Eng Ru
Отправить письмо

2. Технологический процесс получения электрической энергии на тэц. Тэц схема технологическая


1. Технологическая схема тэс

Цепочка технологических процессов от доставки топлива на ТЭС до выдачи электроэнергии:

Рис 1. Технологическая схема ТЭС

4

Доставка твердого топлива осуществляется по железной дороге в специальных полувагонах (четырехосные грузоподъемностью 63 т, шестиосные — 93 т и восьмиосные — 125 т). Полувагоны с углем взвешивают на железнодорожных весах. В зимнее время полувагоны с углем пропускают через размораживающий тепляк, в котором осуществляется прогрев стенок полувагона подогретым воздухом. Далее полувагон заталкивается в разгрузочное устройство — вагоноопрокидыватель 1, в котором он поворачивается вокруг продольной оси на угол около 180°; уголь сбрасывается на решетки, перекрывающие приемные бункера 2. Уголь из бункеров подается питателями на транспортер, по которому поступает в узел пересыпки 3; отсюда уголь подается транспортерами либо на угольный склад 4, либо через дробильное отделение 5 в бункера сырого угля котельной 6, в которые может также доставляться с угольного склада.

Весь этот топливный тракт вместе с угольным складом относится к системе топливоподачи, которую обслуживает персонал топливно-транспортного цеха ТЭС. Размол дробленого угля осуществляется в мельнице 7 с непосредственным вдуванием пылевоздушной смеси через горелки в топку. Предварительно подогретый в воздухоподогревателе 8 воздух, нагнетаемый дутьевым вентилятором 9, подается частично в мельницу (первичный воздух) и частично — непосредственно к горелкам (вторичный воздух). Дутьевой вентилятор засасывает воздух через воздухозаборный короб либо из верхней части котельного отделения (летом), либо извне главного корпуса (зимой). Широко распространен калориферный подогрев воздуха паром или горячей водой перед подачей его в воздухоподогреватель.Пылеугольные котлы обязательно имеют также растопочное топливо, обычно мазут. Мазут доставляется в железнодорожных цистернах 10, в которых он перед сливом разогревается паром. Разогретый мазут сливается по обогреваемому межрельсовому лотку 11 в приемный резервуар 12, из которого перекачивающими насосами 13 подается в основной резервуар 14. Насосом первого подъема 15 мазут прокачивается через подогреватели 16, обогреваемые паром, после которых насосом второго подъема 17 подается к мазутным форсункам. Растопочным топливом может быть также природный газ, поступающий из газопровода через газорегулировочный пункт 18 в котельную.

На ТЭС, сжигающих газомазутное топливо, топливное хозяйство значительно упрощается по сравнению с пылеугольными ТЭС, отпадают угольный склад, дробильное отделение, система транспортеров, бункера сырого угля и пыли, а также система золоулавливания и золошлакоудаления. На ТЭС, сжигающих твердое топливо в котлах с жидким шлакоудалением, зола сожженного в топке котла 19 топлива частично вытекает в виде жидкого шлака через сетку пола топки, а частично уносится дымовыми газами из котла, улавливается затем в электрофильтре 20 и собирается в бункерах летучей золы. Посредством смывных устройств шлак и летучая зола подаются в самотечные каналы гидрозолоудаления 21, из которых гидрозолошлаковая смесь, пройдя предварительно металлоуловитель и шлакодробилку, поступает в багерный насос 22, транспортирующий ее по золопроводам на золоотвал. Наряду с гидрозолоудалением находит применение пневмозолоудаление, при котором зола не смачивается и может использоваться для приготовления строительных материалов. Дымовые газы после золоуловителя дымососом 23 подаются в дымовую трубу 24. При работе котла под наддувом необходимость установки дымососов отпадает. Подогретый пар из выходного коллектора пароперегревателя по паропроводу свежего пара 25 поступает в цилиндр высокого давления (ЦВД) паровой турбины 26а. После ЦВД пар по «холодному» паропроводу промежуточного перегрева 27 возвращается в котел и поступает в промежуточный пароперегреватель 28, в котором перегревается вновь до температуры свежего пара или близкой к ней. По «горячей» линии промежуточного перегрева 27а пар поступает к цилиндру среднего давления. (ЦСД) 26б, затем — в цилиндр низкого давления (ЦНД) 26в

5

и из него — в конденсатор турбины 29. Из конденсатосборника конденсатора

конденсатные насосы I ступени 30 подают конденсат на фильтры установки очистки конденсата 31, после которой конденсатным насосом второй ступени 32 конденсат прокачивается через группу подогревателей низкого давления (ПНД) 33 в деаэратор 34. В деаэраторе вода доводится до кипения и при этом освобождается от растворенных в ней агрессивных газов О3 и СО2, что предотвращает коррозию в пароводяном тракте. Деаэрированная питательная вода из аккумуляторного бака деаэратора, питаемого насосом 35, подается через группу подогревателей высокого давления (ПВД) 36 в экономайзер 37. Тем самым замыкается пароводяной тракт, включающий в себя пароводяные тракты котла и турбинной установки.

В последние годы находит применение нейтральный водный режим с дозированием газообразного кислорода во всасывающий коллектор конденсатных насосов II ступени. При этом прекращается дозировка в конденсат или питательную воду гидразина и аммиака, выпары деаэратора закрываются.Концентрация кислорода в воде 200—400 мкг/кг при высоком качестве обессоленного конденсата и отсутствии органических соединений обеспечивает образование пассивирующих окисных пленок в конденсатно-питательном тракте, на поверхностях нагрева ПВД и парового котла. Применение этого метода на новых энергоблоках приведет к. бездеаэраторной схеме.Пароводяной тракт ТЭС является наиболее сложным и ответственным, ибо в этом тракте имеют место наиболее высокие температуры металла и наиболее высокие давления пара и воды. Для обеспечения функционирования пароводяного тракта необходимы еще система приготовления и подачи добавочной воды на восполнение потерь рабочего тела и система технического водоснабжения ТЭС для подачи охлаждающей воды в конденсатор турбины.

Добавочная вода получается в результате химической очистки сырой воды, осуществляемой в специальных ионообменных фильтрах химводоочистки 38. Из бака обессоленной воды 39 добавочная вода перекачивающим насосом подается в конденсатор турбины. Охлаждающая вода прокачивается через трубки конденсатора циркуляционным насосом 40 и затем поступает в башенный охладитель (градирню) 41, где за счет испарения вода охлаждается на тот же перепад температур, на который она нагрелась в конденсаторе. Система водоснабжения с градирнями применяется преимущественно на ТЭЦ. На ТЭС применяются системы водоснабжения с прудами-охладителями. При испарительном охлаждении воды выпар примерно равен количеству конденсирующегося в конденсаторах турбин пара. Поэтому требуется подпитка систем водоснабжения, обычно водой из реки.Электрический генератор 42, вращаемый паровой турбиной, вырабатывает переменный электрический ток, который через повышающий трансформатор 43 идет на сборные шины 44 открытого распределительного устройства (ОРУ) ТЭС. К выводам генератора через трансформатор собственных нужд 45 присоединены также шины собственного расхода 46. Таким образом, собственные нужды энергоблока (электродвигатели агрегатов собственных нужд — насосов, вентиляторов, мельниц и т. п.) питаются от генератора энергоблока. В особых случаях (аварийные ситуации, сброс нагрузки, пуски и остановки) питание собственных нужд обеспечивается через резервный трансформатор с шин ОРУ. Надежное электропитание электродвигателей агрегатов собственных нужд обеспечивает надежность функционирования энергоблоков к ТЭС в целом. Нарушения электропитания собственных нужд приводят к отказам и авариям. Таким образом, описанная технологическая схема ТЭС представляет собой сложный комплекс взаимосвязанных трактов и систем: топливный тракт, система пылеприготовления, пароводяной тракт, газовоздушный тракт, шлакозолоудаление, электрическая часть, система приготовления добавочной воды, система технического водоснабжения.

6

studfiles.net

Основное технологическое оборудование ТЭЦ

Поиск Лекций

Современные тепловые электрические станции имеют преимущественно блочную структуру. Рассматриваемая ТЭЦ выполнена по блочной схеме с поперечными связями по пару и питательной воде. ТЭЦ с блочной структурой составляется из отдельных энергоблоков. В состав каждого энергоблока входят основные агрегаты – турбинный и котельный и связанное с ним непосредственно вспомогательное оборудование.

Применение блочной схемы связано со следующими особенностями эксплуатации:

1. Котельный резерв на блочных ТЭЦ отсутствует, что компенсируется аварийным резервом в энергосистеме. Останов котла означает потерю мощности энергоблока.

2. Аварийные ситуации локализуются в рамках энергоблока, не затрагивая соседние блоки.

3. Упрощение тепловой схемы и коммуникаций, отсутствие соединительных магистралей, уменьшение числа элементов арматуры облегчает и делает его более надежным.

4. Управление блоком ввиду тесной взаимосвязи котла и турбины осуществляется из единого центра, каковым является блочный щит управления.

5. Каждый последующий энергоблок ТЭЦ может быть выполнен отличным от предыдущего с применением более прогрессивных решений.

6. Блочная схема приводит к блочному пуску, т. е. к одновременному пуску котла и турбины на скользящих параметрах пара.

Основным оборудованием ТЭЦ являются турбина, котел и генератор. Серийные агрегаты стандартизированы по соответствующим показателям: мощности, параметрам пара, производительности, напряжению и силе тока и т. д. При выборе предпочтение отдается стандартным агрегатам. На выбор агрегатов существенное влияние оказывает тепловая схема электростанции.

При выборе основного оборудования блочной ТЭЦ должны соблюдаться следующие требования:

1. Тип и количество основного оборудования должны соответствовать заданной мощности электростанции и предусмотренному режиму ее работы. Возможные варианты по значениям мощности блоков и параметрам пара сопоставляются по технико-экономическим показателям, таким как удельные капитальные затраты, себестоимость энергии, удельный расход условного топлива.

2. Ограничения по мощности выбираемых блоков накладывается мощностью энергосистемы.

3. К блокам, предназначенным для регулирования нагрузки системы (пиковым и полупиковым), предъявляются дополнительные ограничения по мощности и параметрам пара.

4. Выбор основного оборудования для блочных ТЭЦ заключается в выборе блоков, включающих в себя все основные агрегаты и вспомогательное оборудование.

5. Тип парового котла должен соответствовать виду топлива, выделенному для проектируемой электростанции.

6. Производительность парового котла блока ТЭЦ выбирается такой, чтобы обеспечивался номинальный расход пара на турбину вместе с расходом на собственные нужды и запасом, равным 3%.

7. Число котлов выбирается равным числу турбин – это позволяет иметь одинаковую строительную длину котельного и турбинного отделений.

8. При расширении ТЭЦ в целях увеличения отопительной мощности рассматриваются два варианта: или установка турбины типа Т, или увеличение количества водогрейных котлов.

На ТЭЦ-2 сооружено три блока, на которых установлено следующее технологическое оборудование для покрытия тепловых и электрических нагрузок:

1. Турбоагрегаты:

- блоки №1,2 – турбина типа ПТ-80-130/13;

- блок №3 – турбина типа Т-100/120-13.

Для промышленно-отопительных ТЭЦ применяются конденсационные турбины типа ПТ с двумя регулируемыми отборами пара. Т. к. на рассматриваемой ТЭЦ преобладает отопительная нагрузка, то в дополнение к турбинам ПТ установлена турбина типа Т с теплофикационными отборами. В таблице 1.1 представим технические характеристики турбин.

Таблица 1.1 – Технические характеристики турбин рассматриваемой ТЭЦ

Характеристики Данные
ПТ-80-130/13 Т-100/120-130
Номинальная мощность, МВт
Максимальная мощность, МВт -
Давление свежего пара
Температура свежего пара,
Номинальный расход свежего пара, т/час
Число регенеративных отборов
Пределы регулирования давления пара в отборах:    
- производственном, МПа 1-1,6 -
- отопительном, МПа 0,03-0,25 -
- верхнем отопительном, Мпа - 0,06-0,25
-нижнем отопительном, МПа - 0,05-0,20
Удельный расход свежего пара при номинальном теплофикационном режиме, кг/ кВт ч 5,6 4,3
Число цилиндров турбины
Число конденсаторов
Расход пара в отборах: -
-производственном, т/час -
-отопительном, т/час   0,06-0,25
-верхнем и нижнем отопительных, т/час   0,05-0,20
Температура охлаждающей среды,
Температура питательной воды,

 

2. Котлоагрегаты. На рассматриваемой ТЭЦ установлены следующие котлоагрегаты:

- для всех блоков – энергетические котлы типа ТГМ-96б (три штуки) парапроизводительностью 480 т/час;

- три пиковых водогрейных котла типа ПТВМ-100 производительностью 100 Г кал/час;

- два пиковых водогрейных котла типа КВГМ-180 производительностью 1180 Г кал/час.

Резервные котлы на блочных ТЭЦ не устанавливаются. На ТЭЦ в качестве резерва устанавливаются водогрейные котлы. Количество их принимается равным не менее двух, а суммарная мощность такова, чтобы при отключении одного энергетического котла остальные вместе с водогрейными котлами обеспечивали среднюю отопительную нагрузку наиболее холодного месяца. Для принятой блочной схемы ТЭЦ котлы ТГМ-96б обеспечивают максимальный расход пара на турбину ПТ-80/13-130 с запасом 2,1%, а для турбин Т-100/1220 130-3 обеспечивают только номинальный пропуск пара турбиной без запаса. Максимальный пропуск пара турбиной 485 т/час не покрываются. В таблице 1.2 представим технические характеристики котлов.

 

 

Таблица 1.2 – Технические характеристики котлов рассматриваемой ТЭЦ

Характеристики Данные
Энергетический котел типа ТГМ-96б
Паропроизводительность, т/час
Температура питательной воды,
Температура пара,
Давление пара,  
-МПа 13,8
-кг с/ см²
Температура уходящих газов,
К.п.д. гарантийный, % 92,8
Воздухоподогреватель – РВП -
Топливо – газ и мазут -
Водогрейный котел типа ПТВМ-100
Теплопроизводительность, Гкал/час
Давление, кг с/см² 10,3
Топливо – газ и мазут -
Расход воды  
- в основном режиме, т/час
- в пиковом режиме, т/час
К.п.д., % 90,5
Температура воды на входе в котел  
- в основном режиме,
- в пиковом режиме,
Температура воды на выходе из котла,
Водогрейный котел типа КВГМ-180
Теплопроизводительность, Гкал/час
Давление, кг с/см² 8-25
Топливо – газ -
Расход воды, т/час
К.п.д., % 88,8
Температура воды на входе в котел,
Температура воды на выходе из котла,

 

Каждый из блоков ТЭЦ-2 в номинальном режиме выдает 80 МВт электроэнергии, а также тепло с сетевой водой (на отопление и горячее водоснабжение) – 100 Гкал/час. С блоков №1, 2 можно выдать пар для промышленных предприятий – 80 Гкал/час. Пиковые водогрейные котлы могут выдать суммарную тепловую мощность 660 Гкал/час. Так как ТЭЦ-2 является электростанцией комбинированного типа, она производит электричество и тепло в разных количествах в зависимости от климатических условий и от инструкций со стороны контрольных органов.

В определенных условиях ТЭЦ может производить только электроэнергию (при конденсационном режиме) или же напротив поставлять максимальное количество теплоэнергии турбин блоков и дополнительно электроэнергию. В зависимости от ситуации с топливом, можно поставить дополнительное тепло с пиковых водогрейных котлов.

 

ТЕПЛОВАЯ СХЕМА ТЭЦ. ТОПЛИВО

 

На технологической схеме ТЭЦ отображают цепочку технологических процессов от доставки топлива до выдачи электроэнергии.

Технологическая схема выполнена по блочному принципу (рис.1.1).

Рис. 1.1 – Технологическая схема ТЭЦ (Обозначения: G – генератор; Т – трансформатор; ТСН – трансформатор собственных нужд; ТХ – топливное хозяйство; ГВТ – газовоздушный тракт)

Рассмотрим работу схемы: пар из котла 1 поступает через пароперегреватель 2 в турбину, состоящую из цилиндра высокого давления 3 и из цилиндра низкого давления 4. Отработанный пар конденсируется в конденсаторе 5 водой, подаваемой из охлаждающей градирни 14 циркуляционным насосом 13, а затем конденсат подается конденсатным насосом 6 в подогреватели низкого давления (ПНД) 7 со сливным насосом из ПНД конденсатора 8. В ПНД конденсат подогревается и поступает в деаэратор 9. Подпиточная вода из природного водоема насосом технического водоснабжения 16 подается в водоподготовительную установку (химводоочистку) 15, после специальной обработки, в которой также поступает в деаэратор 9. Питательная вода, освобожденная в деаэраторе от кислорода и углекислого газа, подается в котел 1 питательным насосом 10. При этом проходит через подогреватели высокого давления (ПВД) 11 и экономайзер 12, где подогревается отбираемым из турбины паром и отходящими от котла газами.

Для промышленных нужд имеется в наличии отбор пара из турбины 22, возврат конденсата от технологических потребителей осуществляется насосом 23. Для подогрева сетевой воды (для отопления и горячего водоснабжения) используется теплофикационный отбор, пар из которого направляется в подогреватели сетевой воды 17. В пиковом режиме работы для подогрева сетевой воды используются водогрейные котлы 18 и пиковые бойлера 24, со сливными насосами 25. Для обеспечения циркуляции воды в теплофикационной сети служат сетевые насосы I-го и II-го 19 подъемов. Для покрытия потерь сетевой воды используется насос подпитки тепловых сетей 21.

Реально технологическая схема ТЭЦ намного сложнее, т. к. в приведенной схеме на рисунке1.1 однотипное оборудование изображено один раз независимо от числа установленных на электростанции вспомогательных и основных агрегатов. Количество рабочих и резервных агрегатов зависит от вида и мощности станции, места механизмов в технологическом процессе и других факторов.

В энергетических установках требуемые параметры рабочего тела получают, используя энергию топлива. Под энергетическим топливом понимают вещества, выделяющие при определенных условиях значительное количество теплоты, которое экономически целесообразно использовать как источник энергии.

Энергетические и водогрейные котлы на ТЭЦ-2 газомазутные. Основным топливом для электростанции является природный газ, а резервным – мазут марки М100 и М40.

Мазут – высокий, тяжелый остаток перегонки нефти, получающийся после отгона легких фракций (бензина, керосина, лигроина и др.), применяют в энергетике преимущественно в качестве жидкого топлива. Мазут классифицируют по вязкости и содержанию соединений серы на малосернистые (S<0,5%), сернистые (S=0,5¸2%) и высокосернистые (S>2%).

На ТЭЦ топливо перед сжиганием специально подготавливают, что обеспечивает надежную и экономичную работу топочных устройств и всего котла. Характер подготовительных операций зависит от вида топлива.

Природный газ, подаваемый по газопроводам, имеет давление, значительно превышающее необходимое при сжигании. Поэтому предварительно на газораспредилительных станциях (ГРС) или пунктах (ГРП) электростанции снижают давление газа, а также очищают его от механических примесей и влаги. Подготовка газообразного топлива наиболее проста и требует небольших площадей и материальных затрат.

Горение жидкого топлива (мазута) происходит после его испарения. Скорость испарения жидкости, а следовательно, горения, тем выше, чем больше ее удельная поверхность, т. е. поверхность, приходящаяся на единицу массы топлива. Чтобы получить большую удельную поверхность жидкого топлива, его распыляют на мелкие частицы. Для качественного распыления и надежной транспортировки по трубопроводам мазут марок М100 и М40 предварительно подогревают до 95-135 . Кроме того, мазут, как и газообразное топливо, очищают от механических примесей, а также повышают в зависимости от типа распыляющих устройств – горелок – до определенных значений его давление.

poisk-ru.ru

2. Технологический процесс получения электрической энергии на тэц

Производство электрической энергии на ТЭС сопро­вождается большими потерями теплоты. В то же время многим отраслям промышленности таким, как химиче­ская, текстильная, пищевая, металлургическая, и ряду других теплота необходима для технологических целей. Для отопления жилых зданий требуется в значительном количестве горячая вода.

В этих условиях естественно использовать пар, полу­чаемый в парогенераторах на тепловых станциях, как для выработки электроэнергии, так и для теплофикации потребителей. Электростанции, выполняющие такие функции, называются теплоэлектроцентралями.

Отработанный в турбинах конденсационных станций пар имеет температуру 25—30°С, поэтому он не пригоден для использования в технологических процессах на пред­приятиях.» Во многих производствах требуется пар, име­ющий давление 0,5—0,9 МПа, а иногда и до 2 МПа длят приведения в движение прессов, паровых молотов, тур­бин. Иногда требуется горячая вода, нагретая до темпе­ратуры 70—150°С.

Для получения пара с необходимыми для потребите­лей параметрами используют специальные турбины с промежуточными отборами пара. В таких турбинах, по­сле того как часть энергии пара израсходуется на при­ведение в движение турбины и параметры его понизят­ся, производится отбор некоторой доли пара для потре­бителей. Оставшаяся доля пара далее обычным способом используется в турбине и затем поступает в конденсатор. Поскольку для части пара перепад давления оказывает­ся меньшим, несколько возрастает расход топлива на выработку электроэнергии. Так, если при перепаде дав­ления от 9000 до 4 кПа на выработку 1 кВт-ч электро­энергии требуется 4 кг пара, то при увеличении давления отработанного пара до 120 кПа необходимое количество пара составляет 5,5 кг. Однако такое увеличение расхода пара на выработку электроэнергии на ТЭЦ и связанное с этим увеличение расхода топлива в конечном счете ока­зываются меньшими по сравнению с расходом топлива в случае раз­дельной выработки электроэнергии и выра­ботки ,теплоты на не­больших котельных ус­тановках.

Благодаря более полному использова­нию тепловой энергии КПД ТЭЦ достигает 60-65%, а КПД КЭС —не более 40%. На рис. 2.13 приведен примерный тепловой баланс ТЭЦ.

Горячая вода и пар под давлением, дости­гающем в отдельных случаях 3 МПа, доставляются потребителям по трубо­проводам. Совокупность трубопроводов, предназначен­ных для передачи теплоты, называется тепловой сетью. Экономия топлива связана с совершенствованием теп­ловой изоляции, поэтому повышение ее качества отно­сится к одной из важнейших задач теплофикации.

Эффективность работы системы теплоснабжения во многом зависит от рационального размещения ТЭЦ, которые стремятся по возможности приблизить к крупным потребителям теплоты и электрической энергии, так как передача теплоты в виде пара неэкономична на расстояниях свыше 5—7 км. На решение вопроса о целесо­образных местах расположения ТЭЦ в последнее время значительно влияет загрязнение ими окружающей среды.

Централизованное теплоснабжение на базе комбини­рованной выработки теплоты и электрической энергии имеет большие преимущества: обеспечивает основную долю потребности в теплоте промышленного и жилищно-коммунального хозяйства, уменьшает расходование топ­ливно-энергетических ресурсов, а также материальных, и трудовых затрат в системах теплоснабжения.

Однако при максимальной централизации теплоснаб­жения на ТЭЦ можно выработать только 25—30% требу­емой электроэнергии. Работа же конденсационных стан­ций определяется только условиями выработки электро­энергии, что делает весьма благоприятными концентра­цию больших электрических мощностей и позволяет быстро наращивать электроэнергетический потенциал страны. Поэтому в настоящее время и в будущем будут строиться конденсационные станции, несмотря на те преимущества, которые имеет выработка электроэнергии -на ТЭЦ. Развитию теплофикации в СССР придается большое значение. Так, уже в начале девятой пятилетки установленная электрическая мощность теплофикацион­ных агрегатов превысила 45 млн. кВт, что составило око­ло ⅓ установленной мощности всех ТЭС страны, работа­ющих на органическом топливе.

studfiles.net

2.3.Принципиальная технологическая схема тэц

Принципиальная технологическая схема ТЭЦ (рис. 1.9) несколько сложнее схемы ГРЭС. Пар к технологическим потребителям направ­ляется из отборов турбины непосредственно к потребителям пара ПТП или же через паропреобразозатеть ППР, которые применяются и для сокращения потерь дорогостоящего конденсата установок высо­кого давления. Конденсат потребителей после очистки и конденсат паропреобразователей возвращаются в общий поток конденсата на­сосами перекачки конденсата НПК. Горячая вода направляется к теплофикационным потребителям ТП сетевыми насосами СП Она подогревается паром из теплофикационных отборов турбины в основ­ных ОПСВ и пиковых ППСВ подогревателях (бойлерах) сетевой воды или же в пиковых водогрейных котлах ПВК. Конденсат подогре­вателей направляется в деаэратор насосами перекачки конденсата бойлеров НПК.

Так как ТЭЦ расположены ближе к потребителям электроэнергии ПЭ, чем ГРЗС, то для их питания сооружают распредустройства генераторного напряжения закрытого типа (ГРУ или ЗРУ) и только удаленные потребители ТЭЦ питаются от открытых распредустройств

(ОРУ), соединенных с ГРУ повышающими трансформаторами ПТР. Трансформаторы собственного расхода присоединяются при этом не к выводам генератора, а к ГРУ.

    1. ПРИНЦИПИАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ СХЕМА КЭС

На КЭС котлы и турбины соединяются в блоки: котел—турбина (моноблоки) или два котла—турбина (Дубль-блоки). Общая принципи­альная технологическая схема конденсационной тепловой электро­станции КЭС (ГРЗС) представлена на рис. 1.7.

К топке парового котла ПК (рис. 1.7) подводится топливо: газо­образное ГТ, жидкое ЖТ или твердое ТТ. Для хранения жидкого и твердого топлив имеется склад СТ. Образующиеся при сжигании топлива нагретые газы отдают тепло поверхностям котла, подогре­вают воду, находящуюся в котле, и перегревают образовавшийся в нем пар. Далее газы направляются в дымовую трубу Дт и выбрасы­ваются в атмосферу. Если на электростанции сжигается твердое топ­ливо, то газы до поступления в дымовую трубу проходят через золоуловители ЗУ в целях охраны окружающей среды (в основном атмосферы) от загрязнения. Пар, пройдя через пароперегреватель ПИ, идет по паропроводам в паровую турбину, которая имеет цилиндры высокого (ЦВД), среднего (ЦСД) и низкого (ЦНД) давлений. Пар из котла поступает в ЦВД, пройдя через который вновь направляет­ся в котел, а затем в промежуточный пароперегреватель ППП по «хо­лодной нитке» паропровода промежуточного перегрева. Пройдя про­межуточный пароперегреватель, пар вновь возвращается к турбине по «горячей нитке» паропровода промежуточного перегрева и поступает в ЦСД. Из ЦСД пар по пароперепускньш трубам направляется в ЦНД и выходит в конденсатор /(, где конденсируется.

Конденсатор охлаждается циркуляционной водой. Циркуляцион­ная зода подается в конденсатор циркуляционными насосами ЦН. При прямоточной схеме циркуляционного водоснабжения циркуля-циончзя вода забирается из водоема В (реки, моря, озера) и, вылдя из конденсатора, вновь возвращается в водоем. При оборотной схеме циркуляционного водоснабжения охлаждающая конденсатор вода на­правляется в охладитель циркуляционной воды (градирню, пруд-охладитель, брызгальный бассейн), охлаждается в охладителе и вновэ возвращается циркуляционными насосами в конденсатор. По­тери циркуляционной воды компенсируются путем подачи добавочной воды от ее источника.

Вконденсаторе поддерживается вакуум и происходит конденса­ция пара. С помощью конденсатнык насосов К.Н конденсат направля­ется в деаэратор Д, где очищается от растворенных в нем газов, в частности от кислорода. Содержание кислорода в воде и в паре теп­лосиловых установок недопустимо, так как кислород агрессивно действует на металл трубопроводов и оборудования. Из деаэратора пи­тательная вода с помощью питательных насосов ПН направляется в паровой котел. Потери воды, возникающие в контуре котел—паро­провод—турбина—деаэратор котел, пополняются с помощью устройств водоподготовки ХВО (химводоочистки). Вода из устройств водоподготовки направляется для подпитки рабочего контура теплосиловой установки через деаэратор химочищенной воды ДХВ.

Находящийся на одном валу с паровой турбиной генератор Г вырабатывает электрический ток, который по выводам генератора направляется на ГРЭС, в большинстве случаев на повышающий транс­форматор ПТр. При этом напряжение электрического тока по­вышается и появляется возможность передачи электроэнергии на боль­шие расстояния по линиям передачи ЛЭП, присоединенным к повышающему распредустройству. Распредустройства высокого на­пряжения строятся главным образом открытого типа и называются открытыми распредустройствами (ОРУ). Электродвигатели механиз­мов ЭД, освещение электростанции и другие потребители собствен­ного расхода или собственных нужд питаются от трансформаторов ТрСР, присоединенных обычно на ГРЭС к выводам генераторов.

При работе тепловых электростанций на твердом топливе должны быть приняты меры по охране окружающей среды от загрязнения золой и шлаком. Шлак и зола на электростанциях, сжигающих твер­дое топливо, смываются водой, смешиваются с нею, образуя пульпу, и направляются на золошлакоотвалы ЗШО, в которых зола и шлаки выпадают из пульпы. «Осветленная> вода с помощью насосов освет­ленной воды НОВ или самотеком направляется на электростанцию для повторного использования.

При сжигании жидкого топлива возникает необходимость в очист­ке в специальных устройствах УОЗВ замазученных вод, которые сбрасываются в процессе транспортировки и сжигания топлива. Под­вергаются также очистке сбросные воды при промывке оборудования, сточные воды химочистки и конденсатоочистки.

Принципиальная схема тепловой электростанции приведена на рис. 1.8

studfiles.net

Тема9: Эксплуатации тэц

17

Особенности режимов работы оборудования ТЭЦ

Теплоэлектроцентрали предназначены для обеспечения потребителя не только электрической энергией , но и теплом. Отпуск тепла производится либо в виде горячей воды, идущей на отопление, вентиляцию и горячее водоснабжение , либо в виде пара на технологические нужды промышленных предприятий В этом случае параметры пара и его расход определяются потребителем.

Наличие у теплофикационных потребителей независимых потребителей разных типов энергии, каждый из которых предъявляет свои требования к количеству и качеству потребляемой энергии в каждый момент времени, определяет многообразие возможных режимов работы оборудования и схемно-технологические решения отпуска энергии С другой стороны — многообразие возможных режимов, накладывает определенные ограничения на условия эксплуатации оборудования.

Схемы отпуска тепла от ТЭЦ

Схемы отпуска тепла в виде пара.

Отпуск тепловой энергии в виде пара, целиком определяется ее потребителем и тем технологическим процессом в котором он участвует.

Для отпуска пара потребителю с технологическими параметрами используется несколько типов схем отпуска, в зависимости от технологического оборудования установленного на ТЭЦ.

В свою очередь выбор типа оборудования при проектировании и строительстве ТЭЦ учитывает наличие потребителей разных типов.

Отпуск пара (теплоты) внешнему потребителю осуществляется по двум принципиально различным схемам:

Рис.8.1. Открытая схема отпуска тепла

В первом случае пар промышленному потребителю поступает непосредственно из отборов турбины типа ПТ или противодавления Р в качестве резервного отпуска пара предусматривается подача пара от РОУ с соответствующими параметрами. При открытой схеме отпуска пар участвует в технологическом процессе, а возврат его на станцию либо совсем не производится, либо производится возврат только части сконденсированного пара. В большинстве случаев возвращаемый конденсат нуждается в дополнительной очистке, либо требуется существенное восполнение потерь конденсата водой.

Рис.8.2. Закрытая схема отпуска тепла.

В закрытой схеме отпуска пара (теплоты) потребителю отпуск пара производится через промежуточный теплообменник. При этом пар из отборов турбины является греющей средой для генерации вторичного пара, идущего к внешнему потребителю. Пар из отбора турбины, отдавая свое тепло, остается на ТЭЦ.

Преимущество такой схемы заключается в том, что основной контур остается закрытым и потери питательной воды для отпуска пара не превосходят работы станции в обычном режиме, т. е. происходит существенная экономия затрат на подготовке питательной воды. Вместе с тем, для обеспечения необходимых параметров отпуска пара потребителю, в большинстве случаев, это пар используемый в технологических процессах, требуется пар с определенными параметрами Рп и tп. Причем как правило, чаще более важным является обеспечение Рп. В этом случае для обеспечения параметров пара, генерируемого в паропреобразовательных установках, параметры греющего пара из отбора турбины должны иметь давление, превосходящее давление отпускаемого пара на величину ΔР, обеспечивающую необходимый температурный напор в паропреобразователе для генерации пара. В результате параметры пара в отборе возрастают до:

Ротб=Рп + ΔР

В результате срабатываемый в турбине теплоперепад, паром идущим на паропереобразователь уменьшается и мощность вырабатываемая этим паром уменьшается на величину, которую можно оценить по упрощенному выражению (более точно определить величину изменения мощности можно путем расчета тепловой схемы турбагрегата, при открытом и закрытом способе отпуска, так как в этом случае будет учтено еще и изменение вносимые работой системы регенерации и местом возврата конденсата в систему регенерации при закрытой схеме и ввода подпитки, при открытой схеме):

,

где, Dп-расход отборного пара;

ηэ, ηм –КПД, электрический и механический, генератора.

Эффективность той или иной схемы может быть определена на основании сравнения затрат при различных схемах отпуска, с учетом эксплуатационных и капитальных затрат.

Использование той или иной схемы отпуска технологического пара приводит к резкому изменению балансов пара и конденсата на ТЭЦ. При открытой схеме отпуска пара потери конденсата резко возрастают, что сказывается как на условиях эксплуатации, так и на конструктивном исполнении ТЭЦ. Требуется значительное увеличение производительности водоподготовительных установок и систем очистки конденсата.

studfiles.net

Устройство ТЭЦ и технологический процесс получения горячей сетевой воды на ТЭЦ

Поиск Лекций

На рис. 4.3 показана упрощенная технологическая схема производства электроэнергии и тепла на ТЭЦ.

Технология производства электроэнергии на конденсационной ТЭС и ТЭЦ практически не отличаются, поэтому в этой части рис. 3.1 и 4.3 совпадают. Мало того, когда ТЭЦ не отпускает тепла (например, летом или сразу же после ввода в эксплуатацию, когда тепловые сети еще не готовы), она работает просто как конденсационная ТЭС.

Главное отличие ТЭЦ от ТЭС состоит в наличии на ТЭЦ водонагревательной (теплофикационной) сетевой установки. Остывшая в теплопри­емниках тепловой сети обратная сетевая вода поступает к сетевым насосам I подъема СН-I. Насосы повышают давление сетевой воды, исключая ее закипание при нагреве в сетевых подогревателях и обеспечивая ее прокачку через сетевые подогреватели. Из сетевого насоса СН-I сетевая вода последовательно проходит через трубную систему сетевых подогревателей СП-1 и СП-2. Нагрев сетевой воды в них осуществляется теплотой конденсации пара, отбираемого из двух отборов паровой турбины.

Отбор пара осуществляется при таких давлениях, чтобы температура его конденсации в сетевом подогревателе была достаточной для нагрева сетевой воды.

Нагретая в СП-1 и СП-2 сетевая вода поступает к сетевым насосам II подъема, которые подают ее в пиковый водогрейный котел ПВК и обеспечивают ее прокачку через всю или часть (до теплонасосной станции) тепловой сети. Для нагрева сетевой воды в ПВК в него от ГРП подается газ, а от дутьевого вентилятора — воздух. Нагретая до требуемой темпе­ратуры сетевая вода (прямая) подается в магистраль прямой сетевой воды и из него — тепловым потребителям.

Второе существенное отличие турбоустановки отопительной ТЭЦ от ТЭС состоит в использовании не конденсационной, а теплофикационной паровой турбины — турбины, позволяющей выполнять большие регулируемые отборы пара на сетевые подогреватели, регулируя их давление (т.е. нагрев сетевой воды и ее расход).

На ТЭЦ применяются теплофикационные турбины с промежуточными теплофикационными отборами параи турбины с противодавлением.

ТЭЦ с турбинами с противодавлением (рис. 4.4) характеризуется тем, что производство электроэнергии здесь жестко связано с отпуском тепловой энергии, работа такой станции целесообразна только при наличии крупных потребителей теплоты с постоянным расходом ее в течение года, например, предприятий химической или нефтеперерабатывающей промышленности.

ТЭЦ с теплофикационными турбинами (рис. 4.5) могут одинаково эффективно работать в широком диапазоне тепловых нагрузок. В тепловой схеме имеется конденсатор, а пар для подогрева воды отпускается из промежуточных ступеней турбины. Количество пара и его параметры регулируются, такие отборы называются теплофикационными в отличие от отборов, используемых для регенеративного подогрева питательной воды.

Рисунок 4.3 - Упрощенная технологическая схема производства электроэнергии и тепла на ТЭЦ.

 

 

 

 

Рисунок 4.4 - Тепловая схема ТЭЦ с противодавлением турбин

где: 1 - паровой котел, 2 - паровая турбина, 3-электрический генератор, 4 -потребитель теплоты, 5 - конденсатный насос, 6 - деаэратор, 7 - питательный насос.

 

 

Рисунок 4.5 - Тепловая схема ТЭЦ с теплофикационными турбинами

где 1, 2, 3, 4- соответствуют обозначениям рис. 4.4; 5- сетевой насос, 6-конденсатор, 7 - конденсатный насос, 8 - деаэратор, 9 - питательный насос.

 

poisk-ru.ru

Принцип работы теплоцентралей - n1.docx

Принцип работы теплоцентралейДоступные файлы (1):

n1.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования «Новосибирский государственный технический университет»

РЕФЕРАТ

на тему «Принцип работы теплоцентрали»

по дисциплине «Введение в направление»

Проверил: Выполнил:

проф. Щинников П.А. студентка Поклонская О.С.

группа АТЭ-71

Новосибирск, 2010

Содержание

Содержание 2

2.Теплоцентрали и раздельный способ выработки электричества и теплоты. 3

3.Технологическая схема ТЭЦ. 5

7

4.Заключение 7

5.Список литературы 9

1.Введение.

Теплоцентрали ТЭЦ - паротурбинные электрические станции, предназначенные для одновременной выработки электрической и тепловой энергии.

Обычно ТЭЦ используют для нужд теплофикации, то есть покрытия тепловых и электрических нагрузок города или прилегающих районов. ТЭЦ отпускает электроэнергию в общую электрическую сеть и теплоту – в местную сеть теплоснабжения.

Альтернатива теплофикации на ТЭЦ - раздельное производство электрической энергии на конденсационной электростанции КЭС, и тепловой - в отопительной котельной ОК.

В данной работе исследованны и сравнены между собой эти два способа энергоснабжения и выявлены их основные достоинства и недостатки. Выявлен принцип работы ТЭЦ. Рассмотрена простейшая технологическая схема ТЭЦ, выяснено назначение ее основных частей и последовательность выработки электрической и тепловой энергии.

2.Теплоцентрали и раздельный способ выработки электричества и теплоты.

Для снабжения потребителей одновременно и электроэнергией и теплотой применяют либо раздельную выработку электроэнергии на конденсационной электростанции КЭС и теплоты в отопительной котельной ОК, либо совместное, комбинированное их производство на ТЭЦ.

КЭС и теплоцентрали имеют схожие технологические процессы. Принципиальным отличием ТЭЦ от КЭС является то, что на ней установлена специальная теплофикационная турбина с отбором пара. За счет этого часть нагретого в котле пара уходит на нужды теплоснабжения.

Таким образом, теплоту, вырабатываемую при раздельном способе энергоснабжения в котельных, ТЭЦ заменяет отработавшей теплотой, отведенной из теплосилового цикла электростанции. Следует подчеркнуть, что в этом комбинированном процессе полезно используется теплота уже отработавшего пара для нагрева сетевой воды, циркулирующей в тепловых сетях и системах потребителей, которая была бы отведена в окружающую среду через «холодный источник» - градирни или водоемы-охладители. Эти тепловые отходы процесса, полезно используемые для обогрева городов и поселков, составляют от 20 до 40 % теплоты всего сжигаемого на ТЭЦ топлива, по существу это - даровая энергия.[1]

На КЭС же отработавший в турбине пар не отбирается, а охлаждается, конденсируется и вновь попадает в котел. В связи с этим большая часть тепловой энергии, которая используется на ТЭЦ для теплоснабжения, на КЭС не используется и теряется охлаждающей водой конденсатора.

Тепловую энергию, вырабатываемую на ТЭЦ, можно выработать и в котельных, но где взять эти дополнительные количества топлива для них? В этом состоит основное и главное преимущество ТЭЦ перед раздельным производством энергии на КЭС и ОК. Суммарный коэффициент полезного использования топлива повышается до 70-76% против 35-40% на КЭС. [2] Таким образом, эффективность ТЭЦ определяется прежде всего экономией топлива.

К преимуществам КЭС можно отнести, то, что, как правило, максимальная мощность КЭС больше, чем мощность ТЭЦ. Кроме того, в связи с тем, что эффективная передача пара или горячей воды из-за высоких тепловых потерь в трубах возможна на расстоянии не более 20-25 км ТЭЦ «привязаны» к потребителям и работают в большинстве случаев на привозном топливе.

При раздельном производстве электричества и теплоты к потребителям «привязаны» только ОК. КЭС обычно строятся в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значительном расстоянии от станции.

3.Технологическая схема ТЭЦ.

Рассмотрим простейшую принципиальную схему ТЭЦ. Выясним назначение ее основных частей и последовательность выработки электрической и тепловой энергии.

Рис.3 Тепловая схема теплоцентрали

1-паровой котел; 2-турбогенератор; 3-тепловой потребитель;4-насос обратного конденсата;5-регенеративный подогреватель низкого давления;6-конденсатор;7-конденсатный насос; 8-деаэратор;9-питательный насос;10-регенеративный подогреватель высокого давленияТопливо, прошедшее топливоподготовку, поступает в топку парового котла-1. В топке происходит сжигание угольной пыли, в результате которого выделяется теплота, подогревающая поверхности нагрева котла. В результате возникшего теплообмена вода в котле испаряется, а образовавшийся насыщенный пар доводится до температуры =337°С и под давлением =14МПа поступает по паропроводу. Далее пар в пароперегревателе перегревается до температуры 550°С. Полученный перегретый острый пар поступает в паровую турбину турбогенератора-2.

Часть пара, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и используется для подогрева воды в сетевых подогревателях. Горячая вода подается насосами по трубопроводам горячей воды к потребителям-3; после охлаждения в отопительных установках вода возвращается на ТЭЦ. Система трубопроводов горячей и охлажденной воды образует тепловую сеть. [1]

Другая часть пара полностью используется в турбине, где пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного) и потенциальная энергия сжатого пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрическую энергию, которая подается в сеть. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя. Выработанный электрический ток отводится за вычетом собственного расхода электрическому потребителю.

Отработавший в турбине пар поступает в конденсатор-6. Здесь пар, отдавая теплоту конденсирующей воде (t=24-32°С, p=3-5кПа), конденсируется, т.е. превращается в воду, которая конденсатным насосом через регенеративный подогреватель высокого давления-5 подаётся в деаэратор.

Конденсат сжимается в конденсаторном насосе-7 до p=1МПа на входе в деаэратор-8. В деаэраторе происходит деаэрация воды, т.е. удаление из нее воздуха. Воздух удаляется за счет нагрева водяным паром, отбираемым из турбины. Такая очистка необходима для предотвращения коррозии в пароводяном тракте.

Затем питательная вода через регенеративные подогреватели питательной воды высокого давления-9 подается в котельную установку. Тем самым и замыкается пароводяной тракт ТЭЦ.[3]

4.Заключение

В данной работе было проведено исследование и сравнение двух способов производства тепловой и электрической энергии: их раздельное производство на КЭС и ОК и комбинированное производство на ТЭЦ. В ходе этого исследования был выявлен принцип работы теплоцентрали: замена теплоты, вырабатываемой при раздельной схеме энергосбережения в котельных, отработавшей теплотой, отведенной из теплосилового цикла электростанции. Это приводит к значительной экономии топлива, в чем и заключается основное преимущество теплофикации. К недостаткам теплофикации была отнесена меньшую максимальную мощность ТЭЦ по сравнению с КЭС, а также «привязанность» ТЭЦ к потребителям.

5.Список литературы

1. Статья «Теплофикация от тепловых электрических станций-ТЭЦ» http://www.baurum.ru/_library/?cat=heat-consumption&id=4030

2. Рыжкин В.Я. Тепловые электрические станции: Учебник для вузов / Под ред. Гиршфельда В.Я. – М: Энергоатомиздат, 1987. – 328 с.

3. Лекции Ю.И.Шарова по КТиВО ТЭС.

perviydoc.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта