Выбор цикла парогазовой установки и принципиальной схемы ПГУ. Пгу принцип работы12.2. Классификация пгу, их типы, преимущества и недостаткиВыше рассмотрена ПГУ самого простого и самого распространенного типа — утилизационного. Однако многообразие ПГУ столь велико, что нет возможности рассмотреть их в полном объеме. Поэтому ниже рассмотрим основные типы ПГУ, интересные для нас либо с принципиальной, либо с практической точки зрения. Одновременно попытаемся выполнить их классификацию, которая, как и всякая классификация, будет условной. По назначению ПГУ подразделяют на конденсационные и теплофикационные. Первые из них вырабатывают только электроэнергию, вторые — служат и для нагрева сетевой воды в подогревателях, подключаемых к паровой турбине. По количеству рабочих тел, используемых в ПГУ, их делят на бинарные и монарные. В бинарных установках рабочие тела газотурбинного цикла (воздух и продукты горения топлива) и паротурбинной установки (вода и водяной пар) разделены. В монарных установках рабочим телом турбины является смесь продуктов сгорания и водяного пара. Схема монарной ПГУ показана на рис. 9.4. Выходные газы ГТУ направляются в котел-утилизатор, в который подается вода питательным насосом 5. Получаемый на выходе пар поступает в камеру сгорания 2, смешивается с продуктами сгорания и образующаяся однородная смесь направляется в газовую (правильнее сказать — в парогазовую турбину 3. Смысл этого понятен: часть воздуха, идущего из воздушного компрессора и служащая для уменьшения температуры рабочих газов до допустимой по условиям прочности деталей газовой турбины, замещается паром, на повышение давления которого питательным насосом в состоянии воды затрачивается меньше энергии, чем на повышение давления воздуха в компрессоре. Вместе с тем, поскольку газопаровая смесь покидает котел-утилизатор в виде пара, то тепло конденсации водяного пара, полученное им в котле и составляющее значительную величину, уходит в дымовую трубу. Техническая трудность организации конденсации пара из парогазовой смеси и связанная с этим необходимость постоянной работы мощной водоподготовительной установки является главным недостатком ПГУ монарного типа.
Рис. 9.4. Принципиальная схема монарной ПГУ За рубежом описанная монарная установка получила название STIG (от Steam Iniected Gas Turbine). Их строит в основном фирма General Electric в комбинации с ГТУ сравнительно малой мощности. В табл. 9.1 приведены данные фирмы General Electric, иллюстрирующие увеличение мощности и КПД двигателей при использовании впрыска пара. Таблица 9.1 Изменение мощности и экономичности при вводе пара в камеру сгорания монарной ПГУ
Видно, что при впрыске пара и мощность, и КПД растут. Отмеченные выше недостатки не привели к широкому распространению монарных ПГУ, по крайней мере, для целей производства электроэнергии на мощных ТЭС. На Южно-турбинном заводе (г. Николаев, Украина) построена демонстрационная монарная ПГУ мощностью 16 МВт. Большинство ПГУ относится к ПГУ бинарного типа. Существующие бинарные ПГУ можно разделить на пять типов: Утилизационные ПГУ. В этих установках тепло уходящих газов ГТУ утилизируется в котлах-утилизаторах с получением пара высоких параметров, используемого в паротурбинном цикле. Главными преимуществами утилизационных ПГУ по сравнению с ПТУ являются высокая экономичность (в ближайшие годы их КПД превысит 60 %), существенно меньшие капиталовложения, меньшая потребность в охлаждающей воде, малые вредные выбросы, высокая маневренность. Как показано выше, утилизационные ПГУ требуют высокоэкономичных высокотемпературных газовых турбин с высокой температурой уходящих газов для генерирования пара высоких параметров для паротурбинной установки (ПТУ). Современные ГТУ, отвечающие этим требованиям, пока могут работать либо на природном газе, либо на легких сортах жидкого топлива. ПГУ со сбросом выходных газов ГТУ в энергетический котел. Часто такие ПГУ называют кратко «сбросными», или ПГУ с низконапорным парогенератором (рис. 9.5).
Рис. 9.5. Схема сбросной ПГУ В них тепло уходящих газов ГТУ, содержащих достаточное количество кислорода, направляется в энергетический котел, замещая в нем воздух, подаваемый дутьевыми вентиляторами котла из атмосферы. При этом отпадает необходимость в воздухоподогревателе котла, так как уходящие газы ГТУ имеют высокую температуру. Главным преимуществом сбросной схемы является возможность использования в паротурбинном цикле недорогих энергетических твердых топлив. В сбросной ПГУ топливо направляется не только в камеру сгорания ГТУ, но и в энергетический котел (рис. 9.5), причем ГТУ работает на легком топливе (газ или дизельное топливо), а энергетический котел — на любом топливе. В сбросной ПГУ реализуется два термодинамических цикла. Теплота, поступившая в камеру сгорания ГТУ вместе с топливом, преобразуется в электроэнергию так же, как и в утилизационной ПГУ, т.е. с КПД на уровне 50 %, а теплота, поступившая в энергетический котел — как в обычном паротурбинном цикле, т.е. с КПД на уровне 40 %. Однако достаточно высокое содержание кислорода в уходящих газах ГТУ, а также необходимость иметь за энергетическим котлом малый коэффициент избытка воздуха приводят к тому, что доля мощности паротурбинного цикла составляет примерно 2/3, а доля мощности ГТУ — 1/3 (в отличие от утилизационной ПГУ, где это соотношение обратное). Поэтому КПД сбросной ПГУ составляет примерно
т.е. существенно меньше, чем у утилизационной ПГУ. Ориентировочно можно считать, что в сравнении с обычным паротурбинным циклом экономия топлива при использовании сбросной ПГУ примерно вдвое меньше, чем экономия топлива в утилизационной ПГУ. Кроме того, схема сбросной ПГУ оказывается очень сложной, так как необходимо обеспечить автономную работу паротурбинной части (при выходе из строя ГТУ), а поскольку воздухоподогреватель в котле отсутствует (ведь в энергетический котел при работе ПГУ поступают горячие газы из ГТУ), то необходима установка специальных калориферов, нагревающих воздух перед подачей его в энергетический котел. Основная литература:
studfiles.net Парогазовые установкиСодержание Введение Парогазовые установки Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей Реконструкция паротурбинных электростанций - эффективный путь перевооружения энергетики Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго» Повышение эксплуатационных характеристик энергетических установок Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе Введение В любой стране энергетика является базовой отраслью экономики, стратегически важной для государства. От её состояния и развития зависят соответствующие темпы роста других отраслей хозяйства, стабильность их работы и энерговооруженность. Энергетика создает предпосылки для применения новых технологий, обеспечивает наряду с другими факторами современный уровень жизни населения. На независимости страны от внешних, импортируемых энергоресурсов, также как и на развитом оборонном вооруженном комплексе основывается высокая позиция государства на международной политической арене. В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Превращение тепла в электричество с достаточно высоким кпд без промежуточного преобразования его в механическую работу было бы крупным шагом вперёд. Тогда отпала бы надобность в тепловых электростанциях, использовании на них тепловых двигателей, которые имеют относительно низкий кпд, весьма сложны и требуют довольно квалифицированного ухода при эксплуатации. Современная техника пока не позволяет создать более или менее мощные установки для получения электричества непосредственно из тепла. Все установки такого типа пока могут работать или только кратковременно, или при крайне малых мощностях, или при низких кпд, или зависят от временных факторов, таких как погодные условия, время суток, и т.п. В любом случае они не могут гарантировать достаточную стабильность в энергоснабжении страны. Поэтому на тепловых электростанциях нельзя обойтись без тепловых двигателей. Перспективное направлении развития энергетики связано с газотурбинными (ГТУ) и парогазовыми (ПГУ) энергетическими установками тепловых электростанций. Эти установки имеют особые конструкции основного и вспомогательного оборудования, режимы работы и управление. ПГУ на природном газе – единственные энергетические установки, которые в конденсационном режиме работы отпускают электроэнергию с электрическим кпд более 58% . В энергетике реализован ряд тепловых схем ПГУ, имеющих свои особенности и различия в технологическом процессе. Происходит постоянная оптимизация как самих схем, так и улучшение технических характеристик её узлов и элементов. Основными показателями, характеризующими качество работы энергетической установки, являются её производительность (или кпд) и надёжность. В этой работе особое внимание уделяется практической стороне вопроса, т.е. на сколько выгодно с экономической и экологической точки зрения использование ПГУ в энергетике. Парогазовые установки ( ГОСТ 27240-87) Парогазовые установки (в англоязычном мире используется название combined-cycle power plant) — сравнительно новый тип генерирующих станций, работающих на газе или на жидком топливе. Принцип работы самой экономичной и распространенной классической схемы таков. Устройство состоит из двух блоков: газотурбинной (ГТУ) и паросиловой (ПС) установок. В ГТУ вращение вала турбины обеспечивается образовавшимися в результате сжигания природного газа, мазута или солярки продуктами горения — газами. Образовавшиеся в камере сгорания газотурбинной установки продукты горения вращают ротор турбины, а та, в свою очередь, крутит вал первого генератора. В первом, газотурбинном, цикле КПД редко превышает 38%. Отработавшие в ГТУ, но все еще сохраняющие высокую температуру продукты горения поступают в так называемый котел-утилизатор. Там они нагревают пар до температуры и давления (500 градусов по Цельсию и 80 атмосфер), достаточных для работы паровой турбины, к которой подсоединен еще один генератор. Во втором, паросиловом, цикле используется еще около 20% энергии сгоревшего топлива. В сумме КПД всей установки оказывается около 58%. Существуют и некоторые другие типы комбинированных ПГУ, но погоды в современной энергетике они не делают. Как правило, такие системы используются генерирующими компаниями в случае, когда необходимо максимизировать производство электрической энергии. Когенерация в этом случае играет подчиненную роль и обеспечивается за счет отвода части тепла из паровой турбины. Паровые энергоблоки хорошо освоены. Они надежны и долговечны. Их единичная мощность достигает 800-1200 МВт, а коэффициент полезного действия (КПД), представляющий собой отношение произведенной электроэнергии к теплотворности использованного топлива, составляет до 40-41%, а на наиболее совершенных электростанциях за рубежом - 45-48%. Также уже длительное время в энергетике используются газотурбинные установки (ГТУ). Это двигатель совершенно иного типа. В ГТУ атмосферный воздух сжимается до 15-20 атмосфер, в нем топливо сжигается с образованием высокотемпературных (1200-1500 °С) продуктов сгорания, которые расширяются в турбине до атмосферного давления. Вследствие более высокой температуры турбина развивает примерно вдвое большую мощность, чем необходимо для вращения компрессора. Избыток ее используется для привода электрического генератора. За рубежом эксплуатируются ГТУ единичной мощностью 260-280 МВт с КПД 36-38%. Температура отработавших в них газов составляет 550-620 °С. Вследствие принципиальной простоты цикла и схемы стоимость газотурбинных установок существенно ниже, чем паровых. Они занимают меньше места, не нуждаются в охлаждении водой, быстро запускаются и изменяют режимы работы. ГТУ легче обслуживать и полностью автоматизировать. Так как рабочей средой газовых турбин являются продукты сгорания, сохранять работоспособность деталей, которые омываются ими, можно, только используя чистые виды топлива: природный газ или жидкие дистилляты ГТУ быстро развиваются, с повышением параметров, единичной мощности и КПД. За рубежом они освоены и эксплуатируются с такими же показателями надежности, как и паровые энергоблоки. Разумеется, тепло отработавших в ГТУ газов может быть использовано. Проще всего это сделать путем подогрева воды для отопления или выработки технологического пара. Количество произведенного тепла оказывается несколько больше, чем количество электроэнергии, а общий коэффициент использования тепла топлива может достигать 85-90%. Есть и другая, еще более привлекательная, возможность заставить это тепло работать. Из термодинамики известно, что КПД наиболее совершенного цикла теплового двигателя (его придумал Карно почти 200 лет назад) пропорционально отношению температур подвода и отвода тепла. В ГТУ подвод тепла происходит в процессе сгорания. Температура образующихся продуктов, которые являются рабочей средой турбин, не ограничивается стенкой (как в котле), через которую необходимо передавать тепло, и может быть существенно выше. Освоено охлаждение омываемых горячими газами деталей, позволяющее поддерживать их температуры на допустимом уровне. В паровых энергоустановках температура перегретого пара не может превышать допустимую для металла труб котельных пароперегревателей и таких неохлаждаемых узлов, как паропроводы, коллекторы, арматура, - она составляет сейчас 540-565 °С, а в самых современных установках - 600-620 °С. Зато отвод тепла в конденсаторах паровых турбин осуществляется циркуляционной водой при температурах, близких к температуре окружающей среды. Указанные особенности позволяют существенно повысить КПД производства электроэнергии путем объединения в одной парогазовой установке (ПГУ) высокотемпературного подвода (в ГТУ) и низкотемпературного отвода тепла (в конденсаторе паровой турбины). Для этого отработавшие в турбине газы подаются в котел-утилизатор, где генерируется и перегревается пар, поступающий затем в паровую турбину. Вращаемый ею электрический генератор при неизменном расходе топлива в камере сгорания ГТУ увеличивает выработку электроэнергии в 1,5 раза. В итоге КПД лучших современных ПГУ составляет 55-58%. Такие ПГУ называют бинарными потому, что в них осуществляется двойной термодинамический цикл: пар в котле-утилизаторе и работа паровой турбины производятся за счет тепла, подведенного в камере сгорания ГТУ и уже отработавшего в верхнем газотурбинном цикле. С учетом всех достоинств ПГУ наиболее важной задачей для отечественной энергетики является перевод многочисленных паровых электростанций, работающих в основном на природном газе, в парогазовые. Привлекательными особенностями таких ПГУ, помимо высоких КПД, являются умеренная удельная стоимость (в 1,5-2 раза ниже, чем у паровых энергоблоков близкой мощности), возможность сооружения за короткое (два года) время, вдвое меньшая потребность в охлаждающей воде, хорошая маневренность. С учетом всех достоинств ПГУ наиболее важной задачей для отечественной энергетики является перевод многочисленных паровых электростанций, работающих в основном на природном газе, в парогазовые. При техническом перевооружении электростанций возможны два варианта создания бинарных ПГУ. mirznanii.com Парогазовые установки. Тепловые схемы и элементы ПГУ. Основы повышения КПД ПГУ. Перспективы развития ПГУ.Парогазовыми называются энергетические установки, в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле. Отличается от паросиловых и газотурбинных установок повышенным КПД. Принципиальная схема парогазовой установки (из лекции Фоминой).
КС ГТ ЭГ пар компрессор Котёл утилизатор К воздух ЭГ
питательная вода
КС – камера сгорания ГТ – газовая турбина К – конденсационная паровая турбина ЭГ – электрогенератор Парогазовая установка состоит из двух отдельныхустановок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтянойпромышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100атмосфер). Паровая турбина приводит в действие второй электрогенератор. Перспективы развития ПГУ (из учебника Аметистова).
1. Парогазовая установка — самый экономичный двигатель, используемый для получения электроэнергии. Одноконтурная ПГУ с ГТУ, имеющей начальную температуру примерно 1000 °С, может иметь абсолютный КПД около 42 %, что составит 63 % от теоретического КПД ПГУ. Коэффициент полезного действия трехконтурной ПГУ с промежуточным перегревом пара, в которой температура газов перед газовой турбиной находится на уровне 1450 °С, уже сегодня достигает 60 %, что составляет 82 % от теоретически возможного уровня. Нет сомнений в том, что КПД можно увеличить еще больше. 2. Парогазовая установка — самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД — ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит ее тепловое загрязнение. Поэтому уменьшение тепловых выбросов от ПГУ по сравнению с паросиловой будет ровно в той степени, на сколько меньше расход топлива на производство электроэнергии. 3. Парогазовая установка — очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ. 4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше. 5. ПГУ имеет умеренную стоимость установленной единицы мощности, что связано с меньшим объемом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения. 6. ПГУ имеют существенно меньший строительный цикл. ПГУ, особенно одновальные, можно вводить поэтапно. Это упрощает проблему инвестиций. Парогазовые установки практически не имеют недостатков, скорее следует говорить об определенных ограничениях и требованиях к оборудованию и топливу. Установки, о которых идет речь, требуют использования природного газа. Для России, где доля используемого для энергетики относительно недорого газа превышает 60 % и половина его используется по экологическим соображениям на ТЭЦ, имеются все возможности для сооружения ПГУ. Все это говорит о том, что строительство ПГУ является преобладающей тенденцией в современной теплоэнергетике. КПД ПГУ утилизационного типа: ηПГУ = ηГТУ + (1- ηГТУ)*ηКУ*ηПТУ ПТУ - паротурбинная установка КУ – котёл-утилизатор В общем случае КПД ПГУ: Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ; Qпсу — количество теплоты, подведенной к паровой среде в котле.
Билет№9
1. Принципиальные тепловые схемы отпуска пара и тепла с ТЭЦ. Коэффициент теплофикации α ТЭЦ. Способы покрытия пиковой тепловой нагрузки на ТЭЦ, ТЭЦ (теплоэлектроцентрали) - предназначены для централизованного снабжения потребителей теплом и электроэнергией. Их отличие от КЭС в том, что они используют тепло отработавшего в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. Из-за такого совмещения выработки электроэнергии и тепла достигается значительная экономия топлива в сравнении с раздельным энергоснабжением (выработкой электроэнергии на КЭС и тепловой энергии на местных котельных). Благодаря такому способу комбинированного производства, на ТЭЦ достигается достаточно высокий КПД, доходящий до 70%. Поэтому ТЭЦ получили широкое распространение в районах и городах с высоким потреблением тепла. Максимальная мощность ТЭЦ меньше, чем КЭС. ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет приблизительно 15 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных нужд давлением 0.8-1.6 МПа может быть передан на расстояние не более 2-3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300-500 МВт. Только в крупных городах, таких как Москва или Санкт-Петербург с большой плотностью тепловой нагрузки имеет смысл строить станции мощностью до 1000-1500 МВт. Мощность ТЭЦ и тип турбогенератора выбирают в соответствии с потребностями в тепле и параметрами пара, используемого в производственных процессах и для отопления. Наибольшее применение получили турбины с одним и двумя регулируемыми отборами пара и конденсаторами (см. рис). Регулируемые отборы позволяют регулировать выработку тепла и электроэнергии. Режим ТЭЦ - суточный и сезонный - определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. При этом в конденсаторы поступает минимальное количество пара. Зимой, когда спрос на тепло максимален, при расчетной температуре воздуха в часы работы промпредприятий нагрузка генераторов ТЭЦ близка к номинальной. В периоды, когда потребление тепла мало, например летом, а также зимой при температуре воздуха выше расчетной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается. Максимальная выработка электроэнергии теплофикационными станциями "на тепловом потреблении" возможна только при совместной работе с мощными КЭС и ГЭС, принимающими на себя значительную часть нагрузки в часы снижения потребления тепла.
сравнительный анализ способов регулирования тепловой нагрузки. Качественное регулирование. Преимущество: стабильный гидравлический режим тепловых сетей. Недостатки: ■ низкая надежность источников пиковой тепловой мощности; ■ необходимость применения дорогостоящих методов обработки подпиточной воды теплосети при высоких температурах теплоносителя; ■ повышенный температурный график для компенсации отбора воды на ГВС и связанное с этим снижение выработки электроэнергии на тепловом потреблении; ■ большое транспортное запаздывание (тепловая инерционность) регулирования тепловой нагрузки системы теплоснабжения; ■ высокая интенсивность коррозии трубопроводов из-за работы системы теплоснабжения большую часть отопительного периода с температурами теплоносителя 60-85 ОС; ■ колебания температуры внутреннего воздуха, обусловленные влиянием нагрузки ГВС на работу систем отопления и различным соотношением нагрузок ГВС и отопления у абонентов; ■ снижение качества теплоснабжения при регулировании температуры теплоносителя по средней за несколько часов температуре наружного воздуха, что приводит к колебаниям температуры внутреннего воздуха; ■ при переменной температуре сетевой воды существенно осложняется эксплуатация компенсаторов. Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте: zdamsam.ru Парогазовая установка — Википедия РУСхема работы парогазовой установкиПарогазовая установка (англ. Combined Cycle Gas Turbine, CCGT) — электрогенерирующая станция, служащая для производства электроэнергии. Парогазовая установка содержит два отдельных двигателя: паросиловой и газотурбинный. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтяной промышленности (дизельное топливо). На одном валу с турбиной находится генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают лишь часть своей энергии и на выходе из неё, когда их давление уже близко к наружному и работа не может быть ими совершена, все ещё имеют высокую температуру. С выхода газовой турбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 °C позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор (схема multi-shaft). Широко распространены парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае используется только один, чаще всего двухприводный генератор (схема single-shaft). Такая установка может работать как в комбинированном, так и в простом газовом цикле с остановленной паровой турбиной. Также часто пар с двух блоков ГТУ—котёл-утилизатор направляется в одну общую паросиловую установку. Иногда парогазовые установки создают на базе существующих старых паросиловых установок (схема topping). В этом случае уходящие газы из новой газовой турбины сбрасываются в существующий паровой котел, который соответствующим образом модернизируется. КПД таких установок, как правило, ниже, чем у новых парогазовых установок, спроектированных и построенных «с нуля». На установках небольшой мощности поршневая паровая машина обычно эффективнее, чем лопаточная радиальная или осевая паровая турбина, и есть предложение применять современные паровые машины в составе ПГУ[1]. Аргентинская ТЭС Костанера — первая электростанция в Южной Америке, использующая парогазовый циклНесмотря на то, что преимущества парогазового цикла были впервые доказаны еще в 1950-х годах советским академиком С. А. Христиановичем[источник не указан 2551 день], этот тип энергогенерирующих установок не получил в России широкого применения. В СССР были построены несколько экспериментальных ПГУ. Примером могут служить энергоблоки мощностью 170 МВт на Невинномысской ГРЭС и мощностью 250 МВт на Молдавской ГРЭС. За последние 10 лет в России введены в эксплуатацию более 30-ти мощных парогазовых энергоблоков. Среди них: По сравнению с Россией в странах Западной Европы и США парогазовые установки стали широко применяться раньше. На западных ТЭС, использующих в качестве топлива природный газ, установки такого типа используются гораздо чаще. http-wikipediya.ru КамАЗ-5320, ПГУ: устройство и принцип работыЧто такое устройство ПГУ КамАЗа-5320? Этот вопрос интересует многих новичков. Данная аббревиатура может привести в недоумение несведущего человека. На самом деле ПГУ – это пневматический гидравлический усилитель руля. Рассмотрим особенности этого устройства, его принцип работы и типы обслуживания, включая ремонт.
Предназначение и устройствоГрузовой автомобиль – достаточно массивная и крупногабаритная техника. Для ее управления требуется недюжинная физическая сила и выносливость. Устройство ПГУ КамАЗа-5320 позволяет облегчить регулировку транспортного средства. Это небольшое, но полезное устройство. Оно дает возможность не только упростить труд водителя, но и повышает производительность работ. Рассматриваемый узел состоит из следующих элементов:
ОсобенностиКорпусная система усилителя состоит из двух элементов. Фронтальная часть изготавливается из алюминия, а задний аналог – из чугуна. Между деталями предусмотрена специальная прокладка, которая играет роль уплотнителя и диафрагмы. Следящий механизм регулирует изменение давления воздуха на пневмопоршень в автоматическом режиме. В данное приспособление также входит уплотнительная манжета, пружины с диафрагмами, а также клапаны на впуск и выпуск. Принцип действияПри нажатии педали сцепления под давлением жидкости устройство ПГУ КамАЗа-5320 давит на шток и поршень следящего приспособления, после чего конструкция вместе с диафрагмой смещается до момента открытия впускного клапана. Затем воздушная смесь из пневматической системы автомобиля подается к пневмопоршню. В результате суммируются усилия обоих элементов, что позволяет отвести вилку и выключить сцепление. После того, как нога убирается с педали сцепления, давление подводящей магистральной жидкости падает до нулевого показателя. Вследствие этого ослабевает нагрузка на гидравлические поршни исполнительного и следящего механизма. По этой причине поршень гидравлического типа начинает перемещаться в обратном направлении, закрывая впускной клапан и блокируя поступление давления из ресивера. Нажимная пружина, воздействуя на следящий поршень, отводит его в исходную позицию. Воздух, изначально реагирующий с пневматическим поршнем, выводится в атмосферу. Шток с обоими поршнями возвращается в начальное положение. ПроизводствоУстройство ПГУ КамАЗа-5320 подходит для многих модельных модификаций этого производителя. Большинство старых и новых тягачей, самосвалов, военных вариантов оснащается пневмогидравлическим усилителем руля. Современные модификации, производимые различными компаниями, имеют следующие обозначения:
В плане выбора усилителя специалисты рекомендуют приобретать такую же марку и модель, которая была изначально установлена на машине. Это позволит обеспечить максимально правильное взаимодействие между усилителем и механизмом сцепления. Прежде чем менять узел на новую вариацию, проконсультируйтесь со специалистом. ОбслуживаниеДля поддержания рабочего состояния узла осуществляют следующие работы:
Стоит отметить, что при регулировке ПГУ КамАЗа-5320 модификации Wabco, износ накладок сцепления легко просматривается на специальном указателе, выдвигаемом под воздействием поршня. РазборкаДанная процедура при необходимости выполняется в следующем порядке:
ПГУ КамАза-5320: неисправностиЧаще всего в рассматриваемом узле возникают неполадки следующего характера:
Ремонт ПГУ КамАЗа-5320Проводя дефектовку элементов узла, особое внимание следует обратить на такие моменты:
В ремонтный комплект ПГУ входят такие запчасти КамАЗа:
Перед монтажом все детали рекомендуется обработать смазкой типа «Литол». Замена и установкаДля замены рассматриваемого узла выполняют следующие манипуляции:
После замены деформированных и негодных элементов, система проверяется на герметичность в гидравлической и пневматической части. Сборка производится следующим образом:
Принципиальная схема подсоединения и размещения элементов узлаПринцип работы ПГУ КамАЗа-5320 проще понять, изучив представленную ниже схему с пояснениями.
Рассматриваемый узел имеет довольно понятное и простое устройство. Тем не менее его роль при управлении грузовым автомобилем очень значительна. Использование ПГУ позволяет существенно облегчить управление машиной и повысить эффективность работы транспортного средства. загрузка... worldfb.ru Выбор цикла парогазовой установки и принципиальной схемы ПГУПоделиться "Выбор цикла парогазовой установки и принципиальной схемы ПГУ" В зависимости от чего выбираются парогазовые циклы, какой выбор будет оптимальным, и как будет выглядеть технологическая схема ПГУ? Как только становятся известны паритет капитала и конфигурация в отношении расположения валов, можно приступить к предварительному выбору цикла. Диапазон простирается от очень простых “циклов одного давления” до чрезвычайно сложных “циклов тройного давления с промежуточным перегревом”. Коэффициент полезного действия цикла с увеличением комплексности повышается, однако капитальные затраты также возрастают. Ключом выбора правильного цикла является определение такого цикла давления, который лучше всего подходит для заданного коэффициента полезного действия и заданных показателей затрат. Парогазовая установка с циклом одного давленияПГУ с циклом одного давления находит применение в тех случаях, когда показатель паритета капитала очень низок. Что такое паритет капитала читайте в статье - Важность капитала при проектировании парогазовой станции. Этот цикл часто используется для более благоприятного в цене топлива ухудшенного качества, как например, сырая нефть и тяжелое нефтяное топливо с высоким содержанием серы. По сравнению со сложными циклами инвестиции в ПГУ простых циклов незначительны. схема ПГУ с циклом одного давления На схеме изображена ПГУ с дополнительным змеевиком-испарителем на холодном конце котла-утилизатора. Этот испаритель отбирает у отработавших газов дополнительное тепло и отдает пар деаэратору с целью использования его для подогрева питательной воды. Благодаря этому отпадает необходимость в отборе пара для деаэратора из паровой турбины. Результатом по сравнению с простейшей схемой одного давления является улучшение коэффициента полезного действия, однако соответственно повышаются капитальные вложения. ПГУ с циклом двух давленийПринципиальная схема ПГУ с циклом двух давлений Большинство находящихся в эксплуатации комбинированных установок имеют циклы двойного давления. Вода подается двумя отдельными питательными насосами в экономайзер двойного давления. Вода низкого давления поступает затем в первый змеевик испарителя, а вода высокого давления нагревается в экономайзере, прежде чем она испарится и перегреется в горячей части котла-утилизатора. Отбор из барабана низкого давления снабжает паром деаэратор и паровую турбину. Т—S-диаграмма цикла ПГУ двух давлений Коэффициент полезного действия цикла двойного давления, как показано на Т—S-диаграмме на рисунке, выше, чем КПД цикла одного давления, из-за более полного использования энергии отработавших газов газовой турбины (дополнительная площадь СС'Д'Д). Однако при этом увеличиваются капитальные вложения на дополнительное оборудование, например, на питательные насосы, экономайзеры двойного давления, испарители, низконапорные трубопроводы и два паропровода НД к паровой турбине. Поэтому рассматриваемый цикл применяют только при высоком паритете капитала. ПГУ с циклом тройного давленияПринципиальная схема ПГУ с циклом трех давлений Это одна из наиболее сложных схем, которые находят применение в настоящее время. Она применяется в случаях очень высокого паритета капитала, при этом высокий коэффициент полезного действия может быть получен только с высокими затратами. К котлу-утилизатору добавляется третья ступень, которая дополнительно использует теплоту отработавших газов. Насос высокого давления подает питательную воду в трехступенчатый экономайзер высокого давления и далее в барабан — сепаратор высокого давления. Питательный насос среднего давления подает воду в барабан — сепаратор среднего давления. Часть питательной воды от насоса среднего давления через дроссельное устройство поступает в барабан — сепаратор низкого давления. Пар из барабана высокого давления поступает в пароперегреватель и затем в часть высокого давления паровой турбины. Отработавший в части высокого давления (ЧВД) пар смешивается с паром, поступившим из барабана среднего давления, перегревается и поступает на вход части низкого давления (ЧНД) паровой турбины. Коэффициент полезного действия может быть дополнительно повышен за счет подогрева топлива водой высокого давления перед его поступлением в газовую турбину. Диаграмма выбора циклаДиаграмма предварительного выбора цикла Типы циклов, начиная с цикла одного давления и кончая циклом тройного давления с промежуточным перегревом, представлены как функции паритета напитала. Цикл выбирается путем определения, какие из циклов соответствуют данному показателю паритета капитала для конкретного случая применения. Если, например, паритет капитала составляет 1800 дол. США/кВт, то выбирается цикл двойного или тройного давления. В первом приближении решение принимается в пользу цикла тройного давления, так как при неизменном паритете капитала коэффициент полезного действия и мощность выше. Однако при более точном рассмотрении параметров может оказаться, что для удовлетворения других требований более целесообразным является выбор цикла двойного давления. Существуют случаи, для которых диаграмма выбора цикла неприменима. Наиболее часто встречающимся примером подобного случая является ситуация, когда заказчик хочет иметь в распоряжении электрическую мощность как можно скорее и оптимизация для него менее важна, чем короткие сроки поставки. В зависимости от обстоятельств может оказаться целесообразным циклу с несколькими давлениями предпочесть цикл с одним давлением, так как затраты времени меньше. Для этой цели можно разработать серию стандартизированных циклов с заданными параметрами, которые с успехом находят применение в подобных случаях.
Поделиться "Выбор цикла парогазовой установки и принципиальной схемы ПГУ" (Visited 2 224 times, 1 visits today) Читайте такжеccpowerplant.ru КамАЗ-5320, ПГУ: устройство и принцип работыАвтомобили 17 октября 2017Что такое устройство ПГУ КамАЗа-5320? Этот вопрос интересует многих новичков. Данная аббревиатура может привести в недоумение несведущего человека. На самом деле ПГУ – это пневматический гидравлический усилитель руля. Рассмотрим особенности этого устройства, его принцип работы и типы обслуживания, включая ремонт.
Предназначение и устройствоГрузовой автомобиль – достаточно массивная и крупногабаритная техника. Для ее управления требуется недюжинная физическая сила и выносливость. Устройство ПГУ КамАЗа-5320 позволяет облегчить регулировку транспортного средства. Это небольшое, но полезное устройство. Оно дает возможность не только упростить труд водителя, но и повышает производительность работ. Рассматриваемый узел состоит из следующих элементов:
ОсобенностиКорпусная система усилителя состоит из двух элементов. Фронтальная часть изготавливается из алюминия, а задний аналог – из чугуна. Между деталями предусмотрена специальная прокладка, которая играет роль уплотнителя и диафрагмы. Следящий механизм регулирует изменение давления воздуха на пневмопоршень в автоматическом режиме. В данное приспособление также входит уплотнительная манжета, пружины с диафрагмами, а также клапаны на впуск и выпуск. Видео по темеПринцип действияПри нажатии педали сцепления под давлением жидкости устройство ПГУ КамАЗа-5320 давит на шток и поршень следящего приспособления, после чего конструкция вместе с диафрагмой смещается до момента открытия впускного клапана. Затем воздушная смесь из пневматической системы автомобиля подается к пневмопоршню. В результате суммируются усилия обоих элементов, что позволяет отвести вилку и выключить сцепление. После того, как нога убирается с педали сцепления, давление подводящей магистральной жидкости падает до нулевого показателя. Вследствие этого ослабевает нагрузка на гидравлические поршни исполнительного и следящего механизма. По этой причине поршень гидравлического типа начинает перемещаться в обратном направлении, закрывая впускной клапан и блокируя поступление давления из ресивера. Нажимная пружина, воздействуя на следящий поршень, отводит его в исходную позицию. Воздух, изначально реагирующий с пневматическим поршнем, выводится в атмосферу. Шток с обоими поршнями возвращается в начальное положение. ПроизводствоУстройство ПГУ КамАЗа-5320 подходит для многих модельных модификаций этого производителя. Большинство старых и новых тягачей, самосвалов, военных вариантов оснащается пневмогидравлическим усилителем руля. Современные модификации, производимые различными компаниями, имеют следующие обозначения:
В плане выбора усилителя специалисты рекомендуют приобретать такую же марку и модель, которая была изначально установлена на машине. Это позволит обеспечить максимально правильное взаимодействие между усилителем и механизмом сцепления. Прежде чем менять узел на новую вариацию, проконсультируйтесь со специалистом. ОбслуживаниеДля поддержания рабочего состояния узла осуществляют следующие работы:
Стоит отметить, что при регулировке ПГУ КамАЗа-5320 модификации Wabco, износ накладок сцепления легко просматривается на специальном указателе, выдвигаемом под воздействием поршня. РазборкаДанная процедура при необходимости выполняется в следующем порядке:
ПГУ КамАза-5320: неисправностиЧаще всего в рассматриваемом узле возникают неполадки следующего характера:
Ремонт ПГУ КамАЗа-5320Проводя дефектовку элементов узла, особое внимание следует обратить на такие моменты:
В ремонтный комплект ПГУ входят такие запчасти КамАЗа:
Перед монтажом все детали рекомендуется обработать смазкой типа «Литол». Замена и установкаДля замены рассматриваемого узла выполняют следующие манипуляции:
После замены деформированных и негодных элементов, система проверяется на герметичность в гидравлической и пневматической части. Сборка производится следующим образом:
Принципиальная схема подсоединения и размещения элементов узлаПринцип работы ПГУ КамАЗа-5320 проще понять, изучив представленную ниже схему с пояснениями.
Рассматриваемый узел имеет довольно понятное и простое устройство. Тем не менее его роль при управлении грузовым автомобилем очень значительна. Использование ПГУ позволяет существенно облегчить управление машиной и повысить эффективность работы транспортного средства. Источник: fb.ruКомментарии Идёт загрузка...Похожие материалы Автомобили Насос-форсунка дизельного двигателя: устройство и принцип работыТребования, которые предъявляются к современным дизельным моторам в отношении мощности, экономичности и экологичности, становятся все выше. Чтобы эти требования удовлетворить, следует обеспечить хорошее смесеобразован... Автомобили Гидронатяжитель цепи: устройство и принцип работыКак известно, в двигателе автомобиля используется ременной либо цепной привод газораспределительного механизма. Последний тип появился немного ранее и считается наиболее надежным. Но в последнее время цепь становится ... Автомобили Передний мост "Нива". Устройство и принцип работы переднего моста "Нивы"Современному человеку не нужно объяснять то, для чего предназначены машины, но вот в конструкции автомобиля может не разбираться даже водитель с многолетним стажем. Для раскрытия темы стоит коротко рассказать о двух ч... Автомобили Устройство и принцип работы кондиционера автомобильногоСегодня многие имеют в своих автомобилях кондиционеры. Но мало кто задумывался, как они работают. Для автолюбителей это всего лишь кнопка на приборной панели, которая в жаркий день дарит прохладу и свежесть. Давайте п... Автомобили Наконечник тяги рулевой – устройство и принцип работыСейчас в мире нет такого автомобиля, который бы не укомплектовывался рулевыми тягами. В основе этого механизма лежит наконечник, который отвечает за повороты колес при движении. Он является ключевой составляющей данно... Автомобили Редукционные клапаны: устройство и принцип работыРедукционные клапаны - это механизмы, которые предназначаются для поддержки низкого давления в отводимом потоке жидкости. Чаще всего такие инструменты применяются в гидроприводах, в которых от одного насоса питается с... Автомобили Электромагнитный клапан - устройство и принцип работыЭлектромагнитный клапан являет собой электромеханическое устройство, которое управляется при помощи электрического тока. Последний проходит через электромагнит (катушка, накрученная вокруг сердечника), вследствие чего... Автомобили Тормозная система: устройство и принцип работыТормозная система является самым важнейшим узлом в работе каждого современного автомобиля. От эффективности ее работы и исправного состояния напрямую зависит безопасность водителя и его пассажиров. Ее главна... Бизнес Ацетиленовый генератор: устройство и принцип работыАцетиленовый генератор – это устройство для выработки ацетилена путем химической реакции. Взаимодействие карбида кальция с водой приводит к выделению необходимого продукта. В настоящее время такие аппараты испол... Бизнес Что такое конусные дробилки. Конусные дробилки: основные типы, устройство и принцип работыКонусные дробилки – непрерывные устройства для измельчения породы, а также руды разного уровня твердости (средней, небольшой). Основное их отличие от щековых заключается в том, что в них отсутствует холостой ход... monateka.com |