Таймер на 555 для споттера: Таймер для контактной сварки 555

Таймер для контактной сварки 555

Генератор ХК49С Стандартная высота 3. Тип соединения полученного посредством контактной сварки совершенно загерметизированный. Хорошая стабильность и высокая надежность. Справляется с хигх-денситы установкой и оптимальный для массового производства.




Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Выбор таймера для контактной сварки
  • Реле времени своими руками
  • Таймер для аппарата точечной сварки
  • Модернизация аппарата контактной сварки Sunkko 787A+
  • Что собой представляет схема споттера. Таймер для споттера на микроконтроллере
  • Точечная электросварка за $4, без расчленения микроволновок
  • Вопрос по таймеру для точечной сварки.
  • Таймер для контактной сварки.
  • Please turn JavaScript on and reload the page.
  • Точечная сварка своими руками. Таймер NE555

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Реле времени с Али экспресс для точечной сварки

Выбор таймера для контактной сварки



Всё сделал по схеме, не работает! Конденцатор С1 — мф, резистор R2 — 10ком, транзистор — С сильно греется при подаче питания, пальцы обжегает, вчём причина??? Не пойму сто раз всё проверил. Возможно сопротивление обмотки реле слишком низкое поэтому через транзистор течёт большой ток возможно транзистор от этого перегорел и ушёл в к.

Обычно в такие схемы последовательно с транзистором я ставил резистор с небольшим сопротивлением для ограничения тока но так как у обмоток реле обычно итак достаточно большое сопротивление то можно обойтись и без него но на всякий случай можно поставить. Ещё такое может быть если неправильно поставить диод. На импортных и отечественных диодах маркировка различается. На импортных обычно полоска у катода, на отечественных полоска или точка у анода.

В схеме, из за моей ошибки, указана ёмкость не такая как у конденсатора в реле времени на этом видео. Для большой задержки надо ставить мкФ, но можно и другие ставить, эта ёмкость определяется исходя из требуемых задержек. Схему подправлю. Сергей собрал работает сразу внедрил в автосигналку задержка 7-мь секунд Rk Cmkf.

Если «выкрутить» резистор R2 на минимальное сопротивление, конденсатор в таком случае быстро зарядится и реле отключится. Для такого же эффекта можно параллельно резистору R2 поставить последовательное соединение резистора с небольшим сопротивлением и кнопки с нормально разомкнутыми контактами, при нажатии на кнопку реле выключится. После чего таймер можно снова запускать.

Если поставить кнопку с резистором на вывод 4 также как на выводе 2, то можно останавливать таймер нажатием этой кнопки. Когда транзистор VT1 включен в катушке K1 накапливается энергия, после отключения эта энергия стравливается через диод и катушку K1. Если транзистор включить потом выключить после чего сразу включить то ток из катушки пойдёт через транзистор и транзистор может перегореть. Если диод перегорает и «уходит» в обрыв то транзистор перегорает при выключении, если в к.

Для ограничения тока через транзистор в цепь коллектора этого транзистора можно поставить резистор с небольшим сопротивлением. Можно поставить более мощный диод и более мощный транзистор. Не знаю точно в чём причина перегорания транзистора но думаю это как то связано с K1. Да на 4ю ножку, через кОм резистор на плюс и через кнопку — на минус.

Диапазон от 0,3 до 3 секунд. Проблема — срабатывает сразу а отсчет времени начинается после отпускания кнопки старт. Можно укоротить запускающий импульс конденсатором. Чем меньше C1 тем короче будет импульс. C2 нужен для предотвращения ложных срабатываний. Чем C2 ёмкость больше тем выше помехоустойчивость. В принципе можно попробовать обойтись без C2 и R2. Сергей, а можно ли сделать так чтобы последующие нажатия на кнопку вызывали бы продлевание времени задержки выключения?

Как например в таймере для датчика движения. Если использовать кнопку с двумя или более группами контактов то можно оставить одну группу замыкать вывод 2 на землю, для запуска, а вторую соединить последовательно с резистором в 10Ом желательно по мощнее , например, и это последовательное соединение соединить параллельно с конденсатором C1 для сброса его энергии, вывод 7, в таком случае, можно отсоединить и оставить некуда не подключённым.

Кнопку желательно некоторое время удерживать для большего разряда конденсатора. Если продлевается слишком мало то можно уменьшить сопротивление резистора например до 4. Спасибо за ответ, Сергей, но лишней группы нет, а использовать доп.

Собрал схему. Всё работает, но не выключается. Резистор кОм конденсатор 47мкФ. После нажатия на кнопку с третьего выхода микросхемы выходит 12В и не выключается. Что делать. Проверить насколько возможно исправность деталей, наличие обрывов и замыканий.

Потом: 1 подать питание на схему 2 проверить вольтметром мультиметром снижается ли резко напряжение на конденсаторе C1 при нажатии на кнопку SB1 3 после нажатия на кнопку проверить вольтметром мультиметром увеличивается ли медленно напряжение на конденсаторе C1.

Если напряжение на конденсаторе не увеличивается то возможно где то обрыв или конденсатор неисправен, если напряжение на C1 не снижается резко после нажатия на кнопку то микросхема неисправна.

Для перестраховки можно вывод 7 соединять не напрямую с C1 и R2 а через резистор с небольшим сопротивлением, последовательно с транзистором ставить резистор с небольшим сопротивлением. Можно ещё проверить кнопку.

Спасибо Сергей. Я попробую то, что ты предложил. А не скажешь, можно ли построить таймер таким образом, чтобы он после отключения по истечении отсечки времени не включался повторным нажатием кнопки, до его полного сброса питания. Думаю можно но проще было сделать на тиристоре. По позже может придумаю как можно сделать на таймере. Но в любом случае если напряжение на конденсаторе не снижается то микросхема неисправна.

Поставил новую микросхему и конденсатор на 22мкФ. Отсчитало около 3-х секунд. При втором нажатии выдаёт напряжение на долю секунды. Замыканий небыло. Новые ёмкости и сопротивления. Может микросхемы бракованные попались. Для больших задержек необходимы большие ёмкости C1 например 3. Теперь прояснилась ещё одна нехорошая вещь мало того при открытии транзистора, внутри микросхемы, через него разряжается конденсатор так ещё переменный резистор R2 может быть выставлен на минимальное сопротивление и через транзистор может пойти большой ток.

Для решения этой проблемы если конечно это проблема можно последовательно с резистором R2 поставить постоянный резистор с небольшим сопротивлением. Если источник питания импульсный то он может создавать наводки хотя маловероятно что это как то повлияет на работу таймера. Все проводники в схеме лучше делать как можно короче и толще, и стараться не делать слишком больших областей пересечения проводников.

Одну из килограмма спаленых испортил именно тем что крутнул переменный резистор в минимум сопротивления, дымок вальнул моментом. А может она была с дефектом потому как таймер не работал.

В схеме нет защиты от выкручивания резистора в крайнее положение — это недоработка. Для того чтобы её сделать нужно последовательно переменному резистору поставить постоянный с некоторым небольшим сопротивлением например Ом — это незначительно уменьшит диапазон задержек. Как то не везёт мне с микрухой. Лучше наверно на транзисторах собрать.

Или на кла7. Обычно такое бывает из за какого то очень малозаметного недочёта. Но если очень долго что то не получается то наверное лучше, на некоторое время, заняться чем то другим. Лучше собрать самую простую схему потому что если хоть что то получается то желание заниматься этим дальше не пропадёт. Не везёт мне на таймеры. Всё равно ничего не работает. Можешь помочь? Мне надо таймер на 2,5 секунды. Чем проще схема тем лучше. А то у меня ничего не получается что с таймером связано.

Найди конденсатор с самой большой ёмкостью но напряжение его д. При такой схеме задержки будут очень маленькие. После зарядки конденсатора его надо аккуратно разрядить отключив перед этим питание замкнув через резистор с небольшим сопротивлением напр.

Я уже так и сделал. Подумал просто что конденсатор будет подпитывать реле на протяжении нескольких долей секунд и поставил ёмкость побольше. Всё работает и это хорошо. Но на таймеры с микросхемами и транзисторами всё равно не везёт. Да, судя по схеме после подачи лог.

После нажатия на кнопку, реле включается, но не отключается, пока кнопка не будет отпущена, а мне нужна задержка от полусекунды до 5 секунд. В стимуляторе эта же схема работает так, что даже если кнопка нажата, после зарядки времязадающего конденсатора, реле отключается, я собрал схему на макетке, 20 раз перепроверил, но реле не отключается, если кнопка зажата.

Может можно что-то изменить, чтобы реле точно отключалось, даже при нажатой кнопке? Все, проблема решена. Кнопка подключается к земле через конденсатор на маленькую ёмкость, конденсатор шунтируется резистором на ком, в результате при нажатии на триггере появляется краткоременный! Скорее всего хватит, можно даже поставить меньше так как конденсатор заряжается через кОм и импульс нужен кратковременный и таймер не совсем медленный.

Нужен способ реализации разряда кондера времени, уменя мкф, с 5-ти контактным реле Схему сам исполняю на SMD поэтому важна компактность. Спасибо, так и сделаю, сопротивление подобрал и протестировал на кондере, нормально разряжает до нуля при омах smd за 3 секунды, по расчету надо Ом ток 0. А чо не стестняйтесь схемку дополнять, людям будет полезно, чтоб не мудохаться с разрядом времязадающего конденсатора, ато он не разряжается сам то.

Схемку решил приспособить в автомобиль для обогревателей зеркал, чтобы через 10 минут отключались сами, и там еще поставил стабилизатор LM, чтобы еще попутно не нагружал акб когда в мороз маленький заряд, напряжением ниже 12 вольт не включится физически.

Конденсатор разряжается через транзистор внутри таймера.

Реле времени своими руками

Контактная сварка представляет собой вид точечной сварки. Принцип этого процесса в том, что две детали накладываются одна на другую с напуском и соединяются рядом сварочных точек. Соединительный шов может быть сплошным или прерывистым. Точки образуются в процессе передвижения материала через дисковые вращающиеся электроды. Их также называют роликами. Благодаря тому, что сварочный роликовый шов обладает повышенной прочностью и герметичностью, область применения его довольно обширная.

Таймер для контактной сварки на не такой совершенный и имеет урезанный функционал. Но нередко используется для создания.

Таймер для аппарата точечной сварки

Что такое споттер и зачем он нужен? Споттер это аппарат для контактной сварки и не только, применяется в частности для кузовных работ железных коней, когда нужно что -то выпрямить. Состоит споттер из 3-х основных узлов: силового трансформатора, электронного замыкателя с таймером и электродов. Мощный трансформатор, как правило сетевой, предназначен для получения гигантских токов. Этот трансформатор управляется таймером, который на определенное время включает и выключает транс. Один из силовых выводов этого трансформатора, в частности масса, подключается к кузову автомобиля, второй электрод рабочий, его кончик соединяется или прижимается к центру того участка, который нужно выправить. Таймер запускает трансформатор, протекающий между электродами ток вызывает нагрев, и рабочий электрод частично приваривается к кузову. Легкими движениями мастер ремонтник вытягивает прилипший электрод, этим самым таща за собой помятый участок кузова. Время сварки нужно тщательно контролировать, иначе в кузове можно получить дыру. По сути, спотер ничто иное как контролируемый выключатель, который замыкается и размыкается источник питания строго на заданное временя.

Модернизация аппарата контактной сварки Sunkko 787A+

Первая часть Забросил проект на некоторое время, занимался разными делами. Но опять взялся. В процессе пробной эксплуатации выяснились некоторые вещи: 1. Бронзовые шины дико греются до того, что начинают тлеть деревянные рычаги.

Сейчас этот форум просматривают: Google [Bot]. Предыдущее посещение: менее минуты назад Текущее время: 11 окт ,

Что собой представляет схема споттера. Таймер для споттера на микроконтроллере

Корпус — это завершающий элемент любой сколько-нибудь крупной электрической или электронной конструкции. На его изготовление в любительских условиях зачастую уходит не меньше времени, чем на сборку и налаживание устройства, для которого предназначен. Обычно корпусы радиолюбительской и промышленной аппаратуры изготавливают из листовой стали для обеспечения высокой механической прочности. Кроме того, такой корпус особенно предпочтителен в тех случаях, когда конструируемое устройство необходимо экранировать от внешних электрических или магнитных полей. При изготовлении корпусов часто используют заклёпочные или резьбовые соединения.

Точечная электросварка за $4, без расчленения микроволновок

Аренда авто в Краснодаре, автомобиль на прокат эконом. Корпус — это завершающий элемент любой сколько-нибудь крупной электрической или электронной конструкции. На его изготовление в любительских условиях зачастую уходит не меньше времени, чем на сборку и налаживание устройства, для которого предназначен. Обычно корпусы радиолюбительской и промышленной аппаратуры изготавливают из листовой стали для обеспечения высокой механической прочности. Кроме того, такой корпус особенно предпочтителен в тех случаях, когда конструируемое устройство необходимо экранировать от внешних электрических или магнитных полей. При изготовлении корпусов часто используют заклёпочные или резьбовые соединения. Намного облегчить изготовление корпусов, коробок, а также соединение отдельных конструктивных элементов можно, применив точечную электросварку.

«Таймер для точечной сварки на NE своими руками»: Перед тем как начать Таймер реле времени для точечной контактной сварки на Ардуино .

Вопрос по таймеру для точечной сварки.

Войти через. На AliExpress мы предлагаем тысячи разновидностей продукции всех брендов и спецификаций, на любой вкус и размер. Если вы хотите купить таймер задержки и подобные товары, мы предлагаем вам 10, позиций на выбор, среди которых вы обязательно найдете варианты на свой вкус.

Таймер для контактной сварки.

ВИДЕО ПО ТЕМЕ: многофункциональный таймер из китая.

By лерик , January 27, in Сварочные аппараты и мощные сетевые инверторы. Сделал контактную сварку на трансформаторе от микроволновки. При включение сразу сгорела микросхема вход, инфрадиод. Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6.

Мастер показал, как сделать очень простой, быстрый в изготовлении, доступный и дешёвый аппарат для сварки аккумуляторов.

Please turn JavaScript on and reload the page.

Сайт помогает найти что-нибудь интересное в огромном ассортименте магазинов и сделать удачную покупку. Если Вы купили что-то полезное, то, пожалуйста, поделитесь информацией с другими. Также у нас есть DIY сообщество , где приветствуются обзоры вещей, сделанных своими руками. Продолжаем обслуживать старый хьюлет. Испытание холодильником и морозильником. Идеальный номер два?

Точечная сварка своими руками. Таймер NE555

Дневники Файлы Справка Социальные группы Все разделы прочитаны. Точечная сварка своими руками. Таймер NE



Реле времени для споттера

[Предыстория]
У отца дома мастерская по ремонту авто. В один прекрасный день захотелось ему иметь споттер в гараже, но так как машин не так много чтобы заводской споттер окупился то мы решили сделать его своими руками.

Споттер мы решили сделать на 3х трансформаторов от микроволновки. Рабочий пистолет сделаем на токарном станке с разными насадками.

[Контроллер]
Контроллер управления я решил сделать на 555 таймере с несколькими режимами.

Почему не стал делать на микроконтроллере (на какой-нибудь 8-ой атмеге, или STM32) ? Хотелось сделать что-то простое, чтобы в случае поломки можно было заменить одну деталь, и все… Да и сам контроллер, как он будет работать в гараже где бывает очень холодно, или очень жарко, где сыро, много пыли и металической стружки… ?!

Вот и родилась такая схема:

Данной контроллер имеет 5 режимов с таймером: 4 — я сделал под отвертку на плату — настроил один раз на нужный уровень и все, и еще 1 режим — переменник установки времени в нужном моменте. Время настраивается от 5мс до 2х секунд.

Кроме этого есть ручной режим: сколько держишь кнопку — столько и работает. Для этого я поставил переключатель «таймер руч».
Плата управления питается от 5в, но можно было и от 12в (для этого надо менять пару резисторов). Все микросхемы я поставил на панельки, чтобы менять их легче в случае поломки.

Силовую часть я сделал на отдельную плату, если с симистором будут проблеммы поменяю его на 2х тиристоров, тиристор + диодный мостик, или на реле + транзисторная оптопара вместо симисторной.

Симистор у меня BTA41-800, на 40А. Если клемники на силовой плате не выдержут (они до 16А), то на плате я сделал технологические отверстия и площадки под винтики, чтобы провода закрутить по сильнее.

Пришёл знакомый, принес два ЛАТР-а и поинтересовался, а можно ли из них сделать споттер? Обычно, услышав подобный вопрос, на ум приходит анекдот про то, как один сосед интересуется у другого, умеет ли тот играть на скрипке и в ответ слышит «Не знаю, не пробовал» — так вот и у меня возникает такой же ответ – не знаю, наверное «да», а что такое «споттер»?

В общем, пока закипал и заваривался чай, выслушал небольшую лекцию о том, что не надо заниматься тем, чем заниматься не надо, что надо быть ближе к народу и тогда ко мне потянутся люди, а также кратко погрузился в историю авторемонтных мастерских, проиллюстрированную смачными байками из жизни «костоправов» и «жестянщиков». После чего понял, что споттер – это такой небольшой «сварочник», работающий по принципу аппарата точечной сварки. Используется для «прихватывания» металлических шайб и других мелких крепёжных элементов к помятому корпусу автомобиля, с помощью которых затем выправляется деформированная жесть. Правда, там ещё «обратный молоток» нужен, но говорят, что это уже не моя забота – от меня требуется только электронная часть схемы.

Посмотрев в сети схемы споттеров, стало ясно, что нужен одновибратор, который будет «открывать» на короткое время симистор и подавать сетевое напряжение на силовой трансформатор. Вторичная обмотка трансформатора должна выдавать напряжение 5-7 В с током, достаточным для «прихватывания» шайб.

Для образования импульса управления симистором используются разные способы – от простого разряда конденсатора до применения микроконтроллеров с синхронизацией к фазам сетевого напряжения. Нас интересует та схема, что попроще – пусть будет «с конденсатором».

Поиски «в тумбочке» показали, что не считая пассивных элементов, есть подходящие симисторы и тиристоры, а также множество другой «мелочёвки» — транзисторы и реле на разные рабочие напряжения (рис. 1). Жалко, что оптронов нет, но можно попробовать собрать преобразователь импульса разряда конденсатора в короткий «прямоугольник», включающий реле, которое будет своим замыкающимся контактом открывать и закрывать симистор.

Так же во время поиска деталей нашлось несколько блоков питания с выходными постоянными напряжениями от 5 до 15 В – выбрали промышленный из «советских» времён под названием БП-А1 9В/0,2А (рис.2). При нагрузке в виде резистора 100 Ом блок питания выдаёт напряжение около 12 В (оказалось, что уже переделанный).

Выбираем из имеющегося электронного «мусора» симисторы ТС132-40-10, 12-тивольтовое реле, берём несколько транзисторов КТ315, резисторов, конденсаторов и начинаем макетировать и проверять схему (на рис.3 один из этапов настройки).

То, что в результате получилось, показано на рисунке 4. Всё достаточно просто – при нажатии на кнопку S1 конденсатор С1 начинает заряжаться и на его правом выводе появляется положительное напряжение, равное напряжению питания. Это напряжение, пройдя через токоограничительный резистор R2, поступает на базу транзистора VT1, тот открывается и на обмотку реле К1 поступает напряжение и в результате контакты реле К1.1 замыкаются, открывая симистор Т1.

По мере заряда конденсатора С1, напряжение на его правом выводе плавно уменьшается и при достижении уровня меньше напряжения открывания транзистора, транзистор закроется, обмотка реле обесточится, разомкнувшийся контакт К1.1 перестанет подавать напряжение на управляющий электрод симистора и он по окончании текущей полуволны сетевого напряжения закроется. Диоды VD1 и VD2 стоят для ограничения возникающих импульсов при отпускании кнопки S1 и при обесточивании обмотки реле К1.

В принципе, всё так и работает, но при контроле времени открытого состояния симистора оказалось, что оно достаточно сильно «гуляет». Казалось бы, даже с учётом возможных изменений всех задержек включения-выключения в электронной и механической цепях оно должно быть не более 20 мс, но на самом деле получалось в разы больше и плюс к этому, то импульс длится на 20-40 мс дольше, а то и на все 100 мс.

После небольших экспериментов выяснилось, что это изменение ширины импульса в основном связано с изменением уровня напряжения питания схемы и с работой транзистора VT1. Первое «вылечилось» установкой навесным монтажом внутри блока питания простейшего параметрического стабилизатора, состоящего из резистора, стабилитрона и силового транзистора (рис.5). А каскад на транзисторе VT1 был заменён триггером Шмитта на 2-х транзисторах и установкой дополнительного эмиттерного повторителя. Схема приняла вид, показанный на рисунке 6.

Принцип работы остался прежним, добавлена возможность дискретного изменения длительности импульса переключателями S3 и S4. Триггер Шмитта собран на VT1 и VT2 [1], его «порог» можно менять в небольших пределах изменением сопротивлений резисторов R11 или R12.

При макетировании и проверке работы электронной части споттера было снято несколько диаграмм, по которым можно оценить временные интервалы и возникающие задержки фронтов. В схеме в это время стоял времязадающий конденсатор ёмкостью 1 мкФ и резисторы R7 и R8 имели сопротивление 120 кОм и 180 кОм соответственно. На рисунке 7 сверху показано состояние на обмотке реле, внизу – напряжение на контактах при коммутации резистора, подключенного к +14,5 В (файл для просмотра программой SpectraPLUS находится в архивном приложении к тексту, напряжения снимались через резисторные делители со случайными коэффициентами деления, поэтому шкала «Volts» не соответствует действительности). Длительность всех импульсов питания реле составляла примерно 253…254 мс, время коммутации контактов – 267…268 мс. «Расширение» связано с увеличением времени отключения – это видно по рисункам 8 и 9 при сравнении разницы, возникающей при замыкании и размыкании контактов (5,3 мс против 20 мс).

Для проверки временной стабильности образования импульсов было проведено четыре последовательных включения с контролем напряжения в нагрузке (файл в том же приложении). На обобщённом рисунке 10 видно, что все импульсы в нагрузке достаточно близки по длительности – около 275…283 мс и зависят от того, на какое место полуволны сетевого напряжения пришёлся момент включения. Т.е. максимальная теоретическая нестабильность не превышает времени одной полуволны сетевого напряжения – 10 мс.

При установке R7 =1 кОм и R8 =10 кОм при С1=1 мкФ удалось получить длительность одного импульса менее одного полупериода сетевого напряжения. При 2 мкФ – от 1 до 2 периодов, при 8 мкФ – от 3 до 4 (файл в приложении).

В окончательный вариант споттера были установлены детали с номиналами, указанными на рисунке 6. То, что получилось на вторичной обмотке силового трансформатора, показано на рисунке 11. Длительность самого короткого импульса (первого на рисунке) около 50…60 мс, второго – 140…150 мс, третьего – 300…310 мс, четвёртого – 390…400 мс (при ёмкости времязадающего конденсатора в 4 мкФ, 8 мкФ, 12 мкФ и 16 мкФ).

После проверки электроники самое время заняться «железом».

В качестве силового трансформатора был использован 9-тиамперный ЛАТР (правый на рис. 12). Его обмотка выполнена проводом диаметром около 1,5 мм (рис.13) и магнитопровод имеет внутренний диаметр, достаточный для намотки 7-ми витков из 3-х параллельно сложенных алюминиевых шин общим сечением около 75-80 кв.мм.

Разборку ЛАТР-а проводим аккуратно, на всякий случай весь конструктив «фиксируем» на фото и «срисовываем» выводы (рис.14). Хорошо, что провод толстый – удобно считать витки.

После разборки внимательно осматриваем обмотку, очищаем её от пыли, мусора и остатков графита с помощью малярной кисти с жёстким ворсом и протираем мягкой тканью, слегка смоченной спиртом.

Подпаиваем к выводу «А» пятиамперный стеклянный предохранитель, подключаем тестер к «срединному» выводу катушки «Г» и подаём напряжение 230 В на предохранитель и вывод «безымянный». Тестер показывает напряжение около 110 В. Ничего не гудит и не греется — можно считать, что трансформатор нормальный.

Затем первичную обмотку обматываем фторопластовой лентой с таким нахлёстом, чтобы получалось не менее двух-трёх слоёв (рис.15). После этого мотаем пробную вторичную обмотку из нескольких витков гибким проводом в изоляции. Подав питание и замерив на этой обмотке напряжение, определяем нужное количество витков для получения 6…7 В. В нашем случае получилось так, что при подаче 230 В на выводы «Е» и «безымянный» 7 В на выходе получается при 7 витках. При подаче питания на «А» и «безымянный», получаем 6,3 В.

Для вторичной обмотки использовались алюминиевые шины «ну очень б/у» — они были сняты со старого сварочного трансформатора и местами совсем не имели изоляции. Для того, чтобы витки не замыкались между собой, шины пришлось обмотать лентой-серпянкой (рис.16). Обмотка велась так, чтобы получилось два-три слоя покрытия.

После намотки трансформатора и проверки работоспособности схемы на рабочем столе, все детали споттера были установлены в подходящий по размерам корпус (похоже, что тоже от какого-то ЛАТР-а – рис. 17).

Выводы вторичной обмотки трансформатора зажаты болтами и гайками М6-М8 и выведены на переднюю панель корпуса. К этим болтам с другой стороны передней панели крепятся силовые провода, идущие к корпусу автомобиля и «обратному молотку». Внешний вид на стадии домашней проверки показан на рисунке 18. Вверху слева расположены индикатор сетевого напряжения La1 и сетевой выключатель S1, а справа – переключатель напряжения импульса S5. Он коммутирует подключение к сети или вывода «А», или вывода «Е» трансформатора.

Рис.18

Внизу находятся разъём для кнопки S2 и выводы вторичной обмотки. Переключатели длительности импульса установлены в самом низу корпуса, под откидной крышкой (рис.19).

Все остальные элементы схемы закреплены на днище корпуса и передней панели (рис.20, рис.21, рис.22). Выглядит не очень аккуратно, но здесь главной задачей было уменьшение длины проводников с целью уменьшения влияния электромагнитных импульсов на электронную часть схемы.

Печатная плата не разводилась – все транзисторы и их «обвязка» припаяны к макетной плате из стеклотекстолита, с фольгой, порезанной на квадратики (видна на рис.22).

Выключатель питания S1 — JS608A, допускающий коммутацию 10 А токов («парные» выводы запараллелены). Второго такого выключателя не нашлось и S5 поставили ТП1-2, его выводы тоже запараллелены (если пользоваться им при выключенном сетевом питании, то он может пропускать через себя достаточно большие токи). Переключатели длительности импульса S3 и S4 — ТП1-2.

Кнопка S2 – КМ1-1. Разъем для подключения проводов кнопки — COM (DB-9).

Индикатор La1 — ТН-0.2 в соответствующей установочной фурнитуре.

На рисунках 23, 24, 25 показаны фотографии, сделанные при проверке работоспособности споттера – мебельный уголок размерами 20х20х2 мм точечно приваривался к жестяной пластине толщиной 0,8 мм (крепёжная панель от компьютерного корпуса). Разные размеры «пятачков» на рис.23 и рис.24 – это при разных «варочных» напряжениях (6 В и 7 В). Мебельный уголок в обоих случаях приваривается крепко.

На рис.26 показана обратная сторона пластины и видно, что она прогревается насквозь, краска подгорает и отлетает.

После того, как отдал споттер знакомому, он примерно через неделю позвонил, сказал, что обратный «молоток» сделал, подключил и проверил работу всего аппарата – всё нормально, всё работает. Оказалось, импульсы большой длительности в работе не нужны (т.е. элементы S4,С3,С4,R4 можно не ставить), но есть потребность подключения трансформатора к сети «напрямую». Насколько я понял, это для того, чтобы с помощью угольных электродов можно было прогревать поверхность помятого металла. Сделать подачу питания «напрямую» несложно – поставили переключатель, позволяющий замыкать «силовые» выводы симистора. Немного смущает недостаточно большое суммарное сечение жил во вторичной обмотке (по расчетам надо больше), но раз прошло уже больше двух недель, а хозяин аппарата предупреждён о «слабости обмотки» и не звонит, значит ничего страшного не произошло.

Во время экспериментов со схемой был проверен вариант симистора, собранного из двух тиристоров Т122-20-5-4 (их видно на рисунке 1 на заднем плане). Схема включения показана на рис.27 [2], диоды VD3 и VD4 — 1N4007.

  1. Горошков Б.И., «Радиоэлектронные устройства», Москва, «Радио и связь», 1984.
  2. Массовая радиобиблиотека, Я.С. Кублановский, «Тиристорные устройства», М., «Радио и связь», 1987, вып.1104.

Самоделки из двигателя от стиральной машины:

1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
2. Самодельный наждак из двигателя стиральной машинки
3. Самодельный генератор из двигателя от стиральной машины
4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
5. Гончарный круг из стиральной машины
6. Токарный станок из стиральной машины автомат
7. Дровокол с двигателем от стиральной машины
8. Самодельная бетономешалка

Микроконтроллерный таймер для споттера своими руками

Под термином «споттер» в данной статье понимается установка точечной контактной сварки, используемая в первую очередь автомобилистами и кузовщиками, для быстрой точечной приварки к кузову различных вспомогательных элементов, таких как шайбы, крючки, проволока и прочее, для последующей вытяжки и выравнивания поверхности.

Точечная сварка основана на принципе выделения тепла на переходном сопротивлении соприкасающихся свариваемых элементов. Поэтому задачей споттера является подача в место свариваемого контакта мощного импульса тока (I=800..1200А, U=5В) при нажатии соответствующей кнопки на «пистолете». При точечной сварке необходимо контролировать длительность импульса (обычно она не превышает 0,5 с). Далее в статье будут рассмотрен принцип работы силовой схемы, схема и принцип работы таймера.

Довольно распространенной схемой силовой части самодельного трансформаторного споттера является схема, приведенная на рисунке 1.

Рисунок 1 — Схема силовой части.

Как видно по схеме, коммутация производится тиристором на стороне первичной обмотки силового трансформатора. Можно использовать и симистор, тогда отпадет необходимость в диодном мосте. Для задания длительности импульса тока на выходе необходимо поддерживать напряжение на управляющем электроде тиристора в течение соответствующего времени (длительности выходного импульса). Но следует иметь ввиду, что даже если управляющее напряжение уже снято, обычный незапираемый тиристор не закроется пока ток, проходящий через него, не упадет ниже тока удержания (в данной схеме ток достигает нуля 100 раз в секунду). Самый простой способ управления тиристором — RC-цепочка с регулировочным резистором (для изменения постоянной времени) и подзарядкой конденсатора от дополнительного источника низкого напряжения. Но этот способ далее не рассматривается.

Для более точного задания длительности разработан простой таймер на базе контроллера ATtiny2313. Длительность импульса регулируется двумя кнопками и может принималь значения от 0,01с до 0,5с с дискретостью 0,01с. На 7-сегментном индикаторе отображаются цифры, соответствующие заданной длительности в сотых долях секунды. Но, благодаря описанному выше свойству незапираемых тиристоров, реальная длительность выходного импульса может отличаться от заданой на время до 10мс (один полупериод). Схема споттера с микроконтроллерным управлением представлена на рисунке 2.

Рисунок 2 — Полная схема споттера.

Элементы, помеченные * на ноге Reset не обязательны, но их желательно ставить для снижения вероятности ложных сбросов из-за возможных наводок на этой ноге. Так как разводка плат выполнена для однослойного текстолита, некоторые аноды одноименных сегментов двух цифр LED-индикатора соединены перемычками со стороны дорожек.
Схема работает следующим образом. При подаче питания на схему управления выполнение программы контроллером начинается с момента, когда конденсатор на ноге Reset зарядится до напряжения логической единицы. После запуска контроллер выполняет функции динамической индикации и опроса кнопок. Опрос кнопок происходит по таймеру примерно 4 раза в секунду. При нажатии на кнопку подачи импульса на «пистолете» (обозначена пунктиром), на ноге PD2 появляется логическая единица (5В), единица снимается через заданное время, которое отображается на светодиодном индикаторе в виде сотых долей секунды. Сигнал с вывода микроконтроллера усиливается по току повторителем на КТ972, так как для управления используемым оптотиристором ТО142-80 необходимо подавать ток не менее 120 мА на его внутренний светодиод. Оптронный тип тиристора выбран из простоты организации гальванической развязки цепей управления от силовых. В прошивке контроллера реализованы два режима работы: импульсный (по умолчанию) и непрерывный. Выбор режима, установка длительности (больше/меньше) осуществляется тремя кнопками. В непрерывном режиме длительность подачи сигнала управления тиристором зависит от длительности нажатия кнопки на пистолете.

Для пояснения работы силовой части на рисунке 3 приведена упрощенная схема. На рисунке 4 изображена временная диаграмма работы силовой схемы с активной нагрузкой и идеальным тиристором (время включения =0, падение напряжения в открытом состоянии =0).

Рисунок 3 — Схема силовой части.

smog-license-nevada — Google Suche

AlleBilderMapsNewsVideosShoppingBücher

Suchoptionen

Nevada Smog Inspectors License Certification Course

smogtechschool.com › product › nevada-smog-insp. ..

240,00 $ Auf Lager

Запишитесь на сертификационный курс для инспекторов по смогу в Неваде уже сегодня! Этот всеобъемлющий курс предлагает 20 часов онлайн-курсов с …

Ähnliche Fragen

Как получить лицензию на использование дыма в Неваде?

Сколько зарабатывают специалисты по смогу в Неваде?

Как долго действует сертификат смога в Неваде?

Вам нужен сертификат смога в Неваде?

Как получить сертификат специалиста по смогу в Неваде — YourMechanic

www.yourmechanic.com › Статьи

25.08.2016 · Чтобы получить сертификат специалиста по смогу в Неваде, вам необходимо пройти курс по правилам и правила, соблюдаемые Серебряным штатом.

[PDF] Лицензионный пакет EC 007 Emission Inspector

dmv.nv.gov › pdfforms

Профессиональное и предпринимательское лицензирование. 555 Райт Уэй. Карсон-Сити, Невада 89711. (775) 684-4690 www.dmvnv.com. НОВЫЙ ПАКЕТ ЛИЦЕНЗИИ EMISSION INSPECTOR.

Программа контроля выбросов в штате Невада

dmv.nv.gov › выбросы

DMV штата Невада также реализует программу Smog Spotter, чтобы побудить общественность сообщать о курящих транспортных средствах через Интернет или по телефону. DMV проведет расследование …

Невада Проверка выбросов и смога — 2022 г.

www.emissions.org › loc › nevada-emissions-testing

Невада освобождает новые автомобили от проверок смога в течение первых 2 лет. Продавцы подержанных автомобилей должны выдавать действительные сертификаты испытаний на выбросы при продаже автомобиля. …

Профессиональное автомобильное обучение| Лас-Вегас|

www.professionalautomotivetraining.net

Обучение автомобильных техников в Лас-Вегасе, штат Невада, предлагающее курсы, одобренные DMV для инспекторов по выбросам 1G и 2G, а также другие специализированные курсы обучения.

Тестирование выбросов в штате Невада: что вам нужно знать

www. sunautoservice.com › о нас › беседа о магазине › стр…

Тесты на выбросы или смог анализируют уровни вредных веществ, которые образуются и улетучиваются от двигателей внутреннего сгорания. Тесты на выбросы используются для улучшения …

Nevada License For Smog Check Smog Check in NV

www.businessnameusa.com › ответы › Nevada Lic…

12.07.2022 · ОТВЕТ: Лицензия, которую вы Обязательно нужно разрешение продавца, потому что оно понадобится вам, чтобы купить расходные материалы для станции контроля смога оптом. Тогда …

AUTO 240B — Подготовка к проверке выбросов 1G в штате Невада

catalog.csn.edu › preview_course_nopop

Этот курс соответствует начальным требованиям штата Невада к обучению тех, кто хочет стать инспектором по выбросам 1G в Неваде.

Классы выбросов — TMCC EPIC

tmcc.augusoft.net › …

… ваш государственный сертификат на проведение проверок смога в штате Невада.

Таймер на 555 для споттера: Таймер для контактной сварки 555