Eng Ru
Отправить письмо

Как устроена светодиодная лампа: принцип работы. Схемы лампы светодиодные


Светодиодная лампа своими руками: конструкциz, схема, самостоятельная сборка

LED-светильники находят широкое применение в организации бытового, уличного, промышленного освещения. Их важными достоинствами является экономичность, экологичность, неприхотливость в обслуживании.

Довольно простая конструкция позволяет сделать светодиодные лампы своими руками. Подробную инструкцию по их изготовлению, как и схемы сборки вы найдете в представленной статье.

Содержание статьи:

Принцип работы LED-устройства

Основой светодиодной лампы является односторонний полупроводник, величина которого составляет несколько миллиметров. В нем происходит однонаправленное движение электронов, что позволяет преобразовывать переменный ток в постоянный.

Состоящему из нескольких слоев кристаллу светодиода свойственны два типа электропроводимости: положительно и отрицательно заряженных частиц.

Сторона, где содержится минимальное количество электронов, получила названия дырочной (p-тип), тогда как другая с большим количеством этих частиц именуется электронной (n-тип).

Схема работы светодиода

Между двумя сторонами светодиодного элемента имеется условная граница – электронно-дырочный переход (p-n). Здесь частицы сталкиваются между собой, в результате чего наблюдается свечение.

При столкновении элементов на p-n-переходе они сталкиваются, генерируя частицы света фотоны. Если в это время поддерживать систему в постоянном напряжении, светодиод будет излучать стабильный поток света. Этот эффект используется во всех конструкциях LED-ламп.

Четыре разновидности светодиодных устройств

В зависимости от размещения светодиодов подобные модели можно разделить на следующие категории:

  1. DIP. Кристалл скомпонован с двумя проводниками, над которыми находится увеличитель. Модификация получила широкое распространение при изготовлении вывесок и гирлянд.
  2. «Пиранья». Приборы собирают аналогично предыдущему варианту, но предусматривают четыре вывода.  Надежные и прочные конструкции чаще всего применяют для оснащения автомобилей.
  3. SMD. Кристалл размещается сверху, что значительно улучшает отведение тепла, а также помогает уменьшить габариты устройств.
  4. СОВ. В этом случае светодиод впаивается непосредственно в плату, что способствует увеличению интенсивности свечения и защите от перегрева.

Существенный недостаток COB-устройств — невозможность замены отдельных элементов, из-за чего приходится приобретать новый механизм из-за одного-единственного вышедшего из строя чипа.

В люстрах и других бытовых осветительных приборах обычно применяется конструкция SMD.

Устройство LED-ламп

Светодиодная лампа состоит из шести следующих частей:

  • светодиод;
  • цоколь;
  • драйвер;
  • рассеиватель;
  • радиатор.

Действующим элементом подобного прибора является светодиод, генерирующий поток световых волн.

Схема устройства светодиодной лампы

Светодиодные приборы могут быть рассчитаны на различное напряжение. Наиболее востребованы небольшие изделия на 12-15 Вт и более крупные светильники на 50 ватт

Цоколь, который может иметь различный вид и размер, применяется и для других видов ламп – люминесцентных, галогенных, накаливания. В то же время некоторые LED-приборы, например, светодиодные ленты, могут обходиться без этой детали.

Важным элементом конструкции служит драйвер, преобразующий сетевое напряжение в тягу, на которой работает кристалл.

От этого узла во многом зависит эффективная работа лампы, кроме того, качественный драйвер, имеющий хорошую гальваническую развязку, обеспечивает яркий постоянный световой поток без намека на моргание.

Обычный светодиод производит направленный пучок света. Чтобы изменить угол его распределения и обеспечить качественное освещение, используется рассеиватель. Еще одной функцией этого компонента является защита схемы от механических и природных воздействий.

Радиатор предназначен для отвода тепла, излишки которого могут повредить прибору. Надежная работа радиатора позволяет оптимизировать работу лампы и продлить ей жизнь.

Чем меньше эта деталь, тем большую тепловую нагрузку придется выдерживать светодиоду, что скажется на быстроте его выгорания.

Преимущество и недостатки самодельной лампы

Специализированные магазины предлагают большой выбор светодиодных аппаратов. Однако порой в ассортименте невозможно найти прибор, отвечающий необходимым параметрам. Кроме того, LED-приборы традиционно отличаются высокой стоимостью.

Лампа, сделанная своими руками

К недостаткам изделий следует отнести отсутствие гарантии от производителя. Кроме того, при небрежной сборке подобные устройства могут иметь непривлекательный внешний вид

Между тем, вполне возможно сэкономить средства и получить идеальную лампу, выполнив сборку самостоятельно. Сделать это несложно и достаточно будет элементарных технических знаний и практических умений.

Выполненное своими руками LED-устройство имеет ряд значительных преимуществ над приобретенным в магазине аналогом.  Они отличаются экономичностью: при аккуратной сборке и использовании качественных деталей период эксплуатации достигает 100 тысяч часов.

Такие приборы показывают высокую степень энергоэффективности, которая определяется соотношением потребляемой мощности и яркости выработанного света. Наконец, их стоимость на порядок ниже, чем фабричных аналогов.

Проблемы самостоятельного изготовления

Главными вопросами, которые приходится решать при изготовлении LED-ламп, является перевод переменного электрического тока в пульсирующий и его выравнивание до постоянного. Помимо этого, предстоит ограничить силу электропотока 12 вольтами, что необходимо для питания диода.

Составные части светодиодной лампы

Для самостоятельного создания светильника на светодиодах можно воспользоваться деталями, купленными в специализированных магазинах, или элементами из перегоревших приборов

Продумывая устройство, следует также решить ряд конструктивных задач, а именно:

  • как расположить схему и светодиоды;
  • как изолировать систему;
  • как обеспечить теплообмен в устройстве.

Перед сборкой желательно продумать все эти проблемы с учетом требований, которые предъявляются к самодельному источнику света.

Схемы светодиодных ламп

Прежде всего, следует выработать вариант сборки. Существует два основных способа, каждый из которых имеет собственные плюсы и минусы. Ниже мы рассмотрим их подробнее.

Вариант с диодным мостом

Схема включает четыре диода, которые подключаются разнонаправленно. Благодаря этому мост приобретает возможность трансформировать сетевой ток в 220 V в пульсирующий.

Схема со светодиодным мостом

Схема светодиодного моста отличается простотой и логичностью. Выполнить ее может даже начинающий мастер, осваивающий азы самостоятельной работы

Происходит это следующим образом: при проходе по двум диодам синусоидальных полуволн, они изменяются, что вызывает потерю полярности.

При сборке к плюсовому выходу перед мостом подключается конденсатор; перед минусовой клеммой – сопротивление на 100 Ом. Еще один конденсатор устанавливается позади моста: он понадобится для сглаживания перепадов напряжения.

Изготовление светодиодного элемента

Наиболее простым способом создания LED светильника является выполнение источника света на основе сломанного светильника. Необходимо проверить работоспособность обнаруженных деталей, что можно сделать с помощью аккумулятора на 12 V.

Неисправные элементы нужно заменить. Для этого следует распаять контакты, убрав перегоревшие элементы, поставить на их место новые. При этом важно соблюдать чередование анодов и катодов, которые крепятся последовательно.

Если требуется поменять лишь 2-3 штуки чипа, достаточно просто припаять их на участки, где ранее находились вышедшие из строя компоненты.

При полной самостоятельной сборке нужно соединять в ряд по 10 диодов, соблюдая правила полярности. Несколько выполненных цепей припаиваются к проводам.

Платы со светодиодами

При изготовлении лампы можно воспользоваться платами со светодиодами, которые можно найти в перегоревших устройствах. Важно лишь проверить их работоспособность

При сборке схем важно следить, чтобы спаянные концы не касались друг друга, поскольку это может привести к замыканию прибора и выхода системы из строя.

Приспособления для более мягкого света

Чтобы избежать мерцания, свойственного LED-светильникам, описанную выше схему можно дополнить несколькими деталями. Таким образом, она должна состоять из диодного моста, резисторов на 100 и 230 Ом, конденсаторов на 400 нФ и 10 мкФ.

Чтобы защитить устройство от перепадов напряжения в начале схемы помещается резистор в 100 Ом, за которым впаивается конденсатор 400 нФ, после него устанавливается диодный мост и еще один резистор на 230 Ом, за которым идет собранная цепочка светодиодов.

Приборы с резисторным сопротивлением

Подобная схема также вполне доступна начинающему мастеру. Для ее выполнения требуются два резистора 12k и две цепочки из одинакового числа светодиодов, которые припаиваются последовательно с учетом полярности. При этом одна полоса со стороны R1 подсоединяется катодом, а другая – с R2 – анодом.

Выполненные по этой схеме светильники имеют более мягкий свет, поскольку действующие элементы зажигаются по очереди, благодаря чему пульсация вспышек почти незаметна невооруженному глазу.

Формула расчета мощности

Для расчета мощности лампы необходимо знать величину тока, который проходит через светодиоды. Эту величину можно рассчитать по приведенной формуле. При этом нужно учесть, что на показатель падения напряжения в последовательно соединенных 12 светодиодах составляет примерно 36В

Устройства успешно применяются в качестве настольной лампы и в других целях. Для создания оптимального освещения специалисты рекомендуют применять ленты из 20-40 диодов. Меньшее количество дает небольшой световой поток, соединение большего числа элементов технически довольно сложно выполнить.

Важный элемент: светодиодный драйвер

Для корректной работы LED-устройства, выполненного своими руками, следует решить вопрос с драйвером. Схема этого узла довольно проста. Алгоритм функционирования состоит в прохождении переменного тока в 220V на диодный мост через конденсатор C1.

Выпрямленный ток переходит на последовательно подключенные светодиоды HL1-HL27, количество которых могут достигать 80 штук.

Схема драйвера для светодиодной лампы

Драйвер для самодельного светодиодного устройства собирается по приведенной схеме. Можно также воспользоваться и готовыми элементами bp 3122, bp 2832а или bp 2831а

Чтобы избежать мерцания и добиться стабильно ровного цвета желательно использовать конденсатор С2, который должен иметь как можно большую емкость.

Корпуса для светодиодных приборов

Перед сборкой важно определиться, где будет помещаться собранная схема. Существует несколько вариантов решения этой проблемы — для размещения устройства можно использовать:

  • Цоколи ламп накаливания.
  • Корпуса от перегоревших энергосберегающих или галогенных ламп.
  • Выполненные своими руками приспособления.

Первый вариант имеет важное преимущество. При его использовании легко закрутить собранное светодиодное устройство в патрон, тем самым обеспечив теплообмен.

Следует учесть, что помимо очевидного плюса, этот способ имеет и явные минусы. Собранная конструкция имеет не слишком эстетичный вид, кроме того, в этом случае сложно выполнить надежную изоляцию.

Отделение колбы лампы накаливания

Для того чтобы воспользоваться перегоревшей лампой накаливания для создания светодиодной, нужно предварительно аккуратно отделить стеклянную колбу от цоколя, после чего извлечь спираль. В образовавшееся пространство осторожно укладывается собранная схема, а над платой укрепляется лампочка

Удобный и практичный вариант — поместить самодельный прибор в корпус энергосберегающей лампы. Для этого первоначально необходимо разобрать перегоревший прибор, достав из него преобразовательную плату.

Собранную схему можно вставить, применив разные способы:

  • Диоды помещаются в отверстия, которые проделываются в крышке под стеклянной колбой.
  • Схему можно расположить внутри цоколя, что гарантирует теплообмен. В этом случае LED-элементы вставляются и закрепляются в уже имеющиеся отверстия.
  • Плату можно спрятать в цоколь. Для выполнения процесса удобно воспользоваться обычной пластиковой крышкой от бутылки с водой.

Для размещения светодиодов мастера часто применяют сделанный своими руками кружок из пластика или картона, в котором сверлятся отверстия под диоды. При тщательно выполненной работе такие устройства смотрятся довольно эстетично.

Еще одним вариантом является применение корпуса галогенной лампы. Он не получил широкого распространения, поскольку в данном случае нет возможности закрутить светильник в патрон. Тем не менее подобная модификация используется для выполнения самодельных индикаторов и иных приборов.

Материалы для изготовления самоделки

Помимо корпуса, для создания лампы потребуются и другие элементы. Это, прежде всего светодиоды, которые можно приобрести в виде LED-лент или отдельных элементов НК6. Сила тока каждой детали равна 100-120 мА; напряжение 3-3,3 V.

Материалы, необходимые для сборки

Сборка некоторых схем предполагает использование дополнительных звеньев, например, драйвера, поэтому набор компонентов для каждого конкретного случая рассматривается отдельно

Необходимы также выпрямительные диоды 1N4007 либо диодный мост, а также предохранители, обнаружить которые можно в цоколе старого прибора.

Понадобится и конденсатор, емкость и напряжение которого должны соответствовать используемой электросхеме и количеству использованных в ней LED-элементов.

Если не используется готовая плата, нужно подумать о каркасе, к которому крепятся светодиоды. Для его изготовления подойдет теплоустойчивый материал, не являющийся металлом и непроводящий электрический ток.

Как правило, подобную деталь выполняют из прочных пластиков или плотного картона. Для крепления светодиодных элементов к каркасу понадобятся жидкие гвозди или суперклей.

Собираем простую LED-лампу

Рассмотрим выполнение светильника в стандартном цоколе от люминесцентной лампы. Для этого нам придется несколько изменить приведенный выше список материалов. В этом случае мы используем:

  • старый цоколь Е27;
  • светодиоды НК6;
  • драйвер RLD2-1;
  • кусок пластика или плотного картона;
  • суперклей;
  • электропроводку;
  • паяльник, плоскогубцы, ножницы.

Первоначально требуется разобрать светильник. У люминесцентных устройств подсоединение цоколя к пластинке с трубками осуществляется с помощью защелок. Важно обнаружить место крепежа и поддеть элементы отверткой, что позволит легко отсоединить патрон.

Схема сборки светодиода

Процесс сборки самодельной светодиодной лампы простой. В корпус от старого прибора вставляется драйвер, поверх которого устанавливается плата со светодиодами

Разбирая прибор, нужно соблюдать предельную осторожность, чтобы не нанести вреда трубкам, внутри которых находится ядовитое вещество. Одновременно необходимо следить за целостностью электропроводки, подсоединенной к цоколю, а также сохранять детали, содержащиеся в нем.

Верхнюю часть с подсоединенными газоразрядными трубками мы используем для выполнения пластинки, необходимой для подсоединения светодиодов. Достаточно удалить трубчатые элементы, а в оставшиеся круглые отверстия закрепить LED-детали.

Для их надежного крепления лучше сделать дополнительную пластмассовую или картонную крышку, которая послужит для изолирования чипов.

В лампе будут применяться светодиоды НК6, каждый из которых состоит из 6 кристаллов с параллельным подключением. Они позволяют создать довольно яркий осветительный прибор при минимуме потребляемого электричества.

Для подключения каждого светодиода к крышке необходимо выполнить по два отверстия. Прокалывать их следует аккуратно в строгом соответствии схеме.

Пластиковая деталь позволяет прочно зафиксировать LED-элементы, тогда как использование картона требует дополнительного закрепления светодиодов к основанию при помощи жидких гвоздей либо суперклея.

Так как устройство рассчитано на применение шести светодиодов мощностью по 0,5 ватт каждый, в схеме нужно предусмотреть три параллельно подсоединенных элемента.

Светильник из светодиодной ленты

Эффектный светильник можно выполнить, используя светодиодную ленту. Этот элемент вставляется в трубку, применяющуюся для люминесцентного освещения

В конструкции, которая будет работать от электросети мощностью 220 В, нужно предусмотреть драйвер RLD2-1, который следует приобрести в магазине или выполнить самостоятельно.

Во избежание короткого замыкания перед началом сборки важно заизолировать драйвер и плату друг от друга, используя пластик или картон. Поскольку лампа почти не нагревается, не стоит беспокоиться о перегреве.

Подобрав все компоненты можно собрать конструкцию по схеме, а затем подключить ее к электросети, чтобы проверить свечение.

Устройство, работающее от стандартного патрона с питанием 220В, имеет низкое энергопотребление и мощность равную 3 Ваттам. Последний показатель в 2-3 раза меньше, нежели у люминесцентных устройств и в 10 раз меньше, чем у ламп накаливания.

Хотя световой поток равен всего лишь 100-120 люменов, благодаря ослепительно белому цвету лампа кажется значительно ярче. Собранный светильник можно применять в качестве настольного либо для освещения компактного помещения, например, коридора или чулана.

Полезное видео по теме

В приведенном ниже видеоролике вы можете увидеть подробный рассказ специалиста о самостоятельной сборке LED-светильника:

Лампы на светодиодах, выполненные самостоятельно, обладают высокими техническими характеристиками. Они почти не уступают фабричным моделям по таким качествам, как прочность, надежность, долговечность. Сборка подобных устройств доступна практически каждому: для успешного ее выполнения необходимо лишь строго следовать схемам и аккуратно выполнять все предписанные манипуляции.

sovet-ingenera.com

Устройство светодиодной лампы - конструкция и принцип работы

Прежде чем понять, как устроена светодиодная лампа на 220 вольт, нужно разобраться, что она собой представляет и в чем ее преимущество перед лампами накаливания или люминесцентными светильниками. Конечно же, основной их плюс – это долговечность в работе и минимальное потребление электроэнергии. Почему так недолго работают обычные лампы, объяснять не приходится. И так понятно, что вольфрамовая нить – не слишком надежный материал. Но все же до недавнего времени лампы на основе этого материала практически не имели конкуренции. Сейчас же, хотя цена светодиодных ламп выше, чем у их предшественников, они быстро завоевывают рынок, пользуясь у потребителя все большим спросом.

 Что же такое светодиод?

По своему строению это многослойный полупроводниковый кристалл, который преобразует электроэнергию в обычный свет. А как это происходит, нужно разобрать более детально.

При различных вариациях компоновки чипов можно создать четыре варианта светодиодов:

  • DIP – кристалл с двумя проводниками, над которым находится увеличитель. Это более распространенный вариант (гирлянды, уличные вывески и т. п.).
  • «Пиранья» – по своей сути то же, что и DIP, только с 4 выводами, за счет чего является более надежной. Основная сфера применения – автомобили (подсветка, ходовые огни).
  • SMD – с улучшенным теплоотведением и уменьшенными размерами за счет размещения сверху. По этой же причине имеет и много вариаций сборки. Применяется в различных световых приборах.
  • СОВ – впайка кристалла производится непосредственно в плату. Плюс в более высокой защите от перегревания, к тому же свечение более интенсивно. Из минусов – при перегорании одного чипа меняется все полностью, т. к. отдельный чип заменить нет возможности. Светодиодная лампа 220 В.

    Светодиодная лампа 220 В.

Схема светодиодной лампы

Поняв суть устройства светодиодной лампы, легко разобраться в особенностях работы и даже изготовить ее самому (схема светодиодной лампы на 220 вольт представлена на рисунке ниже). Естественно, в любом из магазинов можно приобрести такой светильник, но иногда бывает трудно подобрать таковой именно с необходимыми параметрами. А кому-то просто не интересно покупать, а куда более привлекательно изготовить самому. Главное – решить вопросы расположения схемы и светодиодов, изолирования системы, а также обеспечения теплообмена.

Итак, с чего следует начать сборку? Есть множество систем, позволяющих этим осветительным приборам функционировать от сети 220 V. У всех них существует 3 главные цели:

  1. Получение пульсирующего тока из сети 220 V.
  2. Выравнивание тока до постоянного.
  3. Трансформирование тока до 12 V.

Для этого можно воспользоваться 2 вариантами – изготовить либо плату с диодным мостом, либо резисторную схему. При втором варианте необходимо использование четко определенного количества светодиодов. Нужно понять, какие плюсы и минусы есть у каждого из этих вариантов.

Схема с диодным мостом

Схема с диодным мостом

Схема с диодным мостом

Устройство этой схемы включает в себя четыре диода, подключенных разнонаправлено. По своему принципу диодный мост должен ток из сети 220 V трансформировать в пульсирующий. Суть действия в следующем: синусоидальные полуволны при проходе по двум диодам изменяются, в результате минус теряет полярность. При сборке нужно подключить к плюсовому выходу конденсатор до моста в месте подачи переменного тока. Сопротивление в 100 Ом присоединяется перед минусом. Для сглаживания перепадов напряжения сзади моста нужен еще один конденсатор.

Такую схему несложно собрать, даже любитель при минимальных навыках справится с этой работой. Саму плату лучше позаимствовать от отработавшего свое светильника. Главное запомнить – светодиоды нужно соединять по 10 шт. последовательно, после получившиеся несколько цепей соединить параллельно.

Резисторная схема

Ее тоже совершенно несложно изготовить. При даже небольших навыках вполне по силам собрать подобную лампу даже новичку. Собирается эта схема из 2 резисторов и 2 цепочек светодиодов, состоящих из одинакового числа элементов, соединенных последовательно, но имеющих разную направленность. От первого резистора соединение идет от одной полосы светодиодов к катоду, от другой – к аноду. От второго резистора – наоборот. Оптимальное число диодов в полосе – 10-20. Вывод: изготовить самодельный драйвер и в последующем лампу на светодиодах – совершенно несложная задача.

Устройство LED-лампы на 220 V.

Устройство LED-лампы на 220 V.

Устройство LED-ламп

Основные 6 частей LED-лампы – это корпус, цоколь, рассеиватель, радиатор, блок светодиодов LED и бестрансформаторный драйвер (на картинке представлено устройство светодиодной лампы на 220 V). Эти лампы вполне подлежат ремонту, если один или несколько кристаллов прогорели. Вообще в LED-светильниках обычно горит драйвер, для которого чаще всего используются такие микросхемы, как bp 3122, bp 2832а или bp 2831а. Помимо прочего, драйвер стабилизирует скачки напряжения.

На рисунке сверху изображена лампа варианта СОВ. Ее светодиод представляет собой единую пластину, в которую включено множество чипов. Если у такой лампы перегорает светодиод, то он меняется целиком, т. к. отдельные чипы невозможно поменять.

Схема светодиодного драйвера

Схема драйвера светодиодной лампы (можно понять на примере MR-16) настолько проста, насколько это возможно (драйвер LED-лампы ничем от него не отличается). Она работает так: переменный ток в 220 V проходит на мост (диодный) через конденсатор С1. Далее уже прямой ток идет на светодиоды НL1–НL27, которые подключены последовательно. Число их может достигать 80 шт. Ну а более ровного света, без мерцания, добиваются как раз при помощи конденсатора С2. Желательно, чтобы он был как можно большей емкости. Схема драйвера для светодиодов от сети 220 V представлена на рисунке.

Простейшая схема драйвера MR-16

Простейшая схема драйвера MR-16

Ремонт LED–лампы

Устройство светодиодного светильника представляет собой обычную LED-лампу, и если светодиоды в ней отдельные, а не единой пластиной с кристаллами, то ее возможно отремонтировать, заменив сгоревшие (прогоревшие) элементы. Ее с легкостью можно разобрать. Нужно разделить корпус с цоколем. Если для примера взять лампу МR-16, то как раз внутри будет находиться 27 светодиодов. Подобраться к плате с элементами можно путем снятия защитного стекла. Делается это при помощи обычной отвертки.

Иногда именно этот этап становится самым трудным. Если светодиод прогорел, то это сразу видно. Сгоревшие элементы придется поискать при помощи тестера, либо подавая на них по 1.5 V. Неисправные светодиоды необходимо заменить. Причиной мигания лампы может быть поломка конденсатора С1. При этом нужно поставить другой, с напряжением 400 V.

Особенности ламп со штыревым цоколем

По сути, лампа со штыревым цоколем практически ничем не отличается. Единственное, что необходимо знать, это маркировку, которая наносится на корпус. Относится она именно к особенностям цоколя.

  • G – это как раз указывает на то, что у лампы штыревой цоколь.
  • U – маркер того, что лампа энергосберегающая.
  • 10 – расстояние от одного до другого штыря в миллиметрах.

Как проверить светодиодную лампу при покупке?

Светодиодная лампа с цоколем Е-27

Светодиодная лампа с цоколем Е-27

Примером послужит лампа с цоколем Е-27 и питанием в 220 V. Как при покупке не ошибиться, выбрав качественный товар? Необходимо внимательно осмотреть всю конструкцию светодиодной лампы. Изначально нужно посмотреть на радиатор. Он должен быть литым, а не наборным, т. к. в том числе и от него зависит долговечность работы выбранной лампы. Радиатор стоит в прямой зависимости от мощности, следовательно, чем мощнее лампочка, тем больше охладитель. Очень хорошо себя показывают алюминиевые, керамические либо графитовые.

Наилучший вариант – термопластиковое покрытие радиатора. После необходимо убедиться в отсутствии люфтов в цоколе, а также видимых механических повреждений. В любом магазине электротоваров имеется возможность включения лампы в сеть для проверки. При подаче питания на лампу нужно обратить внимание на исходящий от нее свет. Даже если мерцания не видно, необходимо посмотреть на прибор через камеру сотового телефона. На экране будет четко видно наличие или отсутствие мерцания. Если же имеется пульсация, такую лампу покупать не стоит. Что касается маркировки, то она должна быть четкой и хорошо читаемой, т. к. именно на основе этой информации выбирается тип светодиодной лампы.

Общие сведения

Применение светодиодных ламп необычайно широко. Это и бытовое освещение, и промышленное, и даже уличное. По своей сути такие световые приборы являются самыми экологически чистыми, т. к. не содержат опасных веществ (таких, как ртуть и т. п.) в отличие от люминесцентных или ртутных (ДРЛ) ламп. Световые приборы, имеющие в основе нить из вольфрама, дают много света, но их эффективность весьма сомнительна, т. к. 95 процентов уходит на выработку тепла, в чем и состоит отличие от принципа работы светодиодной лампы. Очень интересно, что после того, как было запрещено продавать лампы мощностью свыше 100 Ватт, их все равно не перестали выпускать. Только теперь они называются не лампочки, а «теплоизлучатели», что по своей сути правильно. Есть различные корпуса светодиодных ламп, а также различные типы цоколя. На картинке указаны маркировки, по которым можно определить, какая именно лампа нужна для того или иного прибора. Интересен также и цвет таких ламп. С первого взгляда может показаться, что он просто белый, однако это не так. Есть специальный индекс цветопередачи – CRI. Если он низок, то освещение будет казаться неприятным, хотя будет непонятно почему, ведь оно визуально не отличается. Если брать за пример солнце или обычную лампочку, то их CRI будет равен 100. Качественная светодиодная лампа имеет CRI 90. Ну а если CRI менее 80, то такие световые приборы не рекомендуется использовать в местах проживания.

Виды светодиодных ламп

Виды светодиодных ламп

Так что же в итоге? Конечно, личное дело каждого, какие осветительные приборы использовать, но то, что светодиодные лампы помимо своей экологичности еще и очень экономичны – это неоспоримый факт, а значит, они будут продолжать завоевывать рынок электротехники до тех пор, пока не появится что-то новое.

lampagid.ru

Схемы светодиодных ламп - Всё о электрике в доме

Схема светодиодной лампы на 220 в

Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.

С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

Схемы светодиодных ламп

  • C1 – значение емкости по таблице, 275 В или больше
  • C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
  • R1 – 100 Ом
  • R2 – 1 MОм (для разряда конденсатора C1)
  • VD1. VD4 – 1N4007

Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.

Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.

количество светодиодов последовательно, шт

Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.

По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.

Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.

Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.

Схемы светодиодных ламп

Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.

Схемы светодиодных ламп

Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.

Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.

Запись опубликована 08.01.2016 автором в рубрике Электроника для начинающих.

Навигация по записям

Схема светодиодной лампы на 220 в. 11 комментариев

Даже с «выброшенным» стабилизатором, светодиодная лампочка для подъезда получается слишком дорогой. Там лучше вкрутить обычную лампочку «Ильича Эдисона» с диодом, который монтируется в слегка модернизированный патрон.

Не в патрон, в выключатель, там больше места.

Не знаю, что слишком дорогого увидел здесь Игорь, но, уж если экономить по полной, то можно выкинуть сопротивления и мост. Останутся: С1, как реактивное сопротивление, один диод для выпрямления переменки и С2 (емкость увеличить в 2-3 раза) для сглаживания пульсаций. Затраты на питание и замену ламп накаливания гораздо выше, чем, даже первоначальный вариант схемы. Очень уж они неэкономичны, причем, во всех ракурсах. От них и избавляются поэтому везде, где только можно. А в подъездах — это архиважно и архинужно, как говаривал Ильич.

У лампы накаливая маловат ресурс, на коробке пишут 1000ч, при круглосуточной работе это 42 дня. В лучшем случае лампочка прослужит несколько месяцев.Питание лампы однополупериодным напряжением должно значительно увеличить ресурс ( якобы до 100 раз ), вот только светоотдача упадет больше чем в два раза. И лампочка будет мерцать с частотой 50Гц.Чтобы вернуть частоту к 100Гц, достаточно включить две одинаковых лампочки последовательно — и ресурс возрастет и частота не снизиться.

В первой схеме конденсатор С1 надо брать на большее допустимое напряжение в сети 220 в это действующее напряжение Максимальное 220*1,42= примерно 320 в к тому же как правило На конденсаторе указывается на постоянное напряжение а в сети 50 герц. Я рекомендую брать не меньше 450 В. Один диод как пишет Greg не пойдет так на светодиоды или выпрямительный диод будет действовать обратное напряжение.Я рекомендую Выкинуть диодный мост и С2 параллейно светодиодам в обратной полярности поставить диол один период пойдет через светодиод другой через силовой диод. Светодиод можно взять из не исправных фонариков.

Ну, обратное напряжение светодиоды должны выдержать, но идея хороша. Зачем терять один период? С2 — выбрасываем, да, а вместо предложенного Олександром силового, ставим еще один световой — пусть моргают попеременно, усиливая общий световой поток и защищая друг дружку от обратного напряжения. А учитывая, что сверхъярких светодиодов, в некоторые фонарики тулят штук по 20, наковырять можно много. Можно и целиком взять, у многих ручных фонарей — ручка выполнена в виде удлиненной лампочки кругового рассеивания.

Данную схему можно не только в подъезде как предполагает (Игорь ) но где угодно, например освещение приусадебного участка по схеме Greg через понижающий трансформатор для безопасности и две группы светодиодов включенных параллейно и в противоположной полярности.или освещение кессона, душа летнего.

Я часто видел в подъездах мерцающие лампочки накаливания, где использовался «хитрый» патрон с одним диодом. По моему самое то для подъезда, экономия энергии и непрезентабельный вид. Вот для дома схема №1 вполне подойдёт, скопирую её себе.

разобрал «замолчавшую» светодиодную лампу на 11 ватт(100 эквивалента к накаливанию). То что автор называет драйвером, обычный инвертор, схема которого вошла в быт повсеместно, от лампочек до компьютеров и сварочных аппаратов. Так вот на моей лампе стоит 20 диодных светоизлучающих элементов. Исследуя их я пришел к выводу, что они включены как елочная гирлянда — последовательно. Обнаружить неисправный диод не составило труда. Припаяв перемычку из резистроа порядка 50 ом, лампа восстановилась. Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.Дале — у меня есть фонарь ЭРА летучая мышь, с 6 вольтовым АКБ и люминесцентной лампой. Эта лампа светит очень гумозно при своих 7 ваттах. А АКБ хватает на 4 часа. Что я сделал — выпаял из схемы «драйвера» диодный мост и плату со светоизлучателями. В точки пайки проводов от инвертора обозначенные + и —. впаял этот мост соблюдая полярность. На вход моста подал переменное напряжение которое вырабатывал штатный генератор «Эры». Лампа заработала как надо. Светоотдача осталась той же как и от сети 220 вольт. Поскольку холостой ход генератора обеспечивал это напряжение на светоизлучателях.Как то вот так.

Ох и понапописали вы тут, однако. Я бы, с такой то логикой, посоветовал держаться от электросети подальше. Насчет инвертора — это как раз то, что стоит в вашей лампе ЭРА и преобразует 6 В постоянного напряжения аккумулятора в 220 В переменного. Хотя, инвертор может и понижать исходное напряжение — не суть важно. Важно, что вы абсолютно не понимаете значение этого и других терминов, а ваш вывод: «Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.» — абсурдно.

есть простая схема подключения светодиодных ламп и работать она будет экономичнее покупной. даже если вы в эту лампу напихаете диоды большей мощности. главное чтобы компоненты соответствовали мощности нагрузки )).

Схема светодиодной лампы на 220 вольт

Устройство светодиодной лампы на 220В значительно сложнее, чем у аналогичной лампы накаливания. Пытаясь сохранить привычную грушевидную форму, инженерам пришлось немало потрудиться. И, как оказалось, не зря! Новые осветительные приборы практически не греются, потребляют малое количество электроэнергии и стали значительно менее хрупкими. Но чего же особенного в светодиодной лампе и в чем сложность ее схемы? Давайте разберемся.

Конструктивная схема

Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов. Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла. Схемы светодиодных лампК корпусной части светодиодной лампы относится цоколь, оболочка из пластика, внутри которой размещен драйвер, и полупрозрачная крышка в виде полусферы, по совместительству являющаяся рассеивателем света. В дорогих моделях ламп большую часть корпуса занимает ребристый радиатор из алюминия или специального теплопроводящего пластика. В лампочках бюджетного класса радиатор либо вовсе отсутствует, либо расположен внутри, а по окружности корпуса сделаны отверстия. Дешёвая китайская продукция мощностью до 7 Вт вовсе имеет сплошной корпус, без какого-либо отвода тепла.

В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла. Схемы светодиодных ламп

В дешевых китайских моделях эта плата либо просто вставлена в пазы корпуса, либо прикреплена саморезами к металлической пластине для охлаждения кристаллов. Эффективность такого охлаждения крайне низкая, так как пластина имеет малую площадь, да и наносить термопасту китайские производители, как правило, забывают. Схемы светодиодных лампВывод излучения происходит через рассеиватель, как правило, из матового пластика. А в дешевых светодиодных лампах на 220В такой корпус ещё надёжно скрывает недостатки китайской сборки от любопытных глаз потребителя. Крепится рассеиватель к основанию либо герметиком, либо резьбовым соединением.

Электрическая схема

Касательно электрической части между светодиодными лампами на 220В разных ценовых категорий также много отличий. В этом можно убедиться сразу после демонтажа рассеивателя. Достаточно рассмотреть качество пайки SMD элементов и соединительных проводов.

Недорогой китайской лампы на 220В

В лампочках стоимостью 2-3$ отсутствует какая-либо симметрия на плате со светодиодами, что свидетельствует о ручной пайке, а провода выбраны с минимально возможным сечением. Вместо надежного драйвера в них собрана простая схема бестрансформаторного питания с конденсаторами и выпрямителем. Напряжение сети сначала снижается неполярным металлопленочным конденсатором, выпрямляется, а затем сглаживается и повышается до нужного уровня. Ток нагрузки ограничивается обычным SMD резистором, который расположен на печатной плате со светодиодами. Схемы светодиодных ламп

При диагностике и ремонте светодиодных ламп такого типа важно соблюдать технику безопасности, т.к. все элементы электрической цепи потенциально находятся под высоким напряжением. Прикоснувшись пальцем к токоведущей части схемы по неосторожности можно получить электрический удар, а соскользнувший щуп мультиметра может закоротить провода с неприятными последствиями.

Фирменной светодиодной лампы

Фирменная светодиодная продукция отличается не только приятным внешним видом, но и качеством элементной базы. Непосредственно драйвер имеет более сложное устройство и зачастую собирается одним из двух способов. Первый предусматривает наличие импульсного трансформатора, импульсного преобразователя напряжения с последующей стабилизацией тока нагрузки.

Во втором случае обходятся без трансформатора, а основная функциональная нагрузка ложится на специальную микросхему – сердце драйвера. Её универсальность в том, что она стабилизирует входное напряжение, поддерживает выходной ток с заданной частотой (ЧИМ) или шириной импульса (ШИМ), допускает возможность диммирования, имеет систему отрицательной обратной связи. В качестве примера можно назвать, например, CPC9909. Схемы светодиодных лампСветодиоды в лампе на 220В с токовым драйвером надёжно защищены от перепадов напряжения и помех в сети, ток через них соответствует номинальному паспортному значению, а радиатор обеспечивает качественный теплоотвод. Такие лампочки прослужат намного дольше дешёвых китайских аналогов, тем самым доказывая преимущество светодиодов на деле.

Cхема светодиодной лампы на 220 В

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Устройство LED-лампы

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

Ремонт своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Лампа светодиодная на 220 вольт

Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

Изготовить своими руками

Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

Настольная лампа на светодиодах

Лампа на 220 В. Видео

Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.

Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.

Источники: http://hardelectronics.ru/sxema-svetodiodnoj-lampy-na-220-v.html, http://ledjournal.info/shemy/shema-svetodiodnoj-lampy-na-220-v.html, http://elquanta.ru/lampa/ckhema-svetodiodnojj-lampy.html

electricremont.ru

Практические схемы светодиодных бытовых ламп - Статьи по электронике - Каталог статей

Как устроены светодиодные лампы

В статье рассказывается об устройстве светодиодных ламп. Рассматриваются несколько разных по сложности схем и даются рекомендации по самостоятельному изготовлению светодиодных источников света, подключаемых к сети 220 В.

Проблема энергосбережения

В результате мирового кризиса проблема энергосбережения стала во всем мире еще более актуальной. В связи с этим в 27 странах Евросоюза с 1 сентября 2009 года уже запретили продажу ламп накаливания мощностью 100 и более ватт. А уже в 2011 в странах Европы планируется ввести эмбарго на продажу наиболее популярных у покупателей 60-ти ваттных лампочек. К концу 2012 года планируется полный отказ от ламп накаливания.

Конгресс США принял закон об отказе от ламп накаливания в 2013 году. Согласно этим законам жители Евросоюза и США полностью перейдут на энергосберегающие источники света –люминесцентные и светодиодные лампы. В России, согласно постановлению правительства РФ, прекращение выпуска и продажи ламп накаливания ожидается уже в 2011 году.

Преимущества энергосберегающих ламп

Преимущества энергосберегающих ламп широко известны. В первую очередь это собственно низкое потребление энергии, а кроме того высокая надежность. В настоящее время наиболее широко распространены люминесцентные лампы. Такая лампа, потребляющая мощность 20 Ватт, дает такую же освещенность как стоваттная лампа накаливания. Нетрудно подсчитать, что экономия электроэнергии получается в пять раз.

В последнее время в производстве осваиваются светодиодные лампы. Показатели экономичности и долговечности у них намного выше, чем у люминесцентных ламп. В этом случае электроэнергии потребляется в десять раз меньше, чем лампами накаливания. Долговечность же светодиодных ламп может достигать 50-ти и более тысяч часов.

Источники света нового поколения, конечно, стоят дороже простых ламп накаливания, но потребляют значительно меньшую мощность и обладают повышенной долговечностью. Два последних показателя призваны скомпенсировать дороговизну ламп новых типов.

Практические схемы светодиодных ламп

В качестве первого примера можно рассмотреть устройство светодиодной лампы разработанной фирмой «СЭА Электроникс» с применением специализированных микросхем. Электрическая схема такой лампы показана на рисунке 1.

Рисунок 1. Схема светодиодной лампы фирмы «СЭА Электроникс»

Еще десять лет назад светодиоды можно было использовать только в качестве индикаторов: сила света составляла не более 1,5…2 микрокандел. Сейчас появились сверхяркие светодиоды, у которых сила излучения доходит до нескольких десятков кандел.

При использовании мощных светодиодов совместно с полупроводниковыми преобразователями появилась возможность создания источников света, выдерживающих конкуренцию с лампами накаливания. Подобный преобразователь и показан на рисунке 1. Схема достаточно проста и содержит небольшое количество деталей. Это достигнуто за счет применения специализированных микросхем.

Первая микросхема IC1 BP5041 - AC/DC преобразователь. Ее структурная схема представлена на рисунке 2.

Рисунок 2. Структурная схема BP5041.

Микросхема выполнена в корпусе типа SIP показанный на рисунке 3.

Рисунок 3.

Преобразователь, подключенный к осветительной сети 220В, обеспечивает на выходе напряжение 5В при токе около 100 миллиампер. Подключение к сети производится через выпрямитель, выполненный на диоде D1 (в принципе возможно использование мостовой схемы выпрямителя) и конденсаторе C3. Резистор R1 и конденсатор C2 устраняют импульсные помехи.

Все устройство защищено предохранителем F1, номинал которого не должен превышать указанный на схеме. Конденсатор C3 предназначен для сглаживания пульсаций выходного напряжения преобразователя. Следует заметить, что выходное напряжение не имеет гальванической развязки от сети, что в данной схеме совсем не нужно, но требует особой внимательности и соблюдения правил техники безопасности при изготовлении и наладке.

Конденсаторы C3 и C2 должны быть на рабочее напряжение не менее 450 В. Конденсатор C2 должен быть пленочным или керамическим. Резистор R1 может иметь сопротивление в пределах 10…20 Ом, что достаточно для нормальной работы преобразователя.

Использование данного преобразователя позволяет отказаться от применения понижающего трансформатора, что значительно уменьшает габариты всего устройства в целом. Отличительной особенностью микросхемы BP5041 является наличие встроенной катушки индуктивности как показано на рисунке 2, что позволяет уменьшить количество навесных деталей и в целом размеры монтажной платы.

В качестве диода D1 подойдет любой диод с обратным напряжением не менее 800 В и выпрямленным током не менее 500 мА. Таким условиям вполне удовлетворяет широко распространенный импортный диод 1N4007. на входе выпрямителя установлен варистор VAR1 типа FNR-10K391. Его назначение защита всего устройства от импульсных помех и статического электричества.

Вторая микросхема IC2 типа HV9910 представляет собой ШИМ стабилизатор тока для суперярких светодиодов. При помощи внешнего MOSFET транзистора ток может устанавливаться в пределах от нескольких миллиампер до 1А. Этот ток задается резистором R3 в цепи обратной связи. Микросхема выпускается в корпусах SO-8 (LG) и SO-16 (NG). Ее внешний вид показан на рисунке 4, а на рисунке 5 структурная схема.

Рисунок 4. Микросхема HV9910.

Рисунок 5. Структурная схема микросхемы HV9910.

С помощью резистора R2 частота внутреннего генератора может изменяться в диапазоне 20…120 КГц. При указанном на схеме сопротивлении резистора R2 она будет около 50 КГц.

Дроссель L1 предназначен для накопления энергии в то время, когда транзистор VT1 открыт. Когда транзистор закроется, то энергия, накопленная в дросселе, через высокоскоростной диод Шоттки D2 отдается светодиодам D3…D6.

Здесь самое время вспомнить о самоиндукции и правиле Ленца. Согласно этому правилу индукционный ток имеет всегда такое направление, что его магнитный поток компенсирует изменения внешнего магнитного потока, которое (изменение) вызвало этот ток. Поэтому направление ЭДС самоиндукции имеет направление противоположное направлению ЭДС источника питания. Именно поэтому светодиоды включены в обратную сторону по отношению к питающему напряжению (вывод 1 микросхемы IC2, обозначенный на схеме как VIN). Таким образом светодиоды излучают свет за счет ЭДС самоиндукции катушки L1.

В данной конструкции применены 4 сверхярких светодиода типа TWW9600, хотя вполне возможно применение других типов светодиодов производства других фирм.

Для управления яркостью светодиодов в микросхеме имеется вход PWM_D, ШИМ – модуляция от внешнего генератора. В этой схеме такая функция не используется.

При самостоятельном изготовлении такой светодиодной лампы следует воспользоваться корпусом с винтовым цоколем размера E27 от негодной энергосберегающей лампы, мощностью не менее 20 Вт. Внешний вид конструкции показан на рисунке 6.

Рисунок 6. Самодельная светодиодная лампа.

Хотя описанная схема достаточно проста, рекомендовать ее для самостоятельного изготовления можно не всегда: либо не удастся купить указанные на схеме детали, либо недостаточная квалификация сборщика. Некоторые просто могут испугаться: «А вдруг у меня не получится?». Для подобных ситуаций можно предложить еще несколько вариантов более простых как по схемотехнике, так и в вопросе приобретения деталей.

Простая светодиодная лампа для изготовления в домашних условиях

Более простая схема светодиодной лампы показана на рисунке 7.

Рисунок 7.

На этой схемы видно, что для питания светодиодов используется мостовой выпрямитель с емкостным балластом, который ограничивает выходной ток. Такие источники питания экономичны и просты, не боятся коротких замыканий, их выходной ток ограничивается емкостным сопротивлением конденсатора. Подобные выпрямители часто называют стабилизаторами тока.

Роль емкостного балласта на схеме выполняет конденсатор C1. При емкости 0,47 мкФ рабочее напряжение конденсатора должно быть не менее 630В. Емкость его рассчитана так, чтобы ток через светодиоды был около 20 мА, что является для светодиодов оптимальным значением.

Пульсации выпрямленного мостом напряжения сглаживаются электролитическим конденсатором C2. Для ограничения зарядного тока в момент включения служит резистор R1, который также выполняет функцию предохранителя в аварийных ситуациях. Резисторы R2 и R3 предназначены для разряда конденсаторов C1 и C2 после отключения устройства от сети.

Для уменьшения габаритов рабочее напряжение конденсатора C2 выбрано всего 100 В. В случае обрыва (перегорания) хотя бы одного из светодиодов конденсатор C2 зарядится до напряжения 310 В, что неизбежно приведет к его взрыву. Для защиты от подобной ситуации этот конденсатор зашунтирован стабилитронами VD2, VD3. Их напряжение стабилизации может быть определено следующим образом.

При номинальном токе через светодиод в 20 мА на нем создается падение напряжения в зависимости от типа в пределах 3,2…3,8 В. (Подобное свойство в некоторых случаях позволяет использовать светодиоды в качестве стабилитронов). Поэтому нетрудно подсчитать, что если в схеме используется 20 светодиодов, то падение напряжения на них составит 65…75 В. Именно на таком уровне будет ограничено напряжение на конденсаторе C2.

Стабилитроны следует выбрать так, чтобы суммарное напряжение стабилизации было несколько выше падения напряжения на светодиодах. В этом случае при нормальном режиме работы стабилитроны будут закрыты, и на работу схемы влиять не будут. Указанные на схеме стабилитроны 1N4754A имеют напряжение стабилизации 39 В, а включенные последовательно – 78 В.

При обрыве хотя бы одного из светодиодов стабилитроны откроются и напряжение на конденсаторе C2 будет стабилизировано на уровне 78 В, что явно ниже рабочего напряжения конденсатора С2, поэтому взрыва не произойдет.

Конструкция самодельной светодиодной лампы показана на рисунке 8. как видно из рисунка она собрана в корпусе от негодной энергосберегающей лампы с цоколем Е-27.

Рисунок 8.

Печатная плата, на которой размещаются все детали выполняется из фольгированного стеклотекстолита любым из доступных в домашних условиях способов. Для установки светодиодов на плате просверлены отверстия диаметром 0,8 мм, а для остальных деталей 1,0 мм. Чертеж печатной платы показан на рисунке 9.

Рисунок 9. Печатная плата и расположение деталей на ней.

Расположение деталей на плате показано на рисунке 9в. Все детали, кроме светодиодов устанавливаются со стороны платы, где нет печатных дорожек. На этой же стороне устанавливается перемычка, также показанная на рисунке.

После установки всех деталей со стороны фольги устанавливаются светодиоды. Монтаж светодиодов следует начинать от средины платы, постепенно передвигаясь к периферии. Светодиоды должны быть запаяны последовательно, то есть плюсовой вывод одного светодиода соединяется с отрицательным выводом другого.

Диаметр светодиода может быть любым в пределах 3…10 мм. При этом следует выводы светодиодов оставлять длиной не менее 5 мм от платы. В противном случае светодиоды можно просто перегреть при пайке. Длительность пайки, как рекомендуют во всех руководствах, не должна превышать 3-х секунд.

После того, как плата будет собрана и налажена, ее выводы надо подпаять к цоколю, а саму плату вставить в корпус. Кроме указанного корпуса возможно применение более миниатюрного корпуса, однако при этом придется уменьшить размеры печатной платы, не забывая, однако, о габаритах конденсаторов С1 и С2.

Самая простая схема светодиодной лампы

Такая схема показана на рисунке 10.

Рисунок 10. Самая простая схема светодиодной лампы.

Схема содержит минимальное количество деталей: всего 2 светодиода и гасящий резистор. На схеме видно, что светодиоды включены встречно – параллельно. При таком включении каждый из них защищает другой от обратного напряжения, которое у светодиодов невелико, и напряжение сети явно не выдержит. Кроме того такое двойное включение увеличит частоту мерцания светодиодной лампы до 100 Гц, что будет не заметно на глаз и не будет утомлять зрение. Здесь достаточно вспомнить, как в целях экономии подключали через диод обычные лампы накаливания, например, в подъездах. На зрение они действовали весьма неприятно.

Если нет в наличии двух светодиодов, то один из них можно заменить обычным выпрямительном диодом, который защитит излучающий диод от обратного напряжения сети. Направление его включения должно быть тем же, что и у недостающего светодиода. При таком включении частота мерцания светодиода составит 25 Гц, что будет заметно на глаз, как уже было описано чуть выше.

Для ограничения тока через светодиоды на уровне 20 мА резистор R1 должен иметь сопротивление в пределах 10…11 КОм. При этом его мощность должна быть не менее 5 ватт. Для уменьшения нагрева его можно составить из нескольких, лучше всего трех, резисторов мощностью 2 Вт.

Светодиоды можно применить те же, что были упомянуты в предыдущих схемах или какие удастся приобрести. При покупке следует точно узнать марку светодиода, чтобы определить его номинальный прямой ток. Исходя из величины этого тока, и подбирается сопротивление резистора R1.

Конструкция лампы, собранная по этой схеме мало отличается от двух предыдущих: ее также можно изготовить в корпусе от негодной энергосберегающей люминесцентной лампы. Простота схемы даже не предполагает наличия печатной платы: детали могут быть соединены навесным монтажом, поэтому, как говорят в таких случаях, конструкция произвольная.

Борис, http://electrik.info/

elektromehanika.org

светодиодная лампа g9 220v, схема и параметры

Светодиодная лампа g9 220v 5w Selecta с рабочим напряжением 220-240 вольт переменного тока, капсульная, световой поток 270 Лм, цветовая температура 4000 К.

g9 светодиодные лампы купить

Светящаяся часть лампы открытая, типа «кукуруза» с 24-мя светодиодами 5050 белого свечения. Все три диода находящиеся внутри каждого smd чипа включены параллельно.

Внимание! Электрическая схема лампы не имеет гальванической развязки с сетью 220В, для исключения опасности поражения электрическим током при установке и снятии лампы не прикасайтесь к открытым токопроводящим частям. Схема светодиодные лампы g9 220v

Принципиальная электрическая схема светодиодной лампы Selecta G9 5w от схемы лампы Camelion LED3-JDR отличается незначительно.

Схема собрана с конденсаторным балластом, параллельно подключенный резистор разряжает конденсатор после выключения лампы. Далее выпрямительный мост, электролитический конденсатор с параллельно подключенным разрядным резистором и нагрузка: последовательная цепь, состоящая из двух параллельно включенных резисторов для ограничения пиковых токов и 24-х светодиодов 5050. Такую лампу можно диммировать.

При сетевом напряжении 233 вольта напряжение на электролитическом конденсаторе 70 вольт, на цепочке последовательно включенных светодиодов 68,4 В. Для диодов с белым свечением при номинальном токе 20 мА напряжения должно быть в районе 3,5 вольт. В нашем случае на каждом smd чипе 5050 разброс напряжений в пределах 2,79-2,87 вольт, среднее напряжение 2,85 В. Ток через включенные параллельно три светодиода 30 мА, что вдвое меньше номинального, т.е. диоды работают в облегченном режиме и срок службы лампы будет больше.

Потребляемая лампой мощность при напряжении в сети 233 В около 7 Вт, а при напряжении 220 В должна составить не более 6,5 Вт.

лампы светодиодные с цоколем g9

Монтаж элементов схемы лампы Selecta с цоколем g9 на220v 5w односторонний, ремонтопригодность высокая, корпус разбирается легко, режим работы светодиодов мягкий. У этой светодиодной лампы led g9 при определенных условиях существует вероятность поражения электрическим током (при прикосновении к открытым проводящим частям лампы даже при выключенном выключателе может быть разорван нулевой, а не фазный провод).

  • Напряжение на светодиоде
  • Схема светодиодной лампы на 220в
  • Лампа ЭРА А65 13Вт
  • Как паять светодиодную ленту
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • Общедомовой учет тепла
  • Светодиодная лампа ASD LED-A60
  • Схема светодиодной ленты
  • Схема диодной лампы 5 Вт 220в
  • Простой цифровой термометр своими руками с датчиком на LM35
  • firstelectro.ru

    Ремонт светодиодных ламп своими руками, устройство и схема

    Длительность работы лампы определяется условиями эксплуатации. Каждый из видов источников света рекомендуется использовать в соответствии с некоторыми правилами и рекомендациями. Это позволит продлить срок службы лампочки. Диодные источники света плохо переносят значительные перепады напряжения источника питания, в таких ситуациях не избежать поломки. Не следует сразу выбрасывать лампочку, вполне реально  отремонтировать ее своими руками.

    Принцип работы и схема

    Конструкция таких осветительных элементов сложнее, чем у аналогов (лампы накаливания, галогенные и др.). Ключевые узлы: цоколь, встроенный драйвер (стабилизатор тока), корпус+рассеиватель, непосредственно сами светоизлучающие диоды в определенном количестве.

    Конструкция светодиодной лампы

    Устройство диодной лампы

    Основа функционирования такого источника света: преобразование электрической энергии в световую.

    Простейшая схема светодиодной лампы:

    Простая схема диодной лампыПри включении переменное напряжение питает диодный мост. Проходя по схеме, на вход блока светодиодов подается уже выпрямленное напряжение. В результате лампочку можно подключать к сети 220 вольт, так как встроенный драйвер стабилизирует электрические параметры до нужных величин.

    Определение степени повреждения

    Прежде чем разбирать лампу, нужно проверить, действительно ли в ней проблема. Случается, что в момент включения отсутствует напряжение (220 вольт) на самом выключателе. Значит, причина кроется в электропроводке. Но все же чаще выходит из строя именно лампа. В этом случае придется разобрать ее своими руками, аккуратно разъединив части корпуса.

    Некоторые модели не предусматривают демонтаж, однако, умельцы нашли выход: можно разогреть корпус феном, чтобы клей рассохся. Теперь нужно оценить степень повреждения визуально: внешний вид элементов платы, качество пайки светодиодов, отсутствие нагара и расплавленных участков.

    Если нет видимых деформаций, нужно искать причину неисправности посредством сопутствующего оборудования (тестер, мультиметр).

    Какие элементы на плате вышли из строя?

    Одна из наиболее частых проблем – токоограничивающий конденсатор, который вышел из строя. Для проверки его придется выпаивать с платы своими руками. Но мультиметр может выдать ошибку при измерении тока утечки. А значит, проще сразу поменять этот элемент на рабочий аналог. Важно, чтобы напряжение токоограничивающего конденсатора было выше 400 вольт.

    Работоспособность диодов (на пробой) также проверяется при помощи мальтиметра. Для этого необходимо установить соответствующий режим и «прозвонить» все элементы. Если проблема не выявлена, значит, нужно продолжить поиск причины неисправности, проверив токоограничивающий резисторы. Если внешние изменения отсутствуют, велика вероятность, что произошел обрыв токопроводящей дорожки.

    Почему светодиодные лампы «моргают»?

    Причина этого явления кроется в токоограничивающем конденсаторе с недостаточным рабочим напряжением. Чтобы отремонтировать лампу своими руками, нужно выпаять некачественный элемент с платы и установить вместо него аналог с напряжением не менее 400 вольт.

    Есть и другой выход из этой ситуации. Он заключается в параллельном подключении еще одного конденсатора наряду с тем, что уже установлен (с небольшим рабочим напряжением). В результате совокупная емкость двух элементов обеспечит равномерное свечение без мерцания.

    Как проверить диоды

    Еще одна причина поломки источника света – сгоревший излучатель. Определить его можно по черному нагару. Но не все диоды проявляют внешние признаки неисправности, а значит, придется проверять каждый из элементов. Устройство разных ламп на напряжение 220 вольт заметно отличается: в некоторых используется минимальное количество диодов, а в других, наоборот, установлено довольно много излучателей (до нескольких десятков единиц).

    Схема последовательности подключения диодов на лампочкеПри поиске неисправного диода используется тестер. Цель проверки – сравнение уровня сопротивления перехода светодиодов в прямом включении. Ориентировочный уровень – 30 кОм. Есть и другой метод проверки.

    Он подразумевает использование подручных средств: резистор 150-1 000 Ом (в зависимости от параметров источника питания), который соединяется последовательно с батарейкой (1,5-9 В).

    Для проверки не требуется выпаивать излучатели. Достаточно подносить выводы с минимальным напряжением в прямом подключении к каждому диоду. В случае неисправности, элемент не будет светить.

    Если сгорел один светодиод, вполне достаточно замкнуть его контакты, в ситуации, когда не работает некоторое количество излучателей, их можно заменить, используя диоды со светодиодной ленты. Ее несложное устройство позволяет выпаять излучатели.

    Причины выхода из строя лампы

    Срок службы таких источников света определяется в первую очередь условиями эксплуатации. Заявленный производителем период работы не всегда соответствует действительности по разным причинам: некачественные кристаллы, которые стремительно деградируют, оценка работоспособности на производстве в условиях, отличных от тех, при которых используются лампочки. Ремонт светодиодных ламп (220 вольт), сделанный своими руками, позволяет продлить срок службы изделия.

    Основные причины выхода из строя осветительных элементов:

    1. Перепады напряжение. Несмотря на то, что диодные лампы не особо чувствительны к незначительным колебаниям электрических параметров, заметные изменения значения напряжения негативно повлияют на работу источника света. Для сравнения, все остальные виды ламп в еще большей мере подвержены колебаниям сетевого напряжения.
    2. Неправильно подобранный светильник, в частности, неподходящая конфигурация плафона. В этом случае увеличивается риск перегрева источника света. Несмотря на то, что светодиодные лампы в меньшей мере зависят от этого фактора, все равно очень рекомендуется правильно подбирать осветительный прибор, так как постоянное повышение температуры негативно сказывается на диодах.
    3. Некачественные элементы конструкции. В первую очередь это касается светоизлучающих элементов (кристаллов). Сегодня далеко не все производители используют комплектующие с отличными характеристиками, так как это позволяет снизить себестоимость изделия. А в результате лампы с некачественными кристаллами выходят из строя раньше положенного срока.
    4. Ошибки при организации системы освещения своими руками, в частности, это касается электропроводки: неверно подобранные по сечению провода, неправильно подключенные осветительные приборы и т. д.
    5. Внешние факторы. Сильные вибрации, постоянные удары могут сказаться на работе даже таких ламп, как светодиодные, которые характеризуются повышенными прочностными характеристиками благодаря пластиковой колбе.

    Что можно сделать, чтобы повлиять на качество и продолжительность работы источника света? Прежде всего, необходимо исключить или максимально снизить влияние вышеназванных факторов на лампу. Это можно сделать, если прокладка электропроводки будет производиться мастерами, а при эксплуатации осветительного элемента следует создать допустимые условия (без сильных биений, вибраций и пр.).

    Дополнительно к тому обращается внимание на устройство светодиодов. В первую очередь учитывается качество кристаллов, необходимо также оценить, насколько ровные края изделия.

    Еще одна возможность предупредить поломку лампочки заключается в установке диммера (он же светорегулятор). При этом нужно использовать специальные источники света – диммируемые.Светорегуляторы позволяют снизить пусковые токи, а ведь известно, что эта характеристика способствует выходу лампы из строя.

    Таким образом, приобретая светодиодные осветительные элементы на 220 вольт, необходимо обращать внимание не только на их основные параметры, но еще и на качество. Специалисты рекомендуют выбирать изделия проверенных марок. В этом случае производитель дорожит своей многолетней отличной репутацией и задействует при изготовлении кристаллы с отличными характеристиками.

    Но все равно есть риск поломки (неидеальные условия эксплуатации). Если источник света не включается, скорее всего, потребуется его разборка. Это позволит определить проблему и починить лампу собственными силами. Как правило, ремонт обходится недорого.

    Оценка статьи:

    Загрузка...

    Поделиться с друзьями:

    proosveschenie.ru

    Светодиодная лампа сделанная своими руками. Схема. Фото

     

    Светодиодная лампа сделанная своими руками

    Многие люди часто нуждаются в длительном маломощном освещении какого-либо предмета или помещения. Например, в детских комнатах может гореть всю ночь свет, по причине того, что ребенок боится спать в темноте, или постоянного освещения требует лестница и т.д. В данной статье я расскажу, как быстро сделать очень экономичную светодиодную лампочку своими руками.

    Самодельная светодиодная лампа вид внутри

    Заменив очередную сгоревшую за этот год энергосберегающую лампу, пришла в голову мысль сделать самостоятельно что-то более долговечное и экономичное. Т.к. освещения данной лампы, для моих целей, хватало с избытком, и она могла сутками не выключаться, было принято решение сделать светодиодную лампу с минимальным потреблением электроэнергии. Таким образом, использовать три сверхярких светодиода белого свечения. Схема была использована из данной статьи, а светодиоды, с обвязкой, в лампочке подключены параллельно друг другу. Сопротивления использовались по 100 кОм.

    Принципиальная схема самодельной светодиодной лампы

    В качестве корпуса для данной самодельной светодиодной лампы использовался стандартный цоколь от сгоревшей энергосберегающей лампы, а «заглушкой» послужила пластиковая крышка от бутылки с широким горлышком.

    В результате проверки оказалось, что с мощностью освещения я угадал, и ее хватило с запасом. По данной схеме можно собрать самодельную светодиодную лампу более мощную и яркую, с большим количеством светодиодов, главное, суметь подобрать надежный корпус и обеспечить изоляцию конструкции.

    Страницы:

    1 2

    best-chart.ru


    © ЗАО Институт «Севзапэнергомонтажпроект»
    Разработка сайта