее резервирование – 1-2 с.
  • Не всегда получается обеспечить достаточную чувствительность вышестоящих защит для осуществления дальнего резервирования, особенно для протяженных и разветвленных сетей

В связи с этим для ответственных присоединений применяется ближнее резервирование релейных защит.

Ближнее резервирование

Ближнее резервирование предполагает установку дополнительных комплектов защит, на ответственных присоединениях. Обычно эти комплекты выполнены на других принципах работы нежели основные защиты.

Ближнее резервирование защит - принцип организацииКогда вы слышите про основную и резервную защиту трансформатора или линии, то речь идет именно о ближнем резервировании.

Например, ближнее резервирование трансформатора 40 МВА осуществляется максимальной токовой защитой с пуском по напряжению. Данная защита резервирует основные защиты трансформатора, такие как дифференциальная (ДЗТ, ДТО) и газовая.

Для линии 220 кВ ближнее резервирование осуществляется комплектом ступенчатых защит – дистанционной и ТЗНП. В качестве основной защиты могут быть ДЗЛ, ДФЗ или защита с ВЧ-блокировкой.

По сути вы не просто добавляете еще один комплект защит, но и делаете так, чтобы это комплект работал на другом принципе.

Дифференциальная защита линии (ДЗЛ) не зависит от цепей напряжения, но зависит от канала связи (обычно ВОЛС). При это дистанционная защита и ТЗНП зависят от цепей напряжения, но им для работы не нужен канал связи. Вот это и есть ближнее резервирование.

Ближнее резервирование лишено недостатков дальнего резервирование, а именно:

  • отключает свой участок при отказе основной защиты, без излишнего действия;
  • отключает присоединение с выдержками времени меньшими, чем защиты дальнего резервирования;
  • всегда имеют достаточную чувствительность потому, что имеет ту же основную зону срабатывания, что и основная защита, в отличии от защит дальнего резервирования, которые резервируют защиты при КЗ в смежной зоне (работают со сниженной чувствительностью)

При этом, чтобы устранить влияние всех пяти основных причин отказа защит комплекты ближнего резервирования должны удовлетворять следующим условиям:

  • Должны быть реализованы на разных аппаратах (на разных терминалах для цифровых защит и на разных панелях для электромеханических)
  • Иметь независимые от основных защит цепи отключения на свой выключатель
  • Иметь независимые от основных защит токовые цепи (от разных трансформаторов тока или от разных вторичных обмоток одного ТТ)
  • Иметь разные принципы работы с основными защитами присоединения
  • Получать питание от разных секций шкафа оперативного тока на подстанции

При выполнении всех этих требований мы получим полноценное ближнее резервирование защит присоединения.

Единственный недостаток ближнего резервирования защит – это цена, которая увеличивает не только стоимость системы РЗА, но и таких элементов как трансформаторы тока и силовые выключатели.

Когда применяется дальнее и ближнее резервирование?

Дальнее резервирование должно применяется абсолютно во всех случаях, для любого класса напряжения и любого присоединения.

В ПУЭ 3.2.17 приведены случаи, когда дальнее резервирование может не применяться, но все они сводятся к тому, что его можно не применять если не хватает чувствительности защит, т.е. когда его применение просто невозможно в данной конкретной сети. В этом случае необходимо применять ближнее резервирование.

Ближнее резервирование применяется не всегда, из-за высокой стоимости комплексного решения.

Помимо случая недостаточной чувствительности защит, осуществляющих дальнее резервирование, его применяют для наиболее ответственных присоединений:

  • Генераторы среднего напряжения мощностью 1 МВт и выше
  • Двигатели среднего напряжения мощностью 5 МВт и выше
  • Трансформаторы мощностью 6,3 МВА и выше
  • Шины напряжением 35-110 кВ и выше
  • Линии напряжением 110-220 кВ и выше
  • Другие элементы сети высокого напряжения (БСК, УШР и т.д.)

Стоит отметить, что если на присоединении установлен комплект ближнего резервирования основных защит, то этот же самый комплект может осуществляет и дальнее резервирование нижестоящих защит. Это связано с тем, что в качестве комплектов ближнего резервирования обычно используются ступенчатые защиты.

Какие виды релейных защит могут осуществлять дальнее и ближнее резервирование?

Из вышесказанного понятно, что дальнее резервирование осуществляют только ступенчатые защиты, с относительной селективностью – максимальные токовые (МТЗ) и дистанционные.

Токовая отсечка не может осуществлять дальнее резервирование потому, что по принципу настройки не захватывает смежный элемент.

Защиты с абсолютной селективностью (дифференциальные, дифференциально-фазные, с логической селективностью и т.д.) не могут осуществлять дальнее резервирование по принципу действия. Невозможность осуществления дальнего резервирования смежных защит – одно из самых больших недостатков защит с абсолютной селективностью.

Ближнее резервирование могут осуществлять любые релейные защиты, но обычно его также выполняют ступенчатые защиты.

Защиты с абсолютной селективностью (ДЗТ, ДЗЛ, ДФЗ, ДЗШ и т.д.) осуществляют ближнее резервирование только если на присоединении, по требованиям, установлены две основные защиты, например, когда речь идет о защите шин КРУЭ или защите АТ мощностью 80 МВт и выше.

Резервирование при отказе выключателя

Даже если вы установите три комплекта защит на присоединение, с выполнением всех необходимых требований, неисправный выключатель не позволит вам устранить короткое замыкание подобными системами ближнего резервирования.

Поэтому к дополнительным комплектам защит добавляется еще одна система ближнего резервирования – УРОВ.

Устройство резервирования при отказе выключателя (УРОВ) предназначено для отключения смежных выключателей, питающих присоединение, при отказе собственного выключателя. Обычно УРОВ отключает присоединение быстрее, чем защиты дальнего резервирования, что улучшает условия работы энергосистемы.

К УРОВ мы обязательно вернемся в наших будущих статьях.

Зачем это нужно знать релейщику?

Если вы хотите стать специалистом, то должны понимать основные термины и определения в релейной защите. Иначе не сможете нормально общаться с релейщиками, не сможете прочитать ТЗ или разобрать готовый проект.

Понятия дальнего и ближнего резервирования являются одними из основополагающих в релейной защите и тесно связаны с понятиями основной и резервной защиты присоединения. Об этом поговорим в следующий раз

pro-rza.ru

Назначение и принцип действия ДЗШ–110 (220) кВ. — КиберПедия

Дифференциальная токовая защита шин 110 (220) кВ (далее ДЗШ) предназначена для отключения без выдержки времени всех видов повреждений, возникающих на системах шин 110 (220) кВ. Защита выполнена на дифференциальных реле, включенных на геометрическую сумму токов трансформаторов тока присоединений 110 (220) кВ.

Принцип действия дифференциальной токовой защиты основан на сравнении величины и фазы токов от ТТ всех присоединений, зафиксированных на данной системе шин. В нормальном режиме и при токах внешних КЗ, геометрическая сумма токов, протекающих через ТТ, близка к нулю (имеется ток небаланса). При КЗ в защищаемой зоне направление и величина токов изменяются, и в дифференциальном реле возникает ток, достаточный для срабатывания защиты.

В зону действия защиты входят шины 110 (220) кВ и оборудование присоединений 110 (220) кВ, ограниченное ТТ. Для нормальной схемы ОРУ-110 (220) кВ (схема ОВ-110 (220) кВ разобрана разъединителями) ТТ ОВ-110 (220) кВ исключены из схемы ДЗШ, отключение ОВ-110 (220) кВ от ДЗШ выведено накладкой.

Защита состоит из общего пускового и двух избирательных органов. При повреждении в защищаемой зоне любой системы шин срабатывают пусковой орган ДЗШ, а срабатыванием избирательного органа определяется поврежденная СШ-110 (220) кВ, в результате чего защита действует на отключение всех присоединений поврежденной системы шин.

При нарушении фиксации присоединений токи в плечах ДЗШ не балансируются и в избирательных органах протекает повышенный ток небаланса, вследствие чего защита может неправильно выбрать систему шин или отказать в действии. Для обеспечения правильной работы ДЗШ кВ при нарушении фиксации присоединений 110 (220) кВ необходимо избирательные органы выводить из действия. Защита шин в этом случае осуществляется только пусковым органом, который при возникновении повреждения подает импульс на отключение присоединений обеих систем шин. Вывод избирателей при нарушении фиксации производится рубильником Р2 - «ДЗШ без фиксации по оперативным цепям» на панели ДЗШ, рубильником или блоком БИ в шкафу ДЗШ на ОРУ-110 (220) кВ.

Нормально ДЗШ должна быть включена действием на отключение выключателей всех присоединений, по которым на шины может быть подано напряжение. С присоединений, постоянно работающих в тупиковом режиме (за исключением линий с двигательной нагрузкой), действие ДЗШ должно быть снято.

Для обеспечения чувствительности в режиме автоматического опробования системы шин после отключения короткого замыкания на шинах, ДЗШ дополнена чувствительным комплектом дифференциальной защиты шин 110 (220) кВ.

После отключения от ДЗШ выключателей присоединений систем шин, происходит их автоматическое повторное включение, для чего используются имеющиеся на указанных присоединениях устройства АПВ.

АПВ шин осуществляется в порядке, определяемом временем АПВ присоединений.

В ДЗШ имеется чувствительный комплект, нормально выведенный из работы. Чувствительный комплект вводится кратковременно, автоматически при срабатывании ДЗШ для надёжного отключения от ДЗШ первого опробующего шины присоединения при неуспешном АПВ СШ-110 (220) кВ, с запретом АПВ остальных присоединений данной СШ.

В нормальном режиме в токовых цепях реле ДЗШ протекает ток небаланса, который должен контролироваться с помощью миллиамперметра, установленного на панели ДЗШ. Величина тока небаланса не должна превышать 30-50 мА (в зависимости от местных условий может быть снижена до 20 мА).

В ДЗШ имеется устройство автоматического контроля целостности токовых цепей. При неисправностях токовых цепей, вызванных обрывом провода или ошибочном исключении трансформатора тока присоединения из схемы ДЗШ, автоматически с выдержкой времени 10÷20 секунд снимается “плюс” оперативного тока со схемы ДЗШ и выпадает блинкер РУ– «Неисправность токовых цепей ДЗШ», РУ – «Отсутствие оперативного тока ДЗШ» и загорается лампа ЛС – «Блинкер не поднят» на панели ДЗШ, а также загорается сигнальное табло «Неисправность ДЗШ» на панели ЦС.

Для возврата схемы в рабочее состояние после устранения неисправности необходимо нажать кнопку К2 – «Возврат схемы» на панели ДЗШ.

В режиме опробования обходной СШ от ОВ или 1 (2) СШ от ШСВ на ДЗШ должна быть введены накладка «Замедление ДЗШ при включении ОВ» или накладка «Замедление ДЗШ при включении ШСВ» соответственно. Введением этих накладок достигается следующее: при включении ключом управления выключателя (команда «включить») происходит кратковременная (до 1 сек) Замедление действия ДЗШ на отключение выключателей всех присоединений, кроме включаемого ОВ или ШСВ, чем предотвращается обесточение СШ в случае включения на КЗ.

 

cyberpedia.su


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта