Содержание
Мощности в энергетике
В электроэнергетике под понятием «мощность», в зависимости от того какая она, понимается много разных величин.
Давайте попробуем их систематизировать и разобраться чем они отличаются друг от друга.
Максимальная мощность — наибольшая величина мощности, определенная к одномоментному использованию энергопринимающими устройствами (объектами электросетевого хозяйства) в соответствии с документами о технологическом присоединении и обусловленная составом энергопринимающего оборудования (объектов электросетевого хозяйства) и технологическим процессом потребителя, в пределах которой сетевая организация принимает на себя обязательства обеспечить передачу электрической энергии, исчисляемая в мегаваттах.
Если потребитель включил все свои энергопринимающие устройства, то за час его потребление не должно превышать величины максимальной мощности, установленной в Акте об осуществлении технологического присоединения (Акте разграничения балансовой принадлежности). В пределах максимальной мощности и не изменяя схему внешнего электроснабжения потребитель может осуществлять свое потребление не согласовывая его с сетевой организацией или гарантирующим поставщиком (энергосбытовой организацией).
За превышение максимальной мощности законодательством предусмотрены серьезные санкции.
Порядок определения превышения максимальной мощности (превышение за месяц, за час или мгновенное превышение) в настоящее время законодательно не урегулирован.
Увеличить объем максимальной мощности или изменить схему внешнего электроснабжение можно с помощью процедуры технологического присоединения.
Разрешенная мощность — в настоящее время такой термин в законодательстве отсутствует. Часто его используют как синоним максимальной мощности.
Присоединенная мощность — совокупная величина номинальной мощности присоединенных к электрической сети (в том числе опосредованно) трансформаторов и энергопринимающих устройств потребителя электрической энергии, исчисляемая в мегавольт-амперах.
Это определение утратило силу при утверждении Правил розничных рынков электроэнергии (Постановления Правительства от 04.05.2012 г. №442). Однако на оптовом рынке до сих пор присоединенная мощность используется. Например, при определении необходимости оборудования точек поставки «транзитных потребителей» системой коммерческого учета, соответствующей требованиям оптового рынка электроэнергии. Для совокупности точек поставки, величина присоединенной мощности которых меньше 2,5% от присоединенной мощности предприятия достаточно создание технического учета.
Хоть определение присоединенной мощности на данный момент и отсутствует, под ней понимается трансформаторная мощность потребителя, то есть мощность вводных трансформаторов, определяемая в мегавольт-амперах.
Сетевая мощность — в законодательстве нет понятия сетевой мощности. Вместо этого короткого определения используется следующее: объем услуг по передаче электрической энергии, оплачиваемых потребителем электрической энергии (мощности) за расчетный период по ставке, отражающей удельную величину расходов на содержание электрических сетей, двухставочной цены (тарифа) на услуги по передаче электрической энергии. Так что для краткости, всё-таки предлагаю использовать более кратное определение.
Сетевая мощность — это объем мощности оплачиваемой потребителями, применяющими в расчетах за услуги по передаче электрической энергии двухставочный тариф. Объем сетевой мощности умножается на ставку на содержание объектов электросетевого хозяйства.
Объем сетевой мощности — равен среднему арифметическому значению из максимальных значений в каждые рабочие сутки расчетного периода из суммарных по всем точкам поставки на соответствующем уровне напряжения, относящимся к энергопринимающему устройству (совокупности энергопринимающих устройств) потребителя электрической энергии (мощности) почасовых объемов потребления электрической энергии в установленные системным оператором плановые часы пиковой нагрузки.
Как правило, прочитав определение выше, никто не понимает как всё-таки определяется объем сетевой мощности. Поэтому на energo.blog есть статья «Расчет объема сетевой мощности» где приведен пошаговый алгоритм.
Покупная мощность (потребленная, оптовая). На оптовом рынке электрической энергии и мощности торгуются два товара — электрическая энергия и мощность. Если при оплате сетевой мощности потребитель компенсирует сетевой организации затраты на содержание объектов электросетевого хозяйства, то оплачивая покупную мощность, потребитель платит производителям электроэнергии на оптовом рынке за генерирующее оборудование, на котором возможно производить электрическую энергию.
То есть еще раз и грубо:
- Сетевая мощность — плата за столбы, ЛЭП и трансформаторы
- Покупная мощность — плата за турбины и энергоблоки.
Объем покупной мощности — равен среднему за месяц из значений потребления предприятия в часы пиковой нагрузки, в которые наблюдалось максимальное совокупное потребление по субъекту Российской Федерации, в котором находится предприятие.
Пошаговый алгоритм также описан в статье Расчет объема покупной (потребленной) мощности.
Принципиальное отличие в расчете покупной и сетевой мощности состоит в том, что для сетевой мощности определяется максимальное потребление в часы пиковой нагрузки самого предприятия, а для покупной мощности берется час максимальной нагрузки региона и потребление именно в этот час принимается для расчета.
Таким образом, в данный день величина электроэнергии для расчета покупной мощности может быть равной сетевой (если собственный пик совпадает с пиков региона), либо величина электроэнергии для расчета покупной мощности будет меньшей, чем величина электроэнергии для расчета сетевой мощности (если пики не совпадают). Таким образом, объем оплачиваемой покупной мощности для предприятия будет всегда меньше, чем объем сетевой мощности.
Резервируемая максимальная мощность (резервируемая мощность) — рассчитывается как разность между максимальной мощностью и сетевой мощностью. Определяется для потребителей с максимальной мощностью не менее 670 кВт. В настоящее время доводится до потребителей в информационных целях в счетах на оплату электроэнергии. ПАО «Россети» активно продвигают законопроект, согласно которому потребители вынуждены будут оплачивать резервируемую максимальную мощность, если она составляет более 40%, а затем вообще планируется переход на оплату услуг по передаче исходя из максимальной мощности. На дату написания статьи законопроект не принят.
Заявленная мощность — величина мощности, планируемой к использованию в предстоящем расчетном периоде регулирования, применяемая в целях установления тарифов на услуги по передаче электрической энергии и исчисляемая в мегаваттах.
То есть заявленная мощность используется только для расчетов между сетевыми организациями по индивидуальным тарифам на услуги по передаче электрической энергии. У потребителей электрической энергии применение заявленной мощности не законно.
Установленная мощность — электрическая мощность объектов по производству электрической и тепловой энергии на момент введения в эксплуатацию соответствующего генерирующего объекта.
Располагаемая мощность — максимальная технически возможная мощность электростанции с учетом ограничений и допустимого превышения над установленной мощностью отдельных агрегатов.
Потребители оплачивают генераторам объемы располагаемой мощности. Но не стоит сравнивать объемы располагаемой и покупной мощности — они не соответствуют из-за того, что в энергосистеме должен поддерживаться резерв генерирующих мощностей. Генераторы должны удовлетворить не только спрос на фактическую мощность, но и обеспечить надежное электроснабжение в том числе при незапланированном увеличении спроса, а также при аварийных ситуациях в энергосистеме. Из-за этого располагаемая мощность больше покупной на коэффициент резервирования мощности, который как правило составляет 1,5-2.
Ничего не найдено • Энергоаудит
По запросу ничего не найдено 🙁
Но Вас могут заинтерисовать наши материалы по темам энергетический паспорт, энергоаудит и энергосбережение
Содержание отчета по энергоаудиту • Пример отчета по энергетическому обследованию • Скачать форму отчета по энергоаудиту
Переход от энергопаспортов к энергодекларациям для государственных организаций и учреждений в связи с вступлением в силу поправок к ФЗ №261«Об энергосбережении и о повышении энергетической эффективности»
Основные термины и понятия в области энергосбережения: Энергетический ресурс • Энергетическая эффективность • Топливо • Энергетический паспорт • Энерго…
Узнайте все про энергетическое обследование: Виды работ • Цели и задачи • Экспресс и комплексное обследование • Консультация • Мероприятия
Энергоаудит в Краснодаре • Стоимость энергоаудита и порядок работ • Оформление энергопаспорта • Требования к энергоаудиторам • ФЗ №261 • Приказ Минэнерго №400
Как рассчитать целевые показатели • Целевые показатели программы энергосбережения • Учреждений • Муниципальных образований • ЖКХ • Регулируемых организаций
Энергетический паспорт здания образец • Примеры энергетических паспортов зданий для ввода в эксплуатацию • Образцы оформления энергопаспортов
Программа энергосбережения в школе и детском саду: Разработка • Требования • Приказ 425 и 398 • Школа • ДОУ • Образцы • Примеры 21-23 гг.
Индекс энергоэффективности здания – это индикатор, который помогает сравнить энергоэффективность обследуемого здания с другими аналогичными объектами
Расчет энергосбережения на примере энергосберегающих ламп. Сколько можно сэкономить с помощью энергосберегающих ламп в год.
Опросный лист для подготовки энергопаспорта поможет собрать основную информацию для проведения энергообследования и подготовки энергетического паспорта
Разработка программы энергосбережения 2021 – 2023 гг. • Инструкция • Целевые показатели • Законодательная база • ФЗ №261 • Приказ №425 и №398
Программа энергосбережения организации и учреждения по приказу №398 • Требования • Как оформить • Паспорт программы • Целевые показатели • Мероприятия
По результатам энергетического обследования вы получаете: Энергопаспорт • Отчет по энергоаудиту • Программу энергосбережения
Энергетический паспорт здания для ввода в эксплуатацию • Требования • ФЗ 261 • Градостроительный кодекс • Как оформить • Стоимость • Сроки • Консультация
Скачать законы: Энергетический паспорт • Энергодекларация • Энергоаудит • Энергосбережение • ФЗ №261 • Приказ Минэнерго №400 и №401 • Комментарии
Форма программы энергосбережения • Скачать • Форма мониторинга • Форма отчетов • Требования в соответствии с Приказом №398 и ФЗ №261
Обследование тепловизором: Поиск протечек • Утечки тепла • Обследование кровли • Тепловизионное обследование зданий, сооружений, оборудования, квартир
Образцы программы энергосбережения скачать • Программа энергосбережения образец • Гос. Организация • Школа • Муниципальная организация • ДОУ • Регулируемая
Экспресс энергоаудит – Как быстро и не дорого найти и устранить дефекты, сократить затраты на энергоресурсы. Обследование с Минимальными затратами.
Какие организации обязаны сделать энергетический паспорт • Как получить энергетический паспорт быстро и не дорого • Возможные штрафы и санкции за отсутствие энергопаспорта • Что представляет из себя энергетический паспорт организации
Проводим тепловизионное обследование электрооборудования: Электрогенераторы • Электродвигатели • Выключатели • Соединения • Трансформаторы • Воздушные линии
Программа энергосбережения организаций осуществляющих регулируемые виды деятельности: Требования • Законодательная база • Разработка • Примеры • Образец заполнения • Мероприятия по энергосбережению
Скачать примеры энергетических паспортов предприятий и организаций с разными видами деятельности • Все энергопаспорта зарегистрированы в СРО и приняты в Минэнерго
Тепловизионное обследование здания: Ввод здания в эксплуатацию • Устранение потерь тепла и протечек • Цена • Акт и Отчет по тепловизионному обследованию
Производство электроэнергии, мощность и продажи в США
- Производство — мера электроэнергии, произведенной с течением времени. Большинство электростанций используют часть электроэнергии, которую они производят, для работы электростанции. Чистая выработка не включает потребление электроэнергии для работы электростанций.
- Мощность — максимальный уровень электрической мощности (электроэнергии), который электростанция может отдать в конкретный момент времени при определенных условиях.
- Продажи — количество электроэнергии, проданной потребителям за определенный период времени, и на них приходится большая часть потребления электроэнергии в США.
Вырабатывается больше электроэнергии, чем продается, поскольку часть энергии теряется (в виде тепла) при передаче и распределении электроэнергии. Кроме того, некоторые потребители электроэнергии вырабатывают электроэнергию и используют большую ее часть или всю ее, а количество, которое они используют, называется прямым использованием . К таким потребителям относятся промышленные/производственные, коммерческие и институциональные объекты, а также домовладельцы, имеющие собственные генераторы электроэнергии. Соединенные Штаты также экспортируют и импортируют некоторое количество электроэнергии в Канаду и Мексику и из них. Общее потребление электроэнергии в США конечными потребителями равно розничным продажам электроэнергии в США плюс прямое потребление электроэнергии.
- Шкала коммунальных услуг — включает выработку электроэнергии и мощность электростанций общей мощностью не менее 1000 киловатт или 1 мегаватт (МВт) от общей генерирующей мощности.
- Малые предприятия — включает генераторы с генерирующей мощностью менее 1 МВт, которые обычно находятся в месте потребления электроэнергии или рядом с ним. Большинство солнечных фотоэлектрических систем, установленных на крышах зданий, представляют собой небольшие системы.
знаете ли вы
?
- Мегаватт (МВт) = 1000 кВт; мегаватт-час (МВтч) = 1000 кВтч
- Гигаватт (ГВт) = 1000 МВт; гигаватт-час (GWH) = 1000 МВтч
Нажмите, чтобы увеличить
Производство электроэнергии
В 2021 году чистая выработка электроэнергии коммунальными генераторами в США составила около 4 116 миллиардов киловатт-часов (кВтч) (или около 4,12 триллиона кВтч). По оценкам EIA, дополнительные 49,03 млрд кВтч (или около 0,05 трлн кВтч) были выработаны небольшими солнечными фотоэлектрическими (PV) системами.
В 2021 году около 61% электроэнергии, вырабатываемой коммунальными предприятиями США, производилось за счет ископаемого топлива (уголь, природный газ и нефть), около 19% — за счет ядерной энергии и около 20% — за счет возобновляемых источников энергии.
Нажмите, чтобы увеличить
Нажмите, чтобы увеличить
Электрогенерирующие мощности
Для обеспечения бесперебойного снабжения электроэнергией потребителей, операторов электроэнергетической системы или сети , вызов электростанций для производства и размещения права количество электроэнергии в сети в каждый момент времени для мгновенного удовлетворения и балансировки спроса на электроэнергию.
- Генераторы базовой нагрузки обычно полностью или частично обеспечивают минимальную или базовую потребность (нагрузку) в электроэнергетической сети. Генератор базовой нагрузки работает непрерывно, производя электроэнергию практически с постоянной скоростью в течение большей части дня. Атомные электростанции обычно работают в режиме базовой нагрузки из-за их низкой стоимости топлива и технических ограничений на работу в ответ на нагрузку. Геотермальные установки и установки, работающие на биомассе, также часто работают с базовой нагрузкой из-за низкой стоимости топлива. Многие из крупных гидросооружений, несколько угольных электростанций и растущее число генераторов, работающих на природном газе, особенно в комбинированных энергетических установках, также обеспечивают электроэнергией базовую нагрузку.
- Генераторы пиковой нагрузки помогают удовлетворить спрос на электроэнергию, когда спрос является самым высоким или пиковым, например, ближе к вечеру или когда потребление электроэнергии для кондиционирования воздуха и отопления увеличивается в жаркую и холодную погоду соответственно. Эти так называемые пиковые установки обычно представляют собой генераторы, работающие на природном газе или нефтяном топливе. В целом, эти генераторы относительно неэффективны и дорогостоящи в эксплуатации, но обеспечивают высокую ценность услуг в периоды пикового спроса. В некоторых случаях гидроаккумулирующие гидроэлектростанции и обычные гидроэлектростанции также поддерживают работу сети, обеспечивая электроэнергию в периоды пикового спроса.
- Генераторы промежуточной нагрузки составляют самый большой сектор генерации и обеспечивают работу в зависимости от нагрузки между базовой нагрузкой и пиковой нагрузкой. Профиль спроса меняется со временем, и промежуточные источники в целом технически и экономически подходят для отслеживания изменений нагрузки. Многие источники энергии и технологии используются в промежуточной эксплуатации. Блоки с комбинированным циклом, работающие на природном газе, которые в настоящее время обеспечивают больше выработки, чем любая другая технология, обычно работают как промежуточные источники.
Дополнительные категории электрогенераторов включают:
- Генераторы периодического действия с возобновляемыми источниками энергии , работающие от энергии ветра и солнца, которые вырабатывают электроэнергию только тогда, когда эти ресурсы доступны (т. е. когда ветрено или солнечно). Когда эти генераторы работают, они, как правило, уменьшают количество электроэнергии, требуемой от других генераторов для снабжения электросети.
- Системы/установки для хранения энергии для производства электроэнергии, включая гидроаккумулирующие, солнечно-тепловые аккумуляторы, аккумуляторы, маховики и системы сжатого воздуха. Системы накопления энергии для выработки электроэнергии используют электричество (или какой-либо другой источник энергии, например, солнечную тепловую энергию) для зарядки системы накопления энергии или устройства, которое разряжается для подачи (выработки) электроэнергии, когда это необходимо, на желаемом уровне и качестве. Некоторые энергоаккумуляторы используют электроэнергию, произведенную с использованием прерывистых возобновляемых источников энергии (ветер и солнце), когда доступность возобновляемых ресурсов высока, и используют систему хранения для обеспечения электроэнергией, когда возобновляемые источники энергии низки или недоступны. Системы накопления энергии также могут предоставлять вспомогательные услуги электроэнергетической сети. Приложения для хранения энергии по своей природе потребляют больше электроэнергии, чем обеспечивают. Гидроаккумулирующие гидросистемы потребляют больше электроэнергии для перекачки воды в водохранилища, чем они производят с запасенной водой. (Однако некоторые из них могут генерировать больше электроэнергии, чем они используют, поскольку естественные осадки увеличивают их емкость для хранения воды по сравнению с количеством, которое предприятие перекачивает в хранилище.) Негидроаккумулирующие системы имеют преобразования энергии и потери при хранении. Поэтому (большинство) хранилищ энергии для выработки электроэнергии имеют чистый отрицательный баланс выработки электроэнергии. Валовая выработка обеспечивает лучший показатель уровня активности объектов хранения энергии и предоставляется в выпусках данных Отчета о работе электростанции EIA-923.
- Распределенные генераторы подключены к электросети, но они в основном обеспечивают часть или все потребности в электроэнергии отдельных зданий или сооружений. Иногда эти системы могут генерировать больше электроэнергии, чем потребляет объект, и в этом случае избыточная электроэнергия отправляется в сеть. Большинство небольших солнечных фотоэлектрических систем представляют собой распределенные генераторы.
Некоторые типы электростанций могут фактически потреблять больше электроэнергии для работы, чем они производят, и поэтому могут иметь отрицательную чистую выработку на ежемесячной или годовой основе. Например, генераторы пиковой нагрузки могут простаивать в течение относительно длительных периодов времени. Однако им требуется электроэнергия от электростанции, частью которой они являются, и/или от электросети, чтобы быть в рабочем состоянии, когда требуется подача электроэнергии. В течение всего месяца или года их производство электроэнергии может быть меньше, чем мощность, которую они использовали, пока ждали отправки. Работы по техническому обслуживанию или ремонту электростанции также могут отключать генераторы на продолжительные периоды времени и приводить к отрицательной полезной выработке для объекта. Хранилища энергии для выработки электроэнергии (как правило) потребляют больше электроэнергии, чем вырабатывают, и имеют отрицательную генерацию.
В конце 2021 года в Соединенных Штатах было 1 143 757 МВт, или около 1,14 млрд кВт, общей мощности по выработке электроэнергии коммунальными предприятиями и около 32 972 МВт, или почти 0,03 млрд кВт, малых солнечных фотоэлектрических мощностей по производству электроэнергии.
Генераторы, работающие в основном на природном газе, составляют наибольшую долю генерирующих мощностей коммунальных предприятий в Соединенных Штатах.
Нажмите, чтобы увеличить
знаете ли вы
?
Существует три категории мощностей по выработке электроэнергии. Паспортная мощность , определяемая изготовителем генератора, представляет собой максимальную выработку электроэнергии генераторной установкой без превышения установленных тепловых пределов. Чистая мощность летом и чистая мощность зимой — это максимальная мгновенная электрическая нагрузка, которую генератор может поддерживать летом или зимой соответственно. Эти значения могут отличаться из-за сезонных колебаний температуры охлаждающей жидкости генератора (воды или окружающего воздуха). EIA сообщает о мощности по выработке электроэнергии как о чистой летней мощности в большинстве своих отчетов по данным по электроэнергии.
Нажмите, чтобы увеличить
Нажмите, чтобы увеличить
Источники энергии для производства электроэнергии в США
Состав источников энергии для производства электроэнергии в США со временем изменился, особенно в последние годы. Природный газ и возобновляемые источники энергии составляют растущую долю производства электроэнергии в США, в то время как производство электроэнергии за счет сжигания угля сократилось. В 1990 году на долю угольных электростанций приходилось около 42% от общей мощности электроэнергетики в США и около 52% от общего объема производства электроэнергии. К концу 2021 года доля угля в мощностях по выработке электроэнергии составляла 18%, а на уголь приходилось около 22% от общего объема выработки электроэнергии в коммунальных масштабах. За тот же период доля электрогенерирующих мощностей, работающих на природном газе, увеличилась с 17% в 19с 90 до 43 % в 2021 г., а ее доля в выработке электроэнергии увеличилась более чем в три раза с 12 % в 1990 г. до 38 % в 2021 г.
Большинство атомных и гидроэлектростанций в США были построены до 1990 г. оставался стабильным на уровне около 20% с 1990 года. Производство электроэнергии за счет гидроэнергетики, исторически являвшейся крупнейшим источником общего годового производства электроэнергии из возобновляемых источников в коммунальном масштабе (до 2019 года), колеблется из года в год из-за характера осадков.
Общее производство электроэнергии в США из возобновляемых источников энергии, не связанных с гидроэнергетикой, увеличивается
В последние годы производство электроэнергии из возобновляемых источников, помимо гидроэлектроэнергии, неуклонно растет, в основном из-за добавления ветряных и солнечных генерирующих мощностей. С 2014 года общее годовое производство электроэнергии из негидроэнергетических возобновляемых источников коммунального масштаба превышает общее годовое производство электроэнергии гидроэлектростанциями.
Доля энергии ветра в общих мощностях по выработке электроэнергии в США выросла с 0,2% в 19с 90 до примерно 12% в 2021 г., а его доля в общем годовом производстве электроэнергии коммунальными предприятиями выросла с менее чем 1% в 1990 г. до примерно 9% в 2021 г.
генерация, мощность производства солнечной электроэнергии и генерация значительно выросли за последние годы. Мощности по производству солнечной электроэнергии для коммунальных предприятий выросли с примерно 314 МВт, или 314 000 кВт, в 1990 г. до примерно 61 014 МВт (или примерно 61 млн кВт) в конце 2021 г., из которых около 98% составляли солнечные фотоэлектрические системы и 2% — солнечные теплоэлектрические системы. Доля солнечной энергии в общем объеме производства электроэнергии в США в 2021 году составила около 2,8% по сравнению с менее чем 0,1% в 1990 году. мощности, а выработка электроэнергии от малых фотоэлектрических установок составила около 49 млрд кВтч.
знаете ли вы
?
За последние несколько лет в Соединенных Штатах значительно выросло количество небольших солнечных фотоэлектрических (PV) систем, например, установленных на крышах зданий. Оценки маломасштабной солнечной фотоэлектрической мощности и производства по штатам и секторам включены в Электроэнергия Ежемесячно . По состоянию на конец 2021 года почти 37% от общего объема малых мощностей по выработке электроэнергии на солнечной энергии в США приходилось на Калифорнию.
Различные факторы влияют на сочетание источников энергии для производства электроэнергии
- Совокупный эффект нескольких лет низких цен на природный газ и преимущества новых технологий природного газа, особенно высокоэффективных генераторов комбинированного цикла
- Общее снижение затрат на развертывание ветряных и солнечных генераторов
- Государственные требования по использованию большего количества возобновляемых источников энергии
- Наличие государственных и других финансовых стимулов для строительства новых возобновляемых мощностей
- Федеральные нормы выбросов загрязняющих веществ в атмосферу для электростанций
- Замедление роста спроса на электроэнергию
Общее снижение цен на природный газ для производителей электроэнергии стало основным фактором роста производства электроэнергии с использованием природного газа и снижения производства электроэнергии с использованием угля с 2008 года. Когда цены на природный газ относительно низки, высокоэффективные генераторы комбинированного цикла, работающие на природном газе, могут поставлять электроэнергию по более низкой цене, чем генераторы, работающие на угле. В этом случае электростанции, работающие на угле, работают реже и получают меньший доход, что снижает их рентабельность и снижает стимулы к инвестированию в новые генерирующие мощности, работающие на угле. Устойчиво низкие цены на природный газ стимулируют развитие новых мощностей, работающих на природном газе. В отличие от генераторов, работающих на угле, генераторы, работающие на природном газе:
- Может добавляться небольшими порциями для удовлетворения требований к генерирующей мощности сети
- Может быстрее реагировать на изменения почасовой потребности в электроэнергии
- Обычно имеют более низкие затраты на соблюдение природоохранного законодательства
Розничные продажи электроэнергии
Розничные продажи электроэнергии в США конечным потребителям в 2021 г. составили около 3 795 млрд кВтч, или около 3,8 трлн кВтч, что на 77 млрд кВтч больше, чем в 2020 г. Розничные продажи включают чистый импорт (импорт минус экспорт). ) электроэнергии из Канады и Мексики.
Нажмите, чтобы увеличить
Кто продает электроэнергию?
Существует две основные категории поставщиков электроэнергии: поставщики полного спектра услуг , которые продают комплексные услуги по электроэнергии — электроэнергию и доставку конечным пользователям, и другие поставщики .
Поставщики полного спектра услуг могут производить электроэнергию на электростанциях, которыми они владеют, и продавать электроэнергию своим клиентам, а также частично поставщикам других типов. Они, в свою очередь, могут покупать электроэнергию у других поставщиков полного спектра услуг или у независимых производителей электроэнергии, которую они продают своим клиентам. Существует четыре основных типа поставщиков полного спектра услуг:
- Коммунальные предприятия, принадлежащие инвесторам , — это электрические коммунальные предприятия, акции которых обращаются на бирже.
- Государственные организации включают муниципалитеты, государственные органы власти и муниципальные органы по маркетингу.
- Федеральные образования либо принадлежат федеральному правительству, либо финансируются им.
- Кооперативы – это электроэнергетические предприятия, находящиеся в собственности членов кооператива и управляемые ими.
Прочие поставщики реализуют и продают электроэнергию клиентам поставщиков полного цикла или предоставляют потребителям только услуги по доставке электроэнергии. В основном это продавцы электроэнергии, работающие в штатах, где потребитель может выбирать поставщиков электроэнергии. Поставщики полного обслуживания поставляют электроэнергию для продавцов электроэнергии потребителям. Существуют также прямые сделки с электроэнергией от независимых производителей электроэнергии к (обычно крупным) потребителям электроэнергии.
Помимо продажи конечному потребителю, электроэнергия также часто продается на оптовых рынках или по двусторонним контрактам.
Последнее обновление: 15 июля 2022 г., с данными из Electric Power Monthly , февраль 2022 г.; данные за 2021 год предварительные.
Что такое генерирующая мощность? | Министерство энергетики
Управление
Ядерная энергия
1 мая 2020 г.
В мире энергии может быть сложно ориентироваться, особенно если вы не говорите на одном языке.
Одним из часто используемых терминов является генерирующая мощность.
По сути, это один из способов, с помощью которого эксперты в данной области могут измерить рост энергетических ресурсов, начиная от ветра и заканчивая ядерной энергией.
Итак, что это значит и как это работает?
Давайте разберемся.
Мощность = максимальная выходная мощность
Атомная электростанция Watts Bar в Теннесси.
Управление долины Теннесси
Когда дело доходит до генерирующих мощностей, думайте о максимальной выходной мощности.
Мощность — это количество электроэнергии, которое может произвести генератор, когда он работает на полную мощность. Это максимальное количество энергии обычно измеряется в мегаваттах (МВт) или киловаттах и помогает коммунальным предприятиям прогнозировать, насколько большую электрическую нагрузку может выдержать генератор.
В 2021 году мощность атомных электростанций США превысила 95 гигаватт. Это составляет 8% от общей мощности страны, а также позволяет нам узнать общее количество электроэнергии, которое все 54 коммерческих атомных электростанции США могли производить в том году.
*Важно отметить, что это не фактическое количество электроэнергии, произведенной атомной электростанцией в этом году (19%), к которому мы вернемся чуть позже.
Типы мощности
Согласно данным Управления энергетической информации США, обычно существует три типа показателей мощности:
- Паспортная мощность генерации – определяется производителем генератора
- Чистая летняя генерирующая мощность — Определяется в ходе тестов производительности во время пикового спроса с 1 июня по 30 сентября
- Чистая генерирующая мощность в зимнее время – определяется в ходе эксплуатационных испытаний во время пикового спроса с 1 декабря по 28 февраля.
Все эти числа разные, поэтому все зависит от того, какую метрику вы хотите измерить.
Например, летняя генерирующая мощность тепловых электростанций обычно ниже, чем зимняя генерирующая мощность тепловых электростанций, потому что более холодная вода лучше производит тепло, чем более теплая.
Коэффициент мощности
Факторы мощности позволяют любителям энергии проверить надежность различных электростанций. По сути, он измеряет, как часто установка работает на максимальной мощности. Станция с коэффициентом мощности 100% означает, что она производит энергию все время.
Ядерная энергетика имеет самый высокий коэффициент мощности среди всех других источников энергии — в 2021 году она будет производить надежную безуглеродную энергию более 92 % времени. Это почти в два раза надежнее, чем уголь (49,3 %) или природный газ (54,4 %). электростанции и почти в 3 раза чаще, чем ветровые (34,6%) и солнечные (24,6%) электростанции.
Мощность — это не производство электроэнергии
Источник: Управление энергетической информации США
Мощность — это не то же самое, что производство электроэнергии.