Eng Ru
Отправить письмо

История создания и применение конденсатора. Применение конденсатора


Конденсатор: применение и виды

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Конденсатор с обкладками

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Модульный конденсатор

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Комбинированные конденсаторы

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Конденсатор с диэлектриком

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

Емкостные конденсаторы

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Конденсатор минимальной емкости

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Оцените статью:

elquanta.ru

Энергия заряженного конденсатора. Применение конденсаторов

Занимательные фишки - 7 класс Занимательные фишки - 8 класс Занимательные фишки - 9 класс

«Физика - 10 класс»

Как и любая система заряженных тел, конденсатор обладает энергией. Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно.

Энергия заряженного конденсатора.

Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта работа равна энергии конденсатора. В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.14.37). При разрядке конденсатора лампа вспыхивает. Энергия конденсатора превращается в тепло и энергию света.

Выведем формулу для энергии плоского конденсатора.

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е - напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины (рис.14.38).

Согласно формуле (14.14) для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

где q - заряд конденсатора, а d - расстояние между пластинами.

Так как Ed=U, где U - разность потенциалов между обкладками конденсатора, то его энергия равна:

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин вплотную.

Если заряд на пластинах остаётся постоянным, при сближении пластин поле совершает положительную работу:

При этом энергия электрического поля уменьшается.

Заменив в формуле (14.25) разность потенциалов или заряд с помощью выражения (14.22) для электроемкости конденсатора, получим:

Можно доказать, что эти формулы справедливы для любого конденсатора, а не только для плоского.

Энергия электрического поля.

Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электрическом поле этих тел. Значит, энергия может быть выражена через основную характеристику поля - напряженность.

Так как напряженность электрического поля прямо пропорциональна разности потенциалов (U=Ed), то согласно формуле

энергия конденсатора прямопропорциональна квадрату напряженности электрического поля внутри него:

.

Применение конденсаторов.

Зависимость электроемкости конденсатора от расстояния между его пластинами используется при создании одного из типов клавиатур компьютера. На тыльной стороне каждой клавиши располагается одна пластина конденсатора, а на плате, расположенной под клавишами, - другая. Нажатие клавиши изменяет емкость конденсатора. Электронная схема, подключенная к этому конденсатору, преобразует сигнал в соответствующий код, передаваемый в компьютер.

Энергия конденсатора обычно не очень велика - не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии.

Но это совсем не означает, что конденсаторы как накопители энергии не получили практического применения. Они имеют одно важное свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при разрядке через цепь с малым сопротивлением они отдают энергию почти мгновенно.Именно это свойство широко используют на практике.

Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей. Возбуждение квантовых источников света - лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости.

Однако основное применение конденсаторы находят в радиотехнике.

Энергия конденсатора пропорциональна его электроемкости и квадрату напряжения между пластинами. Вся эта энергия сосредоточена в электрическом поле. Энергия поля пропорциональна квадрату напряженности поля.

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электростатика - Физика, учебник для 10 класса - Класс!ная физика

Что такое электродинамика --- Электрический заряд и элементарные частицы. Закон сохранения заряд --- Закон Кулона. Единица электрического заряда --- Примеры решения задач по теме «Закон Кулона» --- Близкодействие и действие на расстоянии --- Электрическое поле --- Напряжённость электрического поля. Силовые линии --- Поле точечного заряда и заряженного шара. Принцип суперпозиции полей --- Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» --- Проводники в электростатическом поле --- Диэлектрики в электростатическом поле --- Потенциальная энергия заряженного тела в однородном электростатическом поле --- Потенциал электростатического поля и разность потенциалов --- Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности --- Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» --- Электроёмкость. Единицы электроёмкости. Конденсатор --- Энергия заряженного конденсатора. Применение конденсаторов --- Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»

Устали? - Отдыхаем!

Вверх

class-fizika.ru

Применение - конденсатор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Применение - конденсатор

Cтраница 1

Применение конденсаторов на основе p - tt - перехода ограничивается двумя паразитными параметрами: эквивалентным последовательным сопротивлением и параллельной емкостью. Эта схема содержит полезную емкость С, паразитную емкость изолирующего перехода коллектор - подложка С2, диоды Д [, Д2, образующие полезную и паразитную емкости, и последовательное сопротивление R.  [1]

Применение конденсаторов на основе р-л-переходов ограничивают два паразитных параметра: эквивалентное последовательное сопротивление и параллельная ( паразитная емкость. Паразитные элементы конденсатора на основе коллекторного перехода показаны на рис. 3.166. Здесь.  [2]

Применение конденсаторов для компенсации реактивной мощности в некоторых случаях может привести к снижению запаса устойчивости и появлению лавины напряжения.  [3]

Применения конденсаторов в электротехнике очень разнообразны.  [4]

Применения конденсаторов в электротехнике очень разнообразны. Рассмотрим здесь некоторые из них.  [5]

Применение конденсаторов в силовых установках позволяет также сохранить конденсат и многократно использовать его в качестве питательной воды.  [6]

Применение конденсаторов в схемах тиристорных коммутаторов связано с необходимостью учета особенностей работы управляемых вентилей на активно-емкостную нагрузку. Ввиду того, что конденсаторы в первый момент после открывания тиристоров шунтируют обмотки двигателя, скорость нарастания тока через тиристор dijdt может достичь недопустимой величины, что повлечет его повреждение. Ограничение по параметру dijdt объясняется, как известно, конечной скоростью распространения носителей по всей поверхности кремниевой пластины от места вплавления управляющего электрода. Поэтому схемы конденсаторного торможения обязательно следует дополнять дросселями ( схема 12), ограничивающими скорость нарастания тока в цепи с конденсатором.  [7]

Применение конденсатора в отличие от гасящего реостата не сопровождается увеличением потребляемой активной мощности.  [9]

Применение конденсаторов основано на том, что емкость в цепи переменного тока по потреблению и отдаче электроэнергии прямо противоположна индуктивности.  [11]

Применение конденсаторов на основе р-и-перехода ограничивается двумя паразитными параметрами: эквивалентным последовательным сопротивлением и параллельной емкостью. Эта схема содержит полезную емкость С, паразитную емкость изолирующего перехода коллектор - подложка Ci, диоды Д, Д2, образующие полезную и паразитную емкости, и последовательное сопротивление R. Для получения максимального коэффициента передачи сигнала от вывода / к выводу 2 необходимо стремиться к получению максимального отношения Ci / Cz. На рис. 2.35 6 показана зависимость этого отношения от запирающего напряжения V, приложенного к переходу коллектор - подложка, для двух значений напряжения смещения перехода база - коллектор.  [13]

Применение конденсаторов открывает возможность для построения динамических ( импульсных) цифровых управляющих систем, в которых используются импульсные логические схемы.  [14]

Страницы:      1    2    3    4    5

www.ngpedia.ru

История создания и применение конденсатора | Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест

Тема:

Конденсатор

Рис. 4.68. Из истории открытия лей­денской банки

Первый конденсатор был создан в 1745 г. голландским ученым Питером Мушенбруком, профессором Лейденского универси­тета. Проводя опыты по электризации тел, он опустил проводник от кондуктора элект­рической машины в стеклянный графин с водой. Случайно коснувшись пальцем этого проводника, ученый ощутил сильный элект­рический удар. Позже жидкость заменили металлическими проводниками изнутри и снаружи банки и назвали эту банку лейден­ской (рис. 4.68). В таком виде она про­существовала почти 200 лет.

Более сложные и совершенные конден­саторы нашли широкое применение в со­временных электротехнике и радиоэлектрон­ной технике. Они есть в фильтрах адаптеров, которые подают постоянное напряжение для питания электронных приборов, в радио­приемниках и радиопередатчиках как эле­менты колебательных контуров или состав­ные различных функциональных схем элект­ронной аппаратуры. В фотовспышках кон­денсаторы накапливают большой заряд, не­обходимый для работы импульсной лампы.

Мушенбрук Питер ван (1692 — 1761) — голландский физик. Родился в Лейде­не. Окончил Лейденский университет, был профессором Дуйсбургского, Утрехт­ского и с 1740 г. Лейденского универ­ситетов. Работы посвящены электри­честву, теплоте, оптике. В 1745 г. не­зависимо от Клейста изобрел первый конденсатор — лейденскую банку и провел с ней ряд опытов, в частности обратил внимание на физиологическое действие тока. Был автором первого си­стемного курса физики, а его двухтом­ное издание «Введение в натуральную философию» (1762 г.) было энциклопе­дией физических знаний того времени.

В электротехнике конденсаторы обеспе­чивают необходимый режим работы элект­родвигателей, автоматических и релейных приборов, линий электропередач и т.п. Материал с сайта http://worldofschool.ru

Рис. 4.69. Конденсатор переменной ем­кости
Рис. 4.70. Разные типы конденсаторов постоянной емкости

Во многих широкодиапазонных радио­приемниках конденсаторы переменной ем­кости (рис. 4.69) позволяют плавно изме­нять собственную частоту колебательного контура при поиске передачи необходимой радиостанции. Широко распространены кон­денсаторы, емкость которых можно изме­нять электрическим способом. Их называют варикапами.

Конструктивно конденсаторы могут быть плоскими, трубчатыми, дисковыми. В ка­честве диэлектрика в них применяют парафи­нированную бумагу, слюду, воздух, пласт­массы, керамику и т. п. (рис.4.70). Благодаря искусственным изоляционным материалам в наше время созданы конденсаторы боль­шой емкости, приходящейся на единицу объема.

На этой странице материал по темам:
  • Сообщение на тему : применение конденсаторов

  • История создания первого конденсатора доклад

  • Биологические конденсаторы

  • Применение конденсаторов реферат по физике

  • Применение конденсаторов кратко

Вопросы по этому материалу:
  • Какие диэлектрики применяются в современных конденсаторах?

  • Для чего применяют конденсаторы?

worldofschool.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта