Eng Ru
Отправить письмо

Электронный прерыватель тока (К561ТМ2, КП741). Схема включения 561тм2


К561ТМ2

Цифровая микросхема КМОП, которая производилась еще в  советские времена в корпусе DI

P-14. Часто использовалась в бытовой аппаратуре в автоматике включения-выключения различных устройств.

Состоит из двух D-триггеров. Его работа от обычного RS-триггера отличается тем, что имеется еще 2 дополнительных входа D и С. Вход С является тактовым (синхронизирующим), а вход D информационным. При этом входа S и R имеют приоритет. При принудительной установке триггера по входам SR, сигналы, присутствующие на D и C не влияют на его состояние.

По входам D и C триггер работает следующим образом: при появлении лог.1 на входе С, на прямом выходе Q появляется уровень сигнала соответствующий сигналу присутствующему на входе D, т.е. происходит перенос состояния со входа D на выход Q. После исчезания лог. 1 на входе С триггер останется в этом же состоянии независимо от того что присутствует на входе D. Но если на D изменить предшествующее состояние на противоположное и при удержании этого уровня на вход С снова подать синхроимпульс, то состояние триггера изменится уже в соответствии с состоянием сигнала на входе D в данный момент, т.е. произойдет переключение выхода.

Такой триггер используется для сохранения в памяти двоичного сигнала, или еще по-другому он называется триггер задержки (памяти).

Нумерация выводов начинается от ключа на корпусе против часовой стрелки. По уровню сигналов на входах и выходах совместима с импортными микросхемами серии 40хх.

Аналоги К561ТМ2 – CD4013, HEF4013.

 

Маркировка К561ТМ2
Распиновка К561ТМ2 Цоколевка К561ТМ2 Корпус К561ТМ2 Маркировка К561ТМ2

 

Таблица истинности К561ТМ2

 

Параметры К561ТМ2

Наименование параметра

Значение

Напряжение питания (Uпит)

3-15В (макс.18В)

Выходное напряжение при лог.0

<0.05В

Выходное напряжение при лог.1

Uпит.-0.05В

Ток потребления (Iпот), при Uпит.=15В

<=20мкА

Потребляемая мощность (Pd)

300мВт

Время задержки распространения сигнала: при Uпит=5В при Uпит=10В

 

<420нС <150нС

Выходная емкость при Uпит=10В

<=10пФ

Диапазон рабочих температур

-10+70С

 

Анекдот:

Разговор подруг: - Мой муж программист - дебил. Сделали сыну прививки и он написал на ребенке маркером: «Вирусная база обновлена 01.10.12 г.»

mikroshema-k.ru

Два D - триггера К561ТМ2

Два D - триггера К561ТМ2

Микросхема представляет собой два D-триггера с динамическим управлением. Установка триггера по входам R и S принудительная, поэтому сигналы синхронизации С и информационного входа D не изменяют состояния триггера на выходе во время действия сигналов R и S. Триггер переключается по положительному перепаду на тактовом входе С, при этом логический уровень, присутствующий на входе D, передается на выход Q. Входы сброса R и установки S триггера независимы от тактового входа С и имеют высокие активные уровни. Максимальная тактовая частота может достигать 5 МГц, но время фронта тактового сигнала не должно превышать 5 мкс . С другой стороны, длительность тактового импульса должна быть более 100 нс. Время установления выходных данных - более 25 нс. Выпускается в корпусе типа 201.14-1, масса не более 1 г.

Назначение выводов: 1 - выход Q1; 2 - выход Q̅1; 3 - вход С1; 4 - вход R1; 5 - вход D1; 6 - вход S1; 7 - общий; 8 - вход S2; 9 - вход D2; 10 - вход R2; 11 - вход С2; 12 - выход Q̅2; 13 - выход Q2; 14 - напряжение питания.

Таблица истинности

Вход Выход
CD RSQ
00001
10010
XX10 01
XX01 10
XX11 11
0011 11

Электрические параметры

Номинальное напряжение питания 3...15 В
Выходное напряжение низкого уровня
Выходное напряжение высокого уровня>= 9 В
Ток потребления
Входной ток низкого уровня
Входной ток высокого уровня
Выходной ток низкого уровня>= 0,5 мА
Выходной ток высокого уровня>= 0,25 мА
Время задержки распространения при включении (выключении)

naladchikkip.ru

Микросхема К561ТМ2

Микросхема К561ТМ2 содержит два D-триггера, имеющих входы асинхронного управления S и R. Переключение триггера происходит по положительному перепаду на тактовом входе С. Смысл этого переключения в том, что логический уровень, присутствующий на входе D оказывается на выходе Q. При этом входы S и R (установки и сброса) триггера микросхемы К561ТМ2 имеют высокие рабочие уровни и работают независимо от тактового входа С.

D-триггер микросхемы К561ТМ2

D-триггер микросхемы К561ТМ2

Микросхема К561ТМ2 имеет максимальную тактовую частоту в 5 МГц, длительность тактового импульса не менее 100 нс и время установления выходных данных 25 нс.

Цоколёвка микросхемы К561ТМ2

Цоколёвка микросхемы К561ТМ2

Вход Выход  Синхронный  Асинхронный  CDRS Q не Q
_| H H H H B
_| B H H B H
X X B H H B
X X H B B H
X X B B B B

Таблица истинности D-триггера микросхемы К561ТМ2

katod-anod.ru

цифровые микросхемы - начинающим ( занятие_6 ) CAVR.ru

Рассказать в:

 ЦИФРОВЫЕ МИКРОСХЕМЫ (занятие №6)

На прошлом занятии мы познакомились с работой RS-триггера, построенного на двух логических элементах 2ИЛИ-НЕ. Работали с микросхемой К561ЛЕ5 (К176ЛЕ5), эта микросхема содержит четыре элемента 2ИЛИ- НЕ и на ней можно собрать два RS-триггера.

цифровые микросхемы - начинающим ( занятие_6 )

Вспомним как работает RS-триггер (рис. 1). У него имеются два входа и два выхода, входы обозначим R и S, а выходы Q (прямой) и Q (инверсный). Когда единичный импульс поступает на вход S триггер устанавливается в единичное состояние и на его выходе Q будет единица (на выходе Q будет ноль, поскольку выход инверсный). Такое состояние сохранится и если убрать единицу с входа S. И оно будет сохраняться до тех пор, пока на вход R не будет подан единичный импульс, тогда триггер "перекинется" в противоположное состояние, и на Q будет ноль, а на Q — единица. Таким образом RS-триггер может быть в двух устойчивых состояниях — единичном, когда на выходе Q единица, и нулевом, когда на Q ноль.

На схемах RS-триггер обозначается так, как показано внизу рисунка 1. Таким образом RS- триггер становится еще одной "элементарной частицей" цифровой схемы, "черным ящичком", имеющим строго определенные функции : подал единичный импульс на S и на Q будет единица, подал единичный_импульс на R и на Q теперь будет ноль (а на Q — все наоборот).

В сериях К176 и К561 есть только одна микросхема, содержащая RS-триггеры в "чистом виде" — это К561ТР2, причем только в серии К561 (К176ТР2 не бывает). Схема микросхемы К561ТР2 показана на рисунке 2.

цифровые микросхемы - начинающим ( занятие_6 )

 Она содержит четыре RS-триггера, имеющих только по одному прямому выходу (Q), которые к тому же можно отключать от выходных выводов микросхемы при помощи внутреннего ключевого устройства. При подаче единицы на вывод 5 эти ключи замыкаются и уровни с выходов триггеров поступают на выходные выводы микросхемы, а если на вывод 5 подать нуль, то ключи разомкнутся и выходы триггеров отключатся от выходных выводов микросхемы (на этих выводах, в таком случае, будет "серый уровень"или "высокоимпендансное состояние", то есть они, практически, никуда не будут подключены). Корпус у этой микросхемы почти такой же как у К561ЛЕ5 или К561ЛА7, но у него на два вывода больше, то есть с каждого бока микросхемы не по семь выводов, а по восемь.

     Кроме RS-триггеров существуют еще и D- триггеры, с которыми нам предстоит познакомиться на этом занятии.

Распространенная микросхема К561ТМ2 (или К176ТМ2) содержит два D-триггера (рисунок 3).

цифровые микросхемы - начинающим ( занятие_6 )

  Микросхема имеет точно такой же корпус как у К561ЛЕ5, K561J1A7 (К176ЛЕ5, К176ЛА7). Как видно из рисунка отличие D-триггера от RS- триггера в том, что у него есть два новых входа — вход D и вход С.

Чтобы изучить работу D-триггера соберем схему, показанную на рисунке 4. 

цифровые микросхемы - начинающим ( занятие_6 )

    S1 — кнопка, S2 — микротумблер, но как и прежде, если нет кнопок, можно просто соединять два оголенных монтажных провода. Прибор Р1 — любой тестер или мультиметр, переключенный на измерение напряжения до 10-15В, когда он будет показывать напряжение, почти равное напряжению питания, — это единица, когда почти ноль — это ноль. Батарея питания составлена из двух "плоских батареек" по 4,5В каждая, так что в сумме они дают 9В (включены последовательно).

Входы S и R триггера соединим с общим минусом питания, как работает RS-триггер мы знаем, так что, пусть они нам не мешают.

В момент включения питания триггер окажется в одном из двух положений, либо ноль на выводе 1, либо на нем же единица. Если нужно установить его принудительно в какое-то положение это можно сделать выводами R и S как в RS-триггере, но нам это не нужно. Предположим на выходе нуль (низкие показания Р1). Если мы будем нажимать на S1 ничего не изменится. Но если сначала замкнуть S2 (на вход D подать единицу), а потом, удерживая S2 в замкнутом состоянии, нажать на S1 то триггер перекинется в единичное состояние, и на его выводе 1 будет единица (напряжение около напряжения питания). Теперь, удерживая S2 по-прежнему в нажатом состоянии, попробуем снова нажать на S1 — ничего не меняется. Триггер жестко держится в единичном состоянии. Попробуем разомкнуть S2 (теперь на вход D поступает ноль через R2). Снова нажмем на S1 — триггер вернется в нулевое состояние (нуль на выводе 1). Таким образом, при нажатии на S1 триггер устанавливается в такое положение, при котором логический уровень на его прямом выходе будет таким же как на входе D. После отпускания S1, триггер останется в установившемся положении, ему будет "все равно", что на входе D, если на входе С (кнопка S1) нуль. То есть, если на входе D будет единица, то в момент нажатия на S1 (подача единицы на вход С) состояние триггера станет единичным (единица на выводе 1), и останется таким и после отпускания S1 и изменения уровня на D. Но если на D подать нуль, и удерживая этот нуль, нажать на S1 (подать единицу на С), то триггер перейдет в нулевое положение.

Заметим, что уровни на выводах 1 и 2 противоположны, поскольку вывод 2 — инверсный выход (как будто-бы сигнал с вывода 2 подали на инвертор, и снимают с его выхода). Таким образом, когда триггер в единичном состоянии на выводе 2 будет ноль, а когда в нулевом, на этом выводе будет единица.

Если соединить вход D триггера с его инверсным выходом можно получить интересный эффект, — частота импульсов, поступающих на вход С будет делится триггером ровно на два, и на его выходе частота импульсов будет в два раза ниже чем частота импульсов поступающих на С.

цифровые микросхемы - начинающим ( занятие_6 )

   Для изучения этого эффекта соберем схему, показанную на рисунке 5. Предположим в исходном положении триггер находится в нулевом состоянии, то есть на его выводе 1 — нуль. Поскольку на прямом выходе (вывод 1) нуль, то на инверсном выходе (вывод 2) все должно быть наоборот, и следовательно там единица. Эта единица поступает на вход D триггера. Теперь посмотрим, что произойдет если нажать и отпустить кнопку S1. В момент её нажатия на выходе (на прямом выходе) триггера установится именно такой уровень, как на входе D, то есть, если триггер в нулевом состоянии, и на D поступает единица с его инверсного выхода, то в момент нажатия на S1 триггер установится в единичное состоянии. И будет находится в таком состоянии и после отпускания S1. Но поскольку, триггер теперь уже находится в единичном состоянии, и на его выводе 1 (прямом выходе) единица, то на инверсном выходе (вывод 2), естественно, будет ноль. А значит ноль будет и на входе D. Нажав второй раз на S1 триггер перейдет снова в нулевое состояние.

   Таким образом, на вход С мы подали два импульса (два раза нажимали на кнопку S1), а на выходе получился только один импульс (по пол-импульса на каждое нажатие). Если на вход С такого делителя частоты на два, подать импульсы с выхода, например мульти­вибратора, то частота этих импульсов на выходе триггера будет в два раза ниже чем на выходе мультивибратора.

На рисунке 6 показана диаграмма работы такого делителя частоты.

цифровые микросхемы - начинающим ( занятие_6 )

 В исходном состоянии на выходе триггера (вывод 1) нуль, нуль также и на входе С (вывод 3). В момент нажатия на кнопку S1 на входе С (вывод 3.) уровень меняется с нулевого на единичный, тоже самое происходит и на выходе триггера (вывод 1). Затем мы отпускаем кнопку S1 и уровень на входе С (вывод 3) меняется на нулевой. Но несмотря на это на выходе по прежнему единица. Теперь снова нажимаем на S1 , — подаем единицу на вход С (вывод 3). В этот момент уровень на выходе меняется на нулевой, и остается таким и после отпускания кнопки.

При экспериментах с D-триггером возможны сбои в работе схемы по рисунку 5, потому что контакты кнопки имеют неприятную способность дребезжать, и этот дребезг дает вместо одного нажатия на кнопку несколько нажатий подряд. Простейшим способом подавить этот дребезг можно если параллельно R1 включить электролитический конденсатор на 5-15 мкФ (типа К50-35), плюсом к кнопке, а минусом к минусу питания. Но в цифровой технике применяется другой способ — используется RS-триггер и переключающая кнопка. Схема такого бездребезгового формирователя импульсов показана на рисунке 7 (используется второй триггер микросхемы К561ТМ2 или К176ТМ2).

цифровые микросхемы - начинающим ( занятие_6 )

  

Раздел: [Теоретические материалы] Сохрани статью в: Оставь свой комментарий или вопрос:

www.cavr.ru

Электронный прерыватель тока (К561ТМ2, КП741)

   Для практического применения или различных экспериментов нередко требуется прерыватель постоянного тока, представляющий собой двухполюсник, периодически включающий и отключающий питание нагрузки. Особенно часто такой прерыватель требуется автомобилистам, например, для замены вышедших из строя термоэлектрических или электронных прерывателей тока в блоках указателей поворотов, аварийной сигнализации, дополнительных стоп-сигналов и проблесковых маячков.

   Рис. 5.14

   Появление мощных МОП транзисторов с индуцированным каналом позволяет создать бесконтактный коммутатор нагрузки, падение напряжения на котором во включенном состоянии не превышает единиц-сотен милливольт при токе нагрузки 10 МА…25 А. Устройство, принципиальная схема которого приводится на рис. 5.14, работоспособно в интервале питающих напряжений 8…16 В. Максимальный ток управляемой нагрузки ограничен лишь параметрами примененного транзистора и в некоторых случаях может достигать нескольких сотен ампер.

   Работает устройство так. При включении напряжения питания через коммутируемую нагрузку RH, резистор R3 и диод VD2 быстро заряжаются конденсаторы С2, СЗ. В качестве генератора импульсов используется мигающий светодиод HL1. Прямоугольные импульсы поступают на цепь из триггеров DD1.1, DD1.2, образующую делитель частоты на 4. Таким образом, на затвор полевого транзистора поступают прямоугольные импульсы, следующие со скважностью 2, и с размахом, равным напряжению питания микросхемы.

   Когда на затворе транзистора VT1 имеется лог. 1, он открыт и на нагрузку поступает почти полное напряжение питания, а когда лог. 0 – транзистор закрывается, напряжение на правом по схеме выводе резистора R3 становится равным напряжению питания. Из этого следует, что накопительные конденсаторы С2, СЗ регулярно подзаряжаются в те моменты, когда нагрузка обесточена. Так как полевой транзистор в этом устройстве большую часть времени на

   ходится в статическом состоянии, то для его переключения энергия почти не расходуется. Основной потребитель тока – мигающий светодиод. Яркость вспышек в данном случае не имеет никакого значения, так как выбран микротоковый режим его работы. Пульсации напряжения на конденсаторах С2, СЗ не превышают 1,5 В.

   Элементы VD1, R3 предназначены для защиты микросхемы и полевого транзистора от повреждения при повышении напряжения питания, вызванного, например, неисправностями автомобильного реле-регулятора напряжения. Предохранитель FU1 защищает транзистор при коротком замыкании в цепи нагрузки.

   Частоту коммутации тока нагрузки можно увеличить вдвое, если левый вывод резистора R2 подключить к выв. 13 или 12 DD1.1. Недопустимо подключение цепи затвора VT1 напрямую к мигающему светодиоду. Схема тактового генератора на мигающем светодиоде выбрана для простоты и наглядности. Ее можно заменить другим экономичным генератором, построенным, например, на КМОП версии таймера 555 – ALD1504, ALD4503. При этом становится возможной работа генератора на звуковых частотах.

   Конденсаторы С2, СЗ должны быть хорошего качества, так как при потере их емкости может произойти повреждение дорогостоящего полевого транзистора. Именно поэтому используются два параллельно включенных конденсатора. Можно использовать отечественные танталовые или ниобиевые конденсаторы серий К52, К53. Стабилитрон VD1 – любой маломощный стабилитрон на 12…15 В. Диод VD2 – любой кремниевый из серий КД503, КД510, Kfl521,1N4148. Микросхему К561ТМ2 можно заменить на КР1561ТМ2, К564ТМ2 или построить соответствующий узел на других счетчиках-делителях этих серий. Мигающий светодиод подойдет любой, например, L56BID, L816BRSRC/B. Следует отметить, что на него не должен попадать яркий свет, иначе возможна остановка генерации.

   Максимальный коммутируемый ток нагрузки зависит от выбранного типа полевого транзистора. Для надежности и снижения потерь на открытом канале сток-исток транзистора желательно выбрать экземпляр с максимальным током стока, примерно вдвое большим, чем максимальный ток нагрузки. Для нагрузки, потребляющей ток до 25 А, подойдут n-канальные полевые транзисторы КП747А, КП783А, IRFP150, IRFP450, серий КП723, КП741, КП742. Для коммутации нагрузки с током потребления до 100 А подойдет транзистор IRF1704, имеющий сопротивление открытого канала не более 0,004 Ом. Можно использовать и параллельное включение двух-трех однотипных транзисторов. Если устройство будет применяться для коммутации ламп накаливания, следует обращать внимание на максимальный импульсный ток, который может выдерживать выбранный тип транзистора, так как сопротивление холодной вольфрамовой нити лампы накаливания примерно в 10 раз меньше, чем разогретой до рабочей температуры. При использовании прерывателя тока совместно с узлами, содержащими большие индуктивности (электромагнитное реле, звуковые излучатели), выводы сток-исток нужно зашунтировать маломощным стабилитроном на 30…40 В для защиты транзистора от выбросов напряжения самоиндукции.

   Полевой транзистор устанавливают на небольшой теплоотвод. Так как при увеличении температуры кристалла растет и сопротивление открытого канала, желательно, чтобы температура корпуса транзистора при длительной работе на максимальном токе не превышала 60°С.

   При монтаже микросхемы и транзистора обязательно следует принимать меры по защите от статического электричества.

    Литература: А. П. Кашкаров, А. Л. Бутов – Радиолюбителям схемы, Москва 2008

nauchebe.net

цифровые микросхемы - начинающим ( занятие_6 ) - Теоретические материалы - Теория

 ЦИФРОВЫЕ МИКРОСХЕМЫ (занятие №6)

На прошлом занятии мы познакомились с работой RS-триггера, построенного на двух логических элементах 2ИЛИ-НЕ. Работали с микросхемой К561ЛЕ5 (К176ЛЕ5), эта микросхема содержит четыре элемента 2ИЛИ- НЕ и на ней можно собрать два RS-триггера.

Вспомним как работает RS-триггер (рис. 1). У него имеются два входа и два выхода, входы обозначим R и S, а выходы Q (прямой) и Q (инверсный). Когда единичный импульс поступает на вход S триггер устанавливается в единичное состояние и на его выходе Q будет единица (на выходе Q будет ноль, поскольку выход инверсный). Такое состояние сохранится и если убрать единицу с входа S. И оно будет сохраняться до тех пор, пока на вход R не будет подан единичный импульс, тогда триггер "перекинется" в противоположное состояние, и на Q будет ноль, а на Q — единица. Таким образом RS-триггер может быть в двух устойчивых состояниях — единичном, когда на выходе Q единица, и нулевом, когда на Q ноль.

На схемах RS-триггер обозначается так, как показано внизу рисунка 1. Таким образом RS- триггер становится еще одной "элементарной частицей" цифровой схемы, "черным ящичком", имеющим строго определенные функции : подал единичный импульс на S и на Q будет единица, подал единичный_импульс на R и на Q теперь будет ноль (а на Q — все наоборот).

В сериях К176 и К561 есть только одна микросхема, содержащая RS-триггеры в "чистом виде" — это К561ТР2, причем только в серии К561 (К176ТР2 не бывает). Схема микросхемы К561ТР2 показана на рисунке 2.

 Она содержит четыре RS-триггера, имеющих только по одному прямому выходу (Q), которые к тому же можно отключать от выходных выводов микросхемы при помощи внутреннего ключевого устройства. При подаче единицы на вывод 5 эти ключи замыкаются и уровни с выходов триггеров поступают на выходные выводы микросхемы, а если на вывод 5 подать нуль, то ключи разомкнутся и выходы триггеров отключатся от выходных выводов микросхемы (на этих выводах, в таком случае, будет "серый уровень"или "высокоимпендансное состояние", то есть они, практически, никуда не будут подключены). Корпус у этой микросхемы почти такой же как у К561ЛЕ5 или К561ЛА7, но у него на два вывода больше, то есть с каждого бока микросхемы не по семь выводов, а по восемь.

     Кроме RS-триггеров существуют еще и D- триггеры, с которыми нам предстоит познакомиться на этом занятии.

Распространенная микросхема К561ТМ2 (или К176ТМ2) содержит два D-триггера (рисунок 3).

  Микросхема имеет точно такой же корпус как у К561ЛЕ5, K561J1A7 (К176ЛЕ5, К176ЛА7). Как видно из рисунка отличие D-триггера от RS- триггера в том, что у него есть два новых входа — вход D и вход С.

Чтобы изучить работу D-триггера соберем схему, показанную на рисунке 4. 

    S1 — кнопка, S2 — микротумблер, но как и прежде, если нет кнопок, можно просто соединять два оголенных монтажных провода. Прибор Р1 — любой тестер или мультиметр, переключенный на измерение напряжения до 10-15В, когда он будет показывать напряжение, почти равное напряжению питания, — это единица, когда почти ноль — это ноль. Батарея питания составлена из двух "плоских батареек" по 4,5В каждая, так что в сумме они дают 9В (включены последовательно).

Входы S и R триггера соединим с общим минусом питания, как работает RS-триггер мы знаем, так что, пусть они нам не мешают.

В момент включения питания триггер окажется в одном из двух положений, либо ноль на выводе 1, либо на нем же единица. Если нужно установить его принудительно в какое-то положение это можно сделать выводами R и S как в RS-триггере, но нам это не нужно. Предположим на выходе нуль (низкие показания Р1). Если мы будем нажимать на S1 ничего не изменится. Но если сначала замкнуть S2 (на вход D подать единицу), а потом, удерживая S2 в замкнутом состоянии, нажать на S1 то триггер перекинется в единичное состояние, и на его выводе 1 будет единица (напряжение около напряжения питания). Теперь, удерживая S2 по-прежнему в нажатом состоянии, попробуем снова нажать на S1 — ничего не меняется. Триггер жестко держится в единичном состоянии. Попробуем разомкнуть S2 (теперь на вход D поступает ноль через R2). Снова нажмем на S1 — триггер вернется в нулевое состояние (нуль на выводе 1). Таким образом, при нажатии на S1 триггер устанавливается в такое положение, при котором логический уровень на его прямом выходе будет таким же как на входе D. После отпускания S1, триггер останется в установившемся положении, ему будет "все равно", что на входе D, если на входе С (кнопка S1) нуль. То есть, если на входе D будет единица, то в момент нажатия на S1 (подача единицы на вход С) состояние триггера станет единичным (единица на выводе 1), и останется таким и после отпускания S1 и изменения уровня на D. Но если на D подать нуль, и удерживая этот нуль, нажать на S1 (подать единицу на С), то триггер перейдет в нулевое положение.

Заметим, что уровни на выводах 1 и 2 противоположны, поскольку вывод 2 — инверсный выход (как будто-бы сигнал с вывода 2 подали на инвертор, и снимают с его выхода). Таким образом, когда триггер в единичном состоянии на выводе 2 будет ноль, а когда в нулевом, на этом выводе будет единица.

Если соединить вход D триггера с его инверсным выходом можно получить интересный эффект, — частота импульсов, поступающих на вход С будет делится триггером ровно на два, и на его выходе частота импульсов будет в два раза ниже чем частота импульсов поступающих на С.

   Для изучения этого эффекта соберем схему, показанную на рисунке 5. Предположим в исходном положении триггер находится в нулевом состоянии, то есть на его выводе 1 — нуль. Поскольку на прямом выходе (вывод 1) нуль, то на инверсном выходе (вывод 2) все должно быть наоборот, и следовательно там единица. Эта единица поступает на вход D триггера. Теперь посмотрим, что произойдет если нажать и отпустить кнопку S1. В момент её нажатия на выходе (на прямом выходе) триггера установится именно такой уровень, как на входе D, то есть, если триггер в нулевом состоянии, и на D поступает единица с его инверсного выхода, то в момент нажатия на S1 триггер установится в единичное состоянии. И будет находится в таком состоянии и после отпускания S1. Но поскольку, триггер теперь уже находится в единичном состоянии, и на его выводе 1 (прямом выходе) единица, то на инверсном выходе (вывод 2), естественно, будет ноль. А значит ноль будет и на входе D. Нажав второй раз на S1 триггер перейдет снова в нулевое состояние.

   Таким образом, на вход С мы подали два импульса (два раза нажимали на кнопку S1), а на выходе получился только один импульс (по пол-импульса на каждое нажатие). Если на вход С такого делителя частоты на два, подать импульсы с выхода, например мульти­вибратора, то частота этих импульсов на выходе триггера будет в два раза ниже чем на выходе мультивибратора.

На рисунке 6 показана диаграмма работы такого делителя частоты.

 В исходном состоянии на выходе триггера (вывод 1) нуль, нуль также и на входе С (вывод 3). В момент нажатия на кнопку S1 на входе С (вывод 3.) уровень меняется с нулевого на единичный, тоже самое происходит и на выходе триггера (вывод 1). Затем мы отпускаем кнопку S1 и уровень на входе С (вывод 3) меняется на нулевой. Но несмотря на это на выходе по прежнему единица. Теперь снова нажимаем на S1 , — подаем единицу на вход С (вывод 3). В этот момент уровень на выходе меняется на нулевой, и остается таким и после отпускания кнопки.

При экспериментах с D-триггером возможны сбои в работе схемы по рисунку 5, потому что контакты кнопки имеют неприятную способность дребезжать, и этот дребезг дает вместо одного нажатия на кнопку несколько нажатий подряд. Простейшим способом подавить этот дребезг можно если параллельно R1 включить электролитический конденсатор на 5-15 мкФ (типа К50-35), плюсом к кнопке, а минусом к минусу питания. Но в цифровой технике применяется другой способ — используется RS-триггер и переключающая кнопка. Схема такого бездребезгового формирователя импульсов показана на рисунке 7 (используется второй триггер микросхемы К561ТМ2 или К176ТМ2).

  

cxema.my1.ru

4. Схемотехника узлов на МОП микросхемах

Расширители импульсов

В системах передачи информации для ослабления влияния случайных флуктуаций, а также для управления в устройствах автоматики нередко требуется из коротких импульсов получать более широкие, определенной длительности.Эта задача легко реализуется с помощью ждущего мультивибратора (одновибратора). Одновибратор является триггерной схемой, которая генерирует одиночный импульс под действием внешнего управляющего сигнала. При этомподразумевается, что формируемый импульс превышает длительность запускающего.

Packet19.jpg

Рис. 1.9 Формирователь широкого импульса с использованием триггера Шмитта

Как правило, применяют один из двух методов формирования импульса:

аналоговый или цифровой. Наиболее простым является аналоговый — используется процесс перезаряда конденсатора. Пример такой схемы показан на рис. 1.9. Для правильной работы данного одновибратора необходимо, чтобы дли тельность входного запускающего импульса была достаточно большой, чтобы конденсатор успел полностью разрядиться. После окончания запускающего импульса конденсатор заряжается через резистор до величины напряжения питания. При этом, как только напряжение достигнет Uпор — элемент D2.1 переключится. В этом случае длительность выходного импульса (tи) зависит от номиналов установленных емкости и резистора во времязадающей цепи. Упрощенная формула позволяет ориентировочно рассчитать длительность импульса:

Packet110.jpg

где Е — напряжение питания схемы;Uпор — уровень используемого порога, рис. 1.10, для переключения элемента.

С учетом разброса значений напряжения порога переключения (Uпор) длительность импульса может принимать значения от tмин=0,4RC до tмax=1,11RC. Обычно в одновибраторах используются ЛЭ из одного корпуса (кристалла). В этом случае разброс Unop оказывается незначительным и можно принять tи=0,69RC. Это соотношение используется для определения длительности импульса в большинстве схем, рис. 1.11...1.18. Эпюры напряжения поясняют процессы формирования выходного импульса. Схемы, показанные на одном рисунке, являются аналогичными по логике работы и имеют ту же самую диаграм му напряжений в контрольных точках.

В отличие от простейшего варианта (рис 1.9) схемы, приведенные на рис. 1.11...1.14 не чувствительны к длительности входного импульса, из-за чего

Packet111.jpg

Рис. 1.10. Области допустимых уровней сигнала на входе МОП микросхем

Packet112.jpg

Рис. 1.11. Одновибратор с одной времязадающей цепью

Packet113.jpg

Рис. 1.12. Одновибратор на основе RS-триггера

Packet114.jpg

Рис. 1.13. Одновибратор по фронту входного сигнала

Packet115.jpg

Рис. 1.14. Одновибратор

наиболее широко применяются в аппаратуре. Схемам, рис. 1.9, 1.15...1.17, присуще свойство перезапуска, т. е. если во время формирования выходного импульса появляется очередной запускающий, то отсчет длительности формируемого импульса начнется заново от момента окончания последнего запускающего.

Применяемые в схемах диоды ускоряют процесс перезаряда емкости, что уменьшает возможности возникновения импульсных помех на выходе ЛЭ.

Чтобы выходное сопротивление ЛЭ не сказывалось на точности расчета, а также не перегружался выход, резистор R1 должен быть номиналом не менее 10... 20 кОм. Чтобы пренебречь при расчетах емкостью монтажа, минимальнаяемкость С1 может быть 200... 600 пФ. Для получения высокой температурной стабильности временного интервала номинал R1 должен быть < 200 кОм, а конденсатор не более 1, 5 мкФ. Использование электролитических конденсаторов увеличивает нестабильность временного интервала.

Для уменьшения влияния разброса значений Unop на длительность формируемого импульса можно воспользоваться схемами с двумя времязадающими цепями (рис. 1. 18). Если постоянные времени обеих времязадающих цепей

Packet116.jpg Рис. 1.15. Формирователи импульса после окончания действиязапускающего сигнала

одинаковы, то при максимальном разбросе значений Unop от 0, 33Uпит до 0,69Uпит изменение длительности формируемого импульса не превышает 9%.Выполнение одновибраторов на RS-триггере, рис. 1. 19 и 1. 20, дает возможность иметь два раздельных входа запуска (по переднему фронту импульса), а также сразу получать на выходах прямой импульс и импульс с инверсией. Еще одним преимуществом одновибраторов на RS-триггерах является возможность осуществлять запуск от медленно меняющегося входного напряжения.

Packet117.jpg

Рис 1.16 Формирователи импульсов

Packet118.jpg

Рис 1.17 Формирователи импульсов

Длительность подаваемых на вход S запускающих импульсов должна быть меньше формируемого (режим, когда на входах S и R одновременно присутствует лог. "1", является запрещенным). На входе С длительность запускающего импульса может быть любой. Диод VD1 ускоряет разряд конденсатора через выход триггера и позволяет увеличить частоту запускающих импульсов (его применение уменьшает время восстановления схемы). Длительность формируемых им пульсов составляет приблизительно tи=0,69R1C1. Минимальное значение

Packet119.jpg

Рис. 1.18 Одновибраторы с двумя времязадающими цепями

Packet120.jpg

Рис. 1.19. Ждущие мультивибраторы:

а) на D-триггере; б) на JK-триггере,в) с повышенной стабильностью при изменении питания

сопротивления R1 ограничено максимально допустимым выходным током триггера Его можно менять в пределах 20 кОм...10 МОм, при этом длительность импульса будет меняться в 500 раз. Одновременное изменение значений R1 и С1 позволяет регулировать длительности импульсов в пределах четырех порядков.

Packet121.jpg

Рис 1 20. Ждущие мультивибраторы с увеличенной крутизной выходныхимпульсов- а) на D-триггере; б) на JK-триггере

Packet122.jpg

Рис 121. Ждущий мультивибратор с повышенной стабильностью

Схема на рис. 1.19в обеспечивает более стабильные импульсы при изменении питающего напряжения (аналогичную схему можно собрать и на JK-триггерах).

Для увеличения крутизны спадов выходных импульсов применяют схемы показанные на рис. 1.20, но в них конденсаторы С1 должны быть неполярными.При этом длительность генерируемого импульса при тех же значениях RC-цепи, что и в схемах на рис. 1.18, получается примерно в 2 раза больше.

Лучшую стабильность при изменении напряжения питания по сравнению с представленными на рис. 1.19 вариантами обеспечивает схема одновибратора на двух триггерах, рис 1. 21. Кроме того, в этом случае подключение нагрузки не влияет на длительность генерируемых импульсов. Схема состоит из двух одновибраторов, имеющих общий вход запуска, но вырабатывающих на независимых выходах импульсы разной длительности. Импульсы на выходе 5 почти не будут зависеть от напряжения питания

Packet123.jpg

Рис. 1. 22 Схемы формирователей задержанного импульса.

Ждущий универсальный одновибратор можно выполнить на специально предназначенной для этих целей микросхеме (рис 1. 22а). В одном корпусе 564АГ1 (1561АГ1) имеется два одновибратора, обладающих, в зависимости от комбинации управляющих сигналов на входе, свойством обычного запуска по переднему (вход S1) или заднему фронту (S2), а также при необходимости может перезапускаться. Вход R является приоритетным по отношению к осталь ным входам и устанавливает значение сигнала Q=0 (если вход R не используется, то подключается к +Uпит).

Длительность формируемого сигнала (tи, Q=1) задается соответствующей внешней RC-цепью: tи=0,5RC для С>0,01 мкФ. Более точно определить позволяет приводимая в справочнике [Л8] диаграмма.

Packet124.jpg

Рис. 1. 23 Ждущий мультивибратор на триггере с возможностью перезапуска.

Packet125.jpg

Рис. 1. 24 Ждущий мультивибратор с возможностью перезапуска.

Если требуется иметь перезапуск одновибратора на триггере, в случае прихода очередного входного импульса во время формирования интервала, то схема на рис. 1.23 позволяет увеличить длительность выходного импульса засчет начала отсчета с момента окончания запускающего сигнала. Аналогичная схема приведена на рис. 1. 24. Когда на входе действует лог. "0", конденсатор заряжен до величины напряжения питания (лог. "1"). При поступлении запускающего импульса с длительностью, достаточной для разряда конденсатора, триггер перебросится и генерирует импульс. Длительность этого импульса, после окончания действия входного сигнала, определяется необходимым временем для заряда конденсатора до уровня лог. "1".

Схема (рис. 1.25), в отличии от вышеприведенной, позволяет получить более крутые фронты у сигнала на выходах триггера Второе преимущество этой схемы заключается в том, что по окончании вырабатываемого импульса конденсатор быстро разряжается через диод от уровня Uпор вместо дозаряда до уровня питания (Е) Из-за этого следующий запускающий импульс может быть значительно короче, при сохранении нулевого времени восстановления

Packet126.jpg

Рис. 1.25 Ждущий мультивибратор с повышенной крутизной фронтавыходных импульсов.

Второй метод получения импульса нужной длительности связан с использованием счетчиков — цифровых одновибраторов Их применяют, когда временной интервал должен быть очень большим или предъявляют высокие требования к стабильности формируемого интервала В этом случае минимальная получаемая длительность ограничена только быстродействием используемых элементов, а максимальная длительность может быть любой (в отличие от схем, использующих RC-цепи).

Принцип работы цифрового одновибратора основан на включении триггера входным сигналом и отключении через временной интервал, определяемый коэффициентом пересчета счетчика. Использование в одновибраторе счетчи-ков с переключаемым коэффициентом деления, рис. 1.26, позволяет получить импульс любой длительности. Микросхема 564ИЕ 15 состоит из пяти вычитающих счетчиков, модули пересчета которых программируются параллельной загрузкой данных в двоичном коде. На загрузку чисел в счетчики требуется три такта, поэтому можно устанавливать коэффициент деления N>3 [Л2].

В таблице 1.2 приведены максимально возможные коэффициенты деления в зависимости от значения М. При значениях М=0 счет запрещен. Сигнал на входе S управляет режимом периодического (0) и однократного (1) счета. Двоичный код для разных значений модуля М берется из таблицы 1.3 (# — запрет счета, х — любое состояние, лог. "О" или "1"). Общий коэффициент деления микросхемы определяется по формуле

N=M(1000P1+100P2+10P3+P4)+P5 .

При работе цифрового одновибратора с кварцевым автогенератором тактовой частоты обеспечивается более высокая стабильность длительности выходного импульса, что позволяет их применять в измерительных приборах.

Packet127.jpg

Рис. 1. 26 Цифровой одновибратор на программируемом счетчике.

Таблица 1.2.

М

Nmax

2

17331

4

18663

5

13329

8

21327

10

16659

 

 

Таблица 1.3.

Номервывода

мк/сх

Логический уровень для модуля М

2

4

5

8

10

#

14

1

0

1

0

X

X

13

1

1

0

0

1

0

11

1

1

1

1

0

0

 

 

На рис. 1.27 показан пример простейшей схемы для получения импульса с помощью счетчика. Работу одновибраторов поясняют диаграммы, показанные на рисунках. Общим недостатком приведенных на рис 1.27 и 1.28 схем является случайная погрешность, связанная с произвольностью фазы задающего генераторав момент запуска. Погрешность может составлять до периода тактовой частоты и уменьшается с увеличением частоты генератора и коэффициента пересчета счетчика. Устранить этот недостаток позволяет схема на рис. 1.28(генератор включается при появлении запускающего импульса).

Packet128.jpg

Рис. 1.27. Цифровой одновибратор с повышенной стабильностьювременного интервала

Packet129.jpg

Рис. 1.28. Цифровой одновибратор

В исходном состоянии на выходе счетчика D2/3 (4) присутствует напряжение лог. "1", что запрещает работу автогенератора на D1.1, D1.2. Запускающий импульс обнуляет счетчик D2, и на его выходе D2/3 будет лог. "0" до момента, пока он не досчитает до появления на D2/3 лог. "1". Поскольку формирование выходного импульса всегда начинается из одного и того же состояния задающего генератора, то исключена случайная погрешность длительности импульса, но эта схема имеет другой недостаток: при включении питания она формирует навыходе импульс неопределенной длительности (в пределах заданного интервала). Схеме присуще свойство перезапуска в случае, если во время формирования выходного импульса появляется очередной запускающий (отсчет длительности формируемого импульса начинается заново).

Packet130.jpg

Рис 1.29. Одновибратор с синхронизацией длительности выходного импульсас частотой тактового генератора

Схема, показанная на рис 1.29 в момент поступления на вход запускающего импульса, обеспечивает на выходе сигнал, длительность которого равна периоду тактовой частоты (T=1/fт). При кварцевой стабилизации частоты генератора (fт) схема может использоваться в качестве высокостабильного одновибратора.

 

lib.qrz.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта